Precision Measurement of the Proton Flux with AMS Experiment

31
Precision Measurement of the Proton Flux with AMS Experiment AMS Days at CERN Geneva, April 16 th 2015 V. Choutko/M.I.T.

Transcript of Precision Measurement of the Proton Flux with AMS Experiment

Precision Measurement of the Proton Flux with AMS Experiment

AMS Days at CERN

Geneva, April 16th 2015

V. Choutko/M.I.T.

2  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Introduc>on      

Protons are the most abundant charged particles in cosmic rays. Knowledge of the precise behavior of the proton spectrum is

important in understanding the origin, acceleration, and propagation of cosmic rays.

Recent important measurements of the proton flux in cosmic rays

have reported different variations of the flux with energy. In particular, the ATIC–2, CREAM, and PAMELA experiments showed deviations of the proton flux from a single power law.

Here we report on the precise measurement of the proton flux in

primary cosmic rays in the rigidity range from 1 GV to 1.8 TV based on 300 million events collected by the AMS.

TRD

TOFTracker

TOFRICH

ECAL

L1

L2

L7-L8

L3-L4

L9

L5-L6 ToF    (4  Layers)  Velocity  and  Direc>on    Δβ/β2 (Z=1) ≈ 4%

TRD,  Tracker,  RICH  ,TOF,  ECAL    Charge  Magnitude  Along  Par>cle    Trajectory                                        ΔZ (Z=1) ≈ 0.05-0.2  

Tracker  (9  Layers)    +    Magnet  Rigidity  and  Charge  Sign    Bending  Coordinate  Resolu>on  (Z=1)  ≈ 10  µm  MDR  (Z=1)   ≈ 2 TV      

3  V.  Choutko  Proton  Flux    AMS  Days  CERN    

AMS    Cosmic  Ray  Protons    Measurement      

     

4  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Charge0.5 1 1.5 2 2.5

Events

510

610

710

810

910Data P910×11.4

He Nuclei

AMS  Data  Sample        

 Proton  Selec>on    

     

(I)  Downgoing  Par>cle      β > 0.3

(II)  Rigidity  (R)    Above  Geomagne>c  Cutoff  (RC  )                    R  >  1.2RC  [IGRF  Magne>c  Field]  

(III)  Charge  |Z|~1    along  Par>cle  Trajectory:                                                                                                For  instance,  for  Inner  Tracker  0.7  <|Z|  <1.5  

(IV) Full  Tracker  Level  arm  (L1  to  L9),  Z>0    (V)   χ2/NDF  of  the  Par>cle  Trajectory  Fit  <  10                    Efficiency  98-­‐99  %,        Removes  Bulk  of  Events  with  Large                        Scaiering  and  Wrongly  Measured  Rigidity  

(VI)    Reconstructed  Mass  >  0.5  GeV/c2                        Removes  low  rigidity    π’s                                                                                      

 

       

5  V.  Choutko  Proton  Flux    AMS  Days  CERN    

 Residual  Background  

       (I)  Protons  from  He  and  other  Nuclei  interacted  on  

very  top  of  AMS:  0.5%  @  1GV    and  negligible  (<0.1%)  above  10  GV  

 (ΙΙ)  π’s  from  protons  interacted  on  top  of  AMS:  

Less  than  0.1%  in  all  rigidity  range      

 (III)     Positrons  and  Electrons:  

Less  than  0.1%  in  all  rigidity  range  

       

6  V.  Choutko  Proton  Flux    AMS  Days  CERN    

 Flux  Measurement  Assuming flux over geomagnetic cutoff is isotropic the differential in rigidity flux can be defined as

Rigidity 1-1800 GV

Effective Acceptance from MC, Verified with Data

Time ~63,000,000 sec , R>30 GV

Φi(R) = Ni

Ti Ai εi ΔRi

Trigger Efficiency from Data

Bin width

7  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Events Corrected for Bin to Bin Migration due to Tracker Rigidity Resolution

i=1,72

Proton flux: (i) systematic errors on trigger efficiency Trigger  efficiency  [4/4  TOF  +  VETO  ]  was  measured  using  1%  prescaled      

event  sample  obtained  with    unbiased      3  out  of  4  ToF  coincidence  trigger.  The  error  is  dominated  by  the  sta>s>cs  available  from  the  

unbiased  trigger.    

LowerTOF (layers 3 and 4)

UpperTOF (layers 1 and 2)

8  

This  systema>c  error  is  negligible  (less  than  0.1%)  below  100GV    and  reaches  1.5%  at  1.8TV.  

VETO

V.  Choutko  Proton  Flux    AMS  Days  CERN    

     

9  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity[GV]1 10 210 310

Trig

ger E

fficie

ncy

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1Data

MC Geant 4.9.6

Trigger  Efficiency  Measured  from    Unbiased  Trigger  

Proton  flux:  (ii)  systema>c  errors  on  the  acceptance  and  event  selec>on  

The  effec>ve  acceptance  obtained  with  Geant4.9.6  simula>on  was  corrected  for  small  differences  between  the  data  and  the  Monte  Carlo  samples  related  to  the  event  reconstruc>on  and  selec>on.  The  typical  systema>c  error  on  the  flux  is  0.8%  at  200GV.  The  detector  is  mostly  made  of  carbon  and  aluminum.  The  corresponding  inelas>c  cross  sec>ons  of  p  +  C  and  p  +  Al  are  known  to  within  10%  at  1GV  and  4%  at  300GV,  and  7%  at  1.8TV  from  model  es>ma>ons.    

10  V.  Choutko  Proton  Flux    AMS  Days  CERN    

     

11  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Acceptance  Error  due  to  Interac>ons    

Knowledge of p+C(Al) inelastic σ is important to assess error on acceptance due to proton interactions. p+C(Al)    inelas>c  σ    is  known  4  to  10  %  accuracy.

Rigidity [GV]1 10 210 310

p+C

inelas

tic cr

oss s

ectio

n [mb

]

200

220

240

260

280

GEANT 4-09-06GEANT 4-09-06 UncertaintyNA61 (2012)Denisov (1973)Bellettini (1965)

qeσCarroll (1979) + Bowen (1958)Letaw (1983)

     

12  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Using scaled by ±10% cross sections MC samples allowed to evaluate acceptance error. The corresponding systematic error is 1% at 1GV, 0.6% from 10 to 300GV, and 0.8% at 1.8TV.

Rigidity [GV]1 10 210 310

p+Al

inelas

tic cr

oss s

ectio

n [mb

]

380

400

420

440

460

480

500

520

540 GEANT 4-09-06GEANT 4-09-06 UncertaintyDenisov (1973)Bellettini (1965)Carroll (1979)Letaw (1983)MiniBoone (2009)

Acceptance  Error  due  to    Interac>ons    

               Proton  Flux:  (iii)  systema>c  errors  on  background  contamina>on  

The  background  contribu>ons  from  protons  which  originated  in  the  interac>ons  of  nuclei  at  the  top  of  AMS,  no>ceable  only  below  2GV,  are  subtracted  from  the  flux  and  the  uncertain>es  are  accounted  for  in  the  systema>c  errors.  

nuclei

proton

13  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Proton  flux:  (iv)  systema>c  errors  on  geomagne>c  cutoff  

The  cutoff  was  calculated  by  backtracing  par>cles  from  the  top  of  AMS  out  to    50  Earth’s  radii.    A  safety  factor  of  1.2  is  then  applied.  It  was  varied  from  1.0  to  1.4  and  the  resul>ng  proton  fluxes  showed  a  systema>c  uncertainty  of  2%  at  1GV  and  negligible  above  2GV.    

14  

We  have  also  verified  that  using  the  most  recent  IGRF  model  and  the  IGRF  model  with  external  non-­‐symmetric  magne>c  fields  does  not  introduce  observable  changes  in  the  flux  values  nor  in  the  systema>c  errors.  

V.  Choutko  Proton  Flux    AMS  Days  CERN    

Proton  flux:  (v)  systema>c  errors  on  unfolding  

Among  many  unfolding  procedures,  we  selected  two.  The  small  differences  between  the  two  procedures  (<  0.5%)  are  accounted  as  a  systema>c  error.        We  have  checked  the  sensi>vity  of  the  results  to  the  binning  by:    

1.  increasing  the  bin  width  by  factors  of  2  and  4  

2.  reducing  the  bin  width  by  factors  of  2  and  4.      The  resul>ng  uncertainty  is  well  within  the  assigned  systema>c  errors.  

15  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Proton  flux:  (vi)  systema>c  errors  on  the  rigidity  resolu>on  func>on  

The  rigidity  resolu>on  func>on  was  verified  with  data  from  both  the  ISS  and  the  400  GeV  proton  beam.  For  this  the  residuals  between  the  hit  coordinates  measured  in  tracker  layers  L1  and  L9  and  those  obtained  from  the  track  fit  from  only  the  inner  tracker  L2  to  L8  were  compared  between  data  and  simula>on.        In  order  to  addi>onally  validate  the  alignment  of  the  external  layers  the  difference  between  the  rigidity  measured  using  the  informa>on  from  L1  to  L8  and  from  L2  to  L9  was  compared  between  data  and  the  simula>on.    

L1

L5 L6

L3 L4

L7 L8

L9

L2

MA

GN

ET

16  V.  Choutko  Proton  Flux    AMS  Days  CERN    

17  

]-1 [ GV4001 - Rigidity

1

-0.02 -0.01 0 0.01 0.02

Even

ts

10

210

310

410

510

610a)

400 GeV/c TestBeam Data

400 GeV/c Simulation

The resolution function for 400 GeV/c protons measured in the test beam compared with Monte Carlo simulated events.

The  corresponding  unfolding  errors  were  obtained  by  varying  the  width  of  the  Gaussian  core  of  the  resolu>on  func>on  by  5%  and  the  amplitude  of  the  non-­‐Gaussian  tails  by  ∼20%      and  found  to  be  1%  below  200GV  and  3%  at  1.8TV.  

Proton  flux:  (vi)  systema>c  errors  on  the  rigidity  resolu>on  func>on    (cont’d)

V.  Choutko  Proton  Flux    AMS  Days  CERN    

Proton  flux:  (vii)  systema>c  errors  on  the  absolute  rigidity  scale    (1/Δ)    

1)  Residual  tracker  misalignment:    From  the  400GeV/c  test  beam  data  it  was  measured  to  be  less  then  1/(300TV).  For  the  ISS  data  this  error  was  es>mated  by  comparing  the  E/R  ra>o  for  electron  and  positron  events,  where  E  is  the  energy  measured  with  the  ECAL  and  R  is  the  rigidity  measured  with  the  tracker.  It  was  found  to  be  1/(26TV),  limited  by  the  current  high  energy  positron  sta>s>cs  and  corresponds  to  flux  error  2.5%  @1  TV.      

18  

RigidityEnergy

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

BinEvent

s

10

210

E>30 GeV+e E>30 GeV, Scaled-e

-eE + +eE-e(E/R) - +e(E/R)

= ∆1

-eE + +eE-e(E/R) - +e(E/R)

= ∆1

-eE + +eE-e(E/R) - +e(E/R)

= ∆1

-eE + +eE-e(E/R) - +e(E/R)

= ∆1

1/Δ∼0  and    σ(1/Δ)=1/26  TV-­‐1

Normalized

V.  Choutko  Proton  Flux    AMS  Days  CERN    

Proton  flux:  (vii)  systema>c  errors  on  the  absolute  rigidity  scale  

2)  Magne>c  field:    Mapping  measurement  (0.25%)  and  temperature  correc>ons  (0.1%).    Taken  in  quadrature  and  weighted  by  the  measured  flux  rigidity  dependence,  this  amounts  to  less  than  0.5%  systema>c  error  on  the  flux.  

Zurich,1997

CERN, 2010 B

in G

auss

1200

800

400

In 12 years the field has remained the same to <1%

3D field map (120,000 locations) Measured at CERN

in May 2010     19

V.  Choutko  Proton  Flux    AMS  Days  CERN    

 Break  Down  of  Systema>c  Errors  @  200GV          Source                                                                                                    Error  (%)      Trigger                                                                                                              0.2    Acceptance                                                                                              1.1    -­‐  Selec>on                                                                                                        0.85  

       -­‐  Interac>ons                                                                                                0.6          -­‐  Geomagne>c  Cutoff  [<2  GeV]                                  0  

 Unfolding  &  Rigidity  Resolu>on                        0.95                                                        Rigidity  Scale                                                                                          0.7            -­‐  Residual  tracker  misalignment                                0.55            -­‐  Magne>c  field  accuracy                                                        0.45  

       

20  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Four  Examples  of  Independent  Verifica>on  of  Systema>c  Errors  on    

 •  Acceptance    

•  Time  Stability    

•  Rigidity  Scale    

•  Unfolding    V.  Choutko  Proton  Flux    AMS  Days  CERN     21  

   Verifica>on  of  the  Systema>c  Error  Assigned  to  Acceptance  

     

22  V.  Choutko  Proton  Flux    AMS  Days  CERN    

°θ

6 8 10 12 14 16 18 20

Flu

x R

ati

o

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Data

Systematic Uncertainty Range

The variation of the flux ratio above 30 GV [Max GeoMag Cutoff] versus the angle θ to the AMS Z axis.

1.01  

0.99  

Verifica>on  of  the  Stability  of  Detector  Performance    

   

23  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Date

Flu

x R

atio

0.97

0.98

0.99

1

1.01

1.02

1.03 b)

Data

Systematic Uncertainty Range

09/11 01/12 05/12 09/12 01/13 05/13 09/13

 The variation of the (monthly) flux ratio above 45GV [Above Solar modulation Time Dependent Effects] vs time.

1.01  

0.99  

   Verifica>on  of  the  Systema>c  Error  Assigned  to  the  Rigidity  Scale  

     

24  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

100 200 300 400 500 600 1000

Flu

x R

ati

o

0.85

0.9

0.95

1

1.05

1.1

1.15 c)

Data

Systematic Uncertainty Range

The variation of the flux ratio vs the rigidity for different Tracker Layer 1 (L1) entry regions

0.98  

1.02  

Flux obtained using the rigidity measured by only the inner tracker (2-8) is in good agreement with the flux measured using the full lever arm (1-9), specifically at -High rigidities (100 to 300GV) where the unfolding effects and resolution functions of the inner tracker (300 GV MDR) and the full lever arm one (2 TV MDR) are very different. -Low rigidities (1 to 10GV) where the unfolding effects and the tails in the resolution functions of the inner tracker and full lever arm are also very different due to multiple and nuclear scattering.

25  

1

2

3-4

5-6

7-8

9

1.01

0.99

 Verifica>on  of  the  Systema>c  Error  of    Unfolding,  Acceptance    and  Rigidity  Resolu>on  

1.00

1.02

0.98

V.  Choutko  Proton  Flux    AMS  Days  CERN    

     

26  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]1 10 210 310

Erro

r [%

]

1

2

3

4

5

6

7

AV_Error StatAV_Error TrigAV_Error AccAV_Error UnfAV_Error ScaleAV_Error Full

Sta>s>cal  Trigger  Acceptance  

Unfolding  

Rigidity  Scale  

Total  

2 1.5

4

1.3

 Flux  Errors  Breakdown  

     

27  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

1 10 210 310

]1.7

GV

-1se

c-1

sr-2

[m

2.7 R~ ×Fl

ux

0

2

4

6

8

10

12

14

310×

AMS-02a)

Proton  Flux  

300 Million Events

     

28  V.  Choutko  Proton  Flux    AMS  Days  CERN    

) [GeV]K

Kinetic Energy (E

1 10 210 310 410

]1.7

GeV

-1se

c-1

sr-2

[m

2.7 K E×

Flux

0

2

4

6

8

10

12

14

310×

AMS-02ATIC-2BESS-PolarCREAMPAMELA

b)

Proton  Flux  Comparison  with  Earlier  Measurements  

Proton  Flux  Fit  with  the  Model    

     

29  V.  Choutko  Proton  Flux    AMS  Days  CERN    

]1.7

GV

-1se

c-1

sr-2 [m2.7 R~ ×

Flux

8

9

1011

12

13

14310×

AMS-02Fit to Eq. (3) Eq. (3) with Δγ=0

Rigidity [GV] 10 210 310

\\\  Fit to Model χ2  /NDF=25/26  Fit to Model with Δγ=0

(sys)-0.003+0.004(fit)

-0.002+0.002 = -2.849γ

(sys)-0.030+0.046(fit)

-0.021+0.032 = 0.133γ∆

(sys) [GV]-28+66(fit)-44

+68 = 3360R

 Model  Independent  Spectral  Index  Rigidity  Dependence    

 

     

30  V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV] 10 210 310

Spec

tral In

dex

-2.9-2.85-2.8

-2.75-2.7

-2.65-2.6

-2.55-2.5 b)

310×

The spectral index varies with rigidity. In particular, the spectral index is progressively hardening with rigidity above ∼100 GV.

Spectral Index = d[log(Φ)]/d[log(R)]

Conclusion      •  Precision  measurement  of  proton  flux    with  AMS  is  done  from  1  GV  to  1.8  TV  based  on  300  million  events  

•  The  detailed  varia>on  of  the  flux  spectral  index  is  presented    

•   The  spectral  index  is  progressively  hardening  at  high  rigidi>es  

    31  V.  Choutko  Proton  Flux    AMS  Days  CERN