PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf ·...

63
PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department of Mathematics Des Moines Area Community College October 25, 2011

Transcript of PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf ·...

Page 1: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

PreCalculus NotesMAT 129

Chapter 10: Polar Coordinates; Vectors

David J. Gisch

Department of MathematicsDes Moines Area Community College

October 25, 2011

Page 2: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

1 Chapter 10Section 10.1: Polar CoordinatesSection 10.3: The Complex Plane; De Moivre’s TheoremSection 10.4: VectorsSection 10.5: The Dot Product

Page 3: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Section 10.1: Polar Coordinates

Summary

We will learn about Polar coordinates; convert rectangularcoordinates to polar coordinates and vice versa; and transformequations from polar to rectangular form.

Page 4: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Radians vs. Degrees

Page 5: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Polar Coordinates

Figure: Graph of polar coordinates (2, π/4)

Page 6: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Graph the polar coordinates(4,π

2

),

(− 2,

4

),

(3,−2π

3

),

Page 7: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Several Forms of a Single Point

Page 8: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Conversion from polar Coordinates to Rectangular

Page 9: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Transform Polar Equations to Rectangular Form

Identities

r2 = x2 + y2

x = r cos θ

y = r sin θ

Example

Change r = 4 cos θ to rectangular form.

Page 10: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Change r = 41−cos θ to rectangular form.

Page 11: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Change y = 3x + 2 to polar form.

Page 12: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Change x2 + y2 = 1 to polar form.

Page 13: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Section 10.3: The Complex Plane; De Moivre’sTheorem

Summary

We will plot polar coordinates in the complex plane; findproducts and quotients of complex numbers; and use DeMoirve’s theorem to find roots of complex numbers.

Page 14: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Definition

We can write a complex number a + bi as z = x + yi . The magnitude ormodulus of z , denoted as |z |, is the distance of z from the origin

|z | =√

x2 + y2

In other words, |z | = r .

Note

Recall that any complex number a + bi has the conjugate a− bi . Thus,any complex number z = x + yi has the conjugate z̄ = x − yi .

Page 15: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Definition

If r ≥ 0 and 0 ≤ θ ≤ 2π, the complex number z = x + yi may be writtenin polar form as

z = x + yi = r cos θ + (r sin θ)i = r(cos θ − i sin θ)

Note

If x = r cos θ then cos θ = x/r and likewise sin θ = y/r .

Page 16: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Write z =√

2− i in polar form.

Page 17: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Write z = 2 +√

3i in polar form.

Page 18: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Products and Quotients

Theorem

Let z1 = r1(cos θ1 − i sin θ1) and z2 = r2(cos θ2 − i sin θ2)

z1z2 = r1r2[

cos(θ1 + θ2)− i sin(θ1 + θ2)]

z1z2

=r1r2

[cos(θ1 − θ2)− i sin(θ1 − θ2)

]

Page 19: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Multiply and divide z1 = 3(cos 30◦ − i sin 30◦) andz2 = 2(cos 100◦ − i sin 100◦) in polar form.

Page 20: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Multiply and divide z1 =√

3 + 2i and z2 = −2√

2 + 2√

2i in polar form.

Page 21: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

De Moivre’s Theorem

Theorem

Let z = r(cos θ − i sin θ), then

zn = rn[

cos(nθ)− i sin(nθ)]

Page 22: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

If z = 2(cos 30◦ − i sin 30◦), calculate z6.

Page 23: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Calculate (1 + i)5 and write your answer in a + bi form.

Page 24: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Complex Roots Theorem

Let w be a complex number and n ≥ 2. Then the complex numbers thatare solutions to the equation

zn = w

are called complex nth roots of w . The complex roots can be calculated as

Theorem

Let w = r(cos θ − i sin θ), then

zk = n√

r

[cos(θ

n+

2kπ

n

)− i sin

(θn

+2kπ

n

)]where k = 0, 1, 2, . . . , n − 1.

Page 25: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Find the complex cube roots of w = 1−√

3i .

Page 26: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Section 10.4: Vectors

Summary

We will plot vectors; convert vectors to various forms; andperform arithmetic of vectors.

Page 27: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Line, Segments, Vectors

Page 28: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Note

Any two vectors are considered to be equal if they have the samemagnitude and direction. There exact starting and stopping points neednot be the same. For example, all three vectors below are equal.

Page 29: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Adding Vectors

When you add two vectors you can think of visually as starting the secondvector from where the first one left off. We call the black vector ~v + ~w theresultant vector.

Note: Order does not matter either.

Page 30: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Negative Vectors

Given a vector ~v we can also consider −~v . The vector −~v has the samemagnitude as ~v but has a direction opposite of ~v .

Page 31: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Adding and Subtracting Vectors (Visually)

Figure: ~u + ~v

Page 32: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Adding and Subtracting Vectors (Visually)

Figure: ~u − ~v

Page 33: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Adding and Subtracting Vectors (Visually)

Figure: 2~u + ~v − ~w

Page 34: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Scalar Multiples

Page 35: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Properties of Scalar Multiples

Page 36: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Magnitude

Definition

The length of a vector is defined as the magnitude, written as ‖~v‖.

Note

If ‖~v‖ = 1, then we call ~v a unit vector.

Page 37: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Algebraic Vector

Definition

We write a vector in algebraic form as ~v = 〈x , y〉, where x and y are calledthe vector’s components. Thus, we also refer to this form as componentform.

Page 38: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Algebraic Vector

Theorem

If a vector ~v starts with the initial point P1 = (x1, y1), not necessarily theorigin, and terminal point P2 = (x2, y2), then ~v can be written in algebraicfrom as

~v = 〈x2 − x1, y2 − y1〉

I often think of this formula as taking “the end point minus the startpoint.”

Page 39: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Given the following points find the vectors

P1 = (2, 3) P2 = (4,−3) P3 = (−1, 5)

1−−−→P1P2

2−−−→P3P2

3−−−→P1P3

Page 40: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Another Form!?

Definition

We also write vectors in algebraic form as ~v = 〈a, b〉 = ai = bj . Here isymbolizes the x-component and j symbolizes the y -component. [Notethat i is not the imaginary i here.]

Page 41: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Adding and Subtracting Vectors (Algebraically)

Properties

If we have two vectors ~u = ai + bj = 〈a, b〉 and ~v = ci + dj = 〈c , d〉, then

~u + ~v = (a + c)i + (b + d)j = 〈a + c , b + d〉~u − ~v = (a− c)i + (b − d)j = 〈a− c , b − d〉α~u = (αa)i + (αb)j = 〈αa, αb〉‖~u‖ =

√a2 + b2

Page 42: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Given the following vectors calculate the sum or difference.

~u = 2i + 3j ~v = −4i + 2j

1 ~u + ~v

2 3~u − ~v

3 ‖~v‖

Page 43: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Unit Vector

Theorem

For any vector ~v, the vector

~u =~v

‖~v‖is a unit vector in the same direction as ~v. Note that this implies

~v = ‖~v‖~u

Page 44: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Find a unit vector in the same direction as ~v = 4i − 3j .

Example

Show that ~v = ‖~v‖~u.

Page 45: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Magnitude and Direction

Vectors, when written as 〈x , y〉 can be thought of as being in rectangularform, though they do not necessarily start at the origin. Vectors can alsobe described by their magnitude, given by ‖~u‖, and direction θ, measuredfrom the positive horizontal. Thus we can treat vectors as polarcoordinates and vice versa, making the arithmetic similar.

Page 46: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Applications

Example

A ball is thrown with an initial speed of 25 miles per hour in a directionthat makes an angle of 30◦ with the positive horizontal. Express thevelocity vector ~v in terms of i and j. What is the initial speed in thehorizontal direction? What is the initial speed in the vertical direction?

Page 47: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Applications

Example

A box of supplies that weighs 1200 pounds is suspended by two cablesattached to the ceiling as shown. What is the tension on the two cables?

Page 48: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Applications

Example

At a picnic there is a contest, in which hoses are used to shoot water at abeach ball in three different directions. As a result there are three forcesacting upon the beach ball. The pressure and position of the hoses can begiven as

F1 = 50N at 120◦

F2 = 90N at 240◦

F3 = 70N at 0◦

Here N is the unit of force Newtons. What is the resultant vector (i.e.where is the ball going to go)?

Page 49: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Section 10.5: The Dot Product

Summary

We will find the dot product of two vectors; the angle betweenvectors; and determine whether vectors are parallel or orthogonal.

Page 50: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Dot Product

Formula

If we have two vectors ~u = ai + bj = 〈a, b〉 and ~v = ci + dj = 〈c , d〉, thenthe dot product of the two vectors is given as

~u · ~v = ac + bd

Page 51: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Given the following vectors calculate given.

~u = 2i + 3j ~v = −4i + 2j

1 ~u · ~v

2 3~u · ~v

3 ‖~u‖

Page 52: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Properties of the Dot Product

Properties

If we have two or more vectors, then

~u · ~v = ~v · ~u (1)

~u · (~v + ~w) = ~u · ~v + ~u · ~w (2)

~v · ~v = ‖~v‖2 (3)

0 · ~u = 0 (4)

Page 53: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Law of Cosines

‖~u − ~v‖2 = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos θ

Page 54: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department
Page 55: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Angle Between Vectors

Theorem

For any two vector ~u and ~v, the angle θ between them can be determinedby

cos θ =~u · ~v‖~u‖‖~v‖

Note that this gives the angle so that 0 ≤ θ ≤ π.

Page 56: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Given the following vectors calculate the angle between them using the dotproduct.

~u = 4i − 3j ~v = 2i + 5j

Page 57: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Page 58: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department
Page 59: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Parallel and Orthogonal Vectors

Theorem

If two vectors were parallel they would either be going in the same directionor in opposite directions, resulting in θ = 0 or θ = 180◦, respectively. Ascos(0) = 1 and cos(180) = −1 we can say that two vectors are parallel if

cos θ =~u · ~v‖~u‖‖~v‖

= ±1

Likewise, two vectors are said to be orthogonal if they form a right angle.As cos(90) = 0, we know two vector are orthogonal if

cos θ =~u · ~v‖~u‖‖~v‖

= 0

which happens if~u · ~v = 0

Page 60: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

State whether the vectors are parallel, orthogonal, or neither.

~u = 3i + 8j ~v = −2i − 16

3j ~w = −6i + 12j

1 ~u and ~v

2 3~u and ~w

Page 61: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Projection

Theorem

Given two vectors ~v and ~w, the projection of ~v onto ~w is

~v1 =~v · ~w‖~w‖2

~w =~v · ~w~w · ~w

~w

where ~v1 is parallel to ~w. We also have

~v2 = v − v1

which is perpendicular to ~w.

Page 62: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

Example

Given the vectors

~u = 4i − 3j ~v = −2i + 10j

Find the projection of ~u onto ~v , ~u1, and the orthogonal vector ~u2.

Page 63: PreCalculus Notes - MAT 129 Chapter 10: Polar Coordinates ... - Chapter 10 Slides.pdf · PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department

In elementary physics, the work W done by a constant force F in movingan object from point A to point B is defined as

W = (magnitude of force)(distance) = ‖F‖‖−→AB‖ = F ·

−→AB

Example

The figure below shows a girl pulling a wagon with a force of 50 pounds.How much work is done in moving the wagon 100 feet if the handle makesan angle of 30◦ with the ground?