Precision Doppler spectroscopy

47
Precision Doppler spectroscopy Guillem Anglada-Escude School of Physics and Astronomy Queen Mary, University of London Institute for Astrophysics Georg-August-Universität Göttingen 2 nd CARMENES science meeting

description

Precision Doppler spectroscopy. Guillem Anglada-Escude School of Physics and Astronomy Queen Mary, University of London Institute for Astrophysics Georg-August- Universität Göttingen. 2 nd CARMENES science meeting. Precision Doppler spectroscopy as a detection method. Indirect methods. - PowerPoint PPT Presentation

Transcript of Precision Doppler spectroscopy

Page 1: Precision Doppler spectroscopy

Precision Doppler spectroscopy

Guillem Anglada-EscudeSchool of Physics and AstronomyQueen Mary, University of London

Institute for AstrophysicsGeorg-August-Universität Göttingen

2nd CARMENES science meeting

Page 2: Precision Doppler spectroscopy

Precision Doppler spectroscopy as a detection method

Indirect methods

Kinematic

Doppler spectroscopy

Astrometry Timing

Photometric

Gravitationalmicro-lensing

Transit

Dynamic

Orbital perturbations

Disk-planet interactions

Star-planet interactions

Page 3: Precision Doppler spectroscopy

K

Time

RV

a

Precision Doppler spectroscopy as a detection method

Page 4: Precision Doppler spectroscopy

Width of a typical solar line is 15

km/s

Spectroscopic binary K=30 km/s

Hot jupiterK=300 m/s

Precision Doppler spectroscopy as a detection method

Page 5: Precision Doppler spectroscopy

0 m/s

Precision Doppler spectroscopy as a detection method

Page 6: Precision Doppler spectroscopy

+ 3 m/s

Precision Doppler spectroscopy as a detection method

Page 7: Precision Doppler spectroscopy

+ 3 m/s

Precision Doppler spectroscopy : (quick & unfair) historical overview

Page 8: Precision Doppler spectroscopy

Tau Ceti G8.5VO

rder

Pixel

6900 A

3800 A

HARPS-ESOSpectral format

Precision Doppler spectroscopy as a detection method

Page 9: Precision Doppler spectroscopy

Precision Doppler spectroscopy : (quick & unfair) historical overview

+ Perforated binary mask (CORAVELs)

Digital CCF (ELODIE)Hot jupiters

Tellurics

HF cell (CFHT)

Iodine cell - (M. Hamilton)Warm Jupiters

50 m/s

25 m/s

5 m/s

Echelle spectrograph

CCDComputers

Stabilized spectrographs

300 m/s

10 m/s

Absorption cells

4 m/sNextGen CCDs

3 m/sDedicated ultra-stable(HARPS-ESO)

Sub-Neptune

Large telescopes(HIRES-Keck)

Sub-Neptune

2 m/s

1 m/s

<1 m/sG, K

dwarfs

Software, Pipelining + calibration Few Earth masses

Dedicated semi-stabilized(PFS-Magellan)

Few Earth masses

Page 10: Precision Doppler spectroscopy

High incident angle Grating

Prism

Many interference orders overlapped

Orders separated

Absorption cell

Absorption cell

Page 11: Precision Doppler spectroscopy

Stabilized spectrograph

High incident angle Grating

Prism

Many interference orders overlaping

Orders separated

Page 12: Precision Doppler spectroscopy

High incident angle Grating

Prism

Many interference orders overlaping

Orders separated

Fiber – light transport + scrambling

Stabilized spectrograph

Page 13: Precision Doppler spectroscopy

au

earth

aMmscmK 1/ 10

*

au

jup

aMm

smK 1 / 30*

G dwarfHZ @ 1 AU

M dwarfHZ @ 0.1 AU

30 m/s 950 m/s

0.1 m/s 3.1 m/s

Exo-Jupiter formula

Exo-Earth formula

500+ planetsELODIE, Hamilton, HIRES/Keck, CORALIE, HARPS, UVES/VLT, AAT …

Happening now…HARPS, PFS/Magellan, HIRES/Keck

Precision Doppler spectroscopy : (quick & unfair) historical overview

Page 14: Precision Doppler spectroscopy

Precision Doppler spectroscopy : (quick & unfair) historical overview

High resolution – Large telescopes (CRIRES)

Absorption cells 6 m/s

50 m/s

New large format arrays, nIR cross dispersion, stabilized cryogenic optics…

Tellurics

HF cell (CFHT)

Iodine cell - (M. Hamilton)Warm Jupiters

Large telescopes(HIRES-Keck)

Sub-Neptune

Dedicated semi-stabilized(PFS-Magellan)

Few Earth masses

50 m/s

25 m/s

5 m/s

4 m/s

2 m/s

Absorption cells

Infrared (~2000)First high-res spectrographs(CSHELL-IRTF, 256x256 pixels)

Echelle – low resolution(Tellurics-NIRSPEC)

100 m/s

Page 15: Precision Doppler spectroscopy

Bean et al. ApJ 2010Proxima Cen, CRIRES/VLT with Ammonia

RMS 5.4 m/s

Proxima Cen, HARPS/3.5m RMS 2.3 m/s

M-dwarfs : Radial velocities in the near infrared?

Page 16: Precision Doppler spectroscopy

Requires an absorption cell External calibration source (ThAr)

But (some) HARPS data is public!

Absorption cell technique Stabilized spectrograph

Precision limited by PSF Stabilized PSF

Works on any spectrograph Specialized spectrograph

No-cell templates are critical High SNR templates

Available on several instruments Built only by Geneva group

Very complex software. Private data reduction pipelines

Proprietary instruments & Data reduction pipelines …

Absorption cell (optical and nIR) vs Stabilized spectrographs (optical)

& CARMENES!

Page 17: Precision Doppler spectroscopy

Doppler measurement

Ideal template of the star

F(kl)fi i=1,…Nobs

Observed spectrum

Page 18: Precision Doppler spectroscopy

Doppler measurement

𝑅𝑖= 𝑓 𝑖−F (𝑘 𝜆𝑖 )Most simple case : Only Doppler offset

Page 19: Precision Doppler spectroscopy

Doppler measurement

𝑅𝑖= 𝑓 𝑖−F (𝑘 𝜆𝑖 )Most simple case : Only Doppler offset

𝑅𝑖=𝑎0 𝑓 𝑖−F (𝑘 𝜆𝑖 )A bit better: Doppler offset +

flux scaling

Page 20: Precision Doppler spectroscopy

Doppler measurement

𝑅𝑖= 𝑓 𝑖−F (𝑘 𝜆𝑖 )Most simple case : Only Doppler offset

𝑅𝑖=(𝑎0+𝑎1 𝜆𝑖+…𝑎𝑛𝜆𝑖) 𝑓 𝑖−F (𝑘 𝜆𝑖 )Even better : Polynomial flux correction

n

Page 21: Precision Doppler spectroscopy

Doppler measurement

𝑅𝑖=(𝑎0+𝑎1𝜆𝑖+…𝑎1 𝜆𝑖) 𝑓 𝑖−F (𝑘 𝜆𝑖 )

𝜎 𝑖

∑𝑖𝑅𝑖

❑2𝜒2 [𝑎0 ,… ,𝑎𝑛 ,𝑘 ]=¿

Page 22: Precision Doppler spectroscopy

Doppler measurement

𝜕 𝜒 2

𝜕𝑎0=0

𝜕 𝜒 2

𝜕𝑎𝑛=0

𝜕 𝜒 2

𝜕𝑘 =0

Preferred solver (and interpolator)

𝜒2min

𝑘=1− 𝑣𝑐

Page 23: Precision Doppler spectroscopy
Page 24: Precision Doppler spectroscopy

Doppler measurement : and what about cross-correlation methods?

𝑅𝑖= 𝑓 𝑖−𝐹 (𝑘 𝜆𝑖 )

𝜒2=∑𝑖

( 𝑓 𝑖−𝐹 (𝑘 𝜆𝑖 ))❑2

Page 25: Precision Doppler spectroscopy

𝜒2=∑𝑖𝑓 𝑖+𝐹 (𝑘 𝜆𝑖 )−2 𝑓 𝑖𝐹 (𝑘 𝜆𝑖 )2 2

Doppler measurement : and what about cross-correlation methods?

Page 26: Precision Doppler spectroscopy

2 2

Doppler measurement : and what about cross-correlation methods?

𝜕𝜕𝑘 𝜒

2=𝜕𝜕𝑘∑𝑖 𝑓 𝑖+

𝜕𝜕𝑘∑𝑖 𝐹 (𝑘 𝜆𝑖 )−2 𝜕

𝜕𝑘∑𝑖 𝑓 𝑖𝐹 (𝑘 𝜆𝑖 )

Page 27: Precision Doppler spectroscopy

𝜕𝜕𝑘 𝜒

2=𝜕𝜕𝑘∑𝑖 𝑓 𝑖+

𝜕𝜕𝑘∑𝑖 𝐹 (𝑘 𝜆𝑖 )−2 𝜕

𝜕𝑘∑𝑖 𝑓 𝑖𝐹 (𝑘 𝜆𝑖 )2 2

Doppler measurement : and what about cross-correlation methods?

Page 28: Precision Doppler spectroscopy

𝜕𝜕𝑘 𝜒

2=−2 𝜕𝜕𝑘∑𝑖 𝑓 𝑖𝐹 (𝑘 𝜆𝑖 )=0

Doppler measurement : and what about cross-correlation methods?

Page 29: Precision Doppler spectroscopy

Cross Correlation Function (CCF)D. Queloz, Proc. IAU Symposium 1995

l0

1

30 RV offset (km/s)

10 0 20 -10 -30 -20

CCF

Cross-correlation with binary mask (weighted)

Proxima Cen

Page 30: Precision Doppler spectroscopy

Tau CetiG8.5V

Barnard’sM4V

?? ??? ? ?

? ?? ? ? ? ????? ? ? ? ?

?? ??

OK!

Mask CCF in M dwarfs?

Page 31: Precision Doppler spectroscopy

Least-squares matching is much better!

Barnard’s star, M4V

Page 32: Precision Doppler spectroscopy

Barnard’s star, M4V

Least-squares matching is much better!

Page 33: Precision Doppler spectroscopy

Some M-dwarfs are more stable than G and K dwarfs!

2.6%

Perspective acceleration effectZechmeister et al. 2009 A&A

Page 34: Precision Doppler spectroscopy

Some M-dwarfs are more stable than G and K dwarfs!

2.6%

Perspective acceleration effectZechmeister et al. 2009 A&A

Now we are surfing the photon noise!

Page 35: Precision Doppler spectroscopy

We got RV, now what?

Page 36: Precision Doppler spectroscopy

Toolbox : periodograms

𝐹 𝑃=𝜒 2− 𝜒 2/(𝑘−𝑘)𝜒 2/(𝑁 𝑜𝑏𝑠−𝑘)

P

P P

P nullnull

Page 37: Precision Doppler spectroscopy

Toolbox : periodograms

Δ 𝑙𝑛𝐿=𝑙𝑛𝐿− 𝑙𝑛𝐿P null

𝐿=∏𝑖

1√2𝜋 (𝜎2+𝑠2)

𝑒𝑥𝑝 [− 12

(𝑣 𝑖−𝑣 (𝑡𝑖 ;𝜃 ))𝜎 2+𝑠2 ]

𝑙𝑛𝐿=− 𝑁2 ln (2𝜋 )− 12∑𝑖 ln (𝜎 2+𝑠2 )− 1

2∑𝑖 𝜒2

2

i i

i

More detailed/correct discussion see: Baluev 2009 & 2012(his codes are public!)

Page 38: Precision Doppler spectroscopy

Toolbox : periodograms

Δ 𝑙𝑛𝐿=𝑙𝑛𝐿− 𝑙𝑛𝐿P null

Page 39: Precision Doppler spectroscopy

Toolbox : periodograms

Δ 𝑙𝑛𝐿=𝑙𝑛𝐿− 𝑙𝑛𝐿P null

M sin i = 11.0 Mearth

M sin i = 4.4 MearthRMS 1.6 m/s

Page 40: Precision Doppler spectroscopy

Multiplanet system!

GJ 676A, M0V2 gas giants+1 hot Neptune+1 very hot super-Earth

Anglada-Escude & Tuomi, 2012 A&A

0.041 AU0.187 AU

1.8 AU 5.2 AU

Page 41: Precision Doppler spectroscopy

𝐿∝𝐸𝑋𝑃 [− 12𝜒2]

Likelihood function

Period

Mas

sToolbox : Bayesian MCMC

Page 42: Precision Doppler spectroscopy

𝐿∝𝐸𝑋𝑃 [− 12𝜒2]

Likelihood function

Period

Mas

s

Provides optimal sampling in highly dimensional spaces

N = 3 + 5 x Nplanets

Run a few million steps and you are done!

Toolbox : Bayesian MCMC

Page 43: Precision Doppler spectroscopy

Combined constrains

Example : GJ 317astrometry + radial velocity

Toolbox : Bayesian MCMC

Page 44: Precision Doppler spectroscopy

Periodograms + Bayesian + dynamics + priors + attempts to model red noise

Page 45: Precision Doppler spectroscopy

Periodograms + Bayesian + dynamics + priors + attempts to model red noise

b

c

d

ef

g

Applying dynamical stability prior

Page 46: Precision Doppler spectroscopy

Periodograms + Bayesian + dynamics + priors + attempts to model red noise

b

c(h)

Page 47: Precision Doppler spectroscopy

Take home message

Understand your instrument AND YOUR DATA

Learn how to design your model optimization scheme

Get trained into basic data analysis techniques. Take a course if necessary

Think further : • Bayesian RV measuring algorithm?• How can I measure line shapes? (e.g. bisector-like indices)• How to incorporate activity information into the Doppler model?

• Find collaborators to take care of thinks you don’t have time to learn (e.g. dynamics!) or do (TRANSIT SEARCHES, anybody in charge???)

Be skeptic of black-boxes. If you can code it, you master it.