Practical Model Selection and Multi-model Inference using R Presented by: Eric Stolen and Dan Hunt.

71
Practical Model Selection and Multi- model Inference using R Presented by: Eric Stolen and Dan Hunt

Transcript of Practical Model Selection and Multi-model Inference using R Presented by: Eric Stolen and Dan Hunt.

Practical Model Selection and Multi-model Inference

using R

Presented by:Eric Stolen and Dan Hunt

Foundation: Theory, hypotheses,

and models

Theory

• This is the link with science, which is about understanding how the world works

Theory

• “A set of propositions set out as an explanation.”

• “Theories are generalizations.”• “Theories contain questions.”• “Theories continually change…”

(Ford, E. D. 2000. Scientific Method for Ecological Research. Cambridge University Press.)

Theory

• Example 1 – Wading bird foraging:– Ideal Free Distribution– Marginal Value Theorem– Scramble Competition

Theory

• Example 2 – Indigo Snake Habitat selection

– Animal perception– Evolutionary Biology– Population Demography

Hypotheses

• Many views – confusing!• A hypothesis is a statement derived from

scientific theory that postulates something about how the world works

• A testable hypothesis is a hypothesis that can be falsified by a contradiction between a prediction derived from the hypothesis and data measured in the appropriate way

Hypotheses

• To use the Information-theoretic toolbox, we must be able to state a hypothesis as a statistical model (or more precisely an equation which allows us to calculate the maximum likelihood of the hypothesis)

Multiple Working Hypotheses

• We operate with a set of multiple alternative hypotheses (models)

• The many advantages include safeguarding objectivity, and allowing rigorous inference.

• Chamberlain (1890)• Strong Inference - Platt (1964)• Karl Popper (ca. 1960)– Bold

Conjectures

Deriving the model set

• This is the tough part (but also the creative part)

• much thought needed, so don’t rush• collaborate, seek outside advice, read

the literature, go to meetings…• How and When hypotheses are better

than What hypotheses (strive to predict rather than describe)

Models – Indigo Snake example

• Study of indigo snake habitat use

• Response variable: home range size ln(ha)

• SEX

• Land cover – 2-3 levels (lC2)

• weeks = effort/exposure

• Science question: “Is there a seasonal difference in habitat use between sexes?”

Models – Indigo Snake example

SEXland cover type (lc2)weeksSEX + lc2SEX + weeksllc2 + weeksSEX + lc2 + weeksSEX + lc2 + SEX * lc2 SEX + lc2 + weeks + SEX * lc2

SEXland cover type (lc2)weeksSEX + lc2SEX + weeksllc2 + weeksSEX + lc2 + weeksSEX + lc2 + SEX * lc2 SEX + lc2 + weeks + SEX * lc2

Models – Indigo Snake example

SEXland coverweeksSEX + land coverSEX + weeksllc2 + weeksSEX + land cover + weeksSEX + land cover + SEX * land coverSEX + land cover + weeks +SEX * land cover

Models – Indigo Snake example

Models – fish habitat use example

• Study of fish habitat use in salt marsh• Response variable was density ln(fish m-2 +1)• Habitat – vegetated or unvegetated• Site – 7 impoundments• Season – 4 seasons• Science questions:

– “Is there evidence for a difference in density between habitats?”

– “Is there a seasonal difference in habitat use by resident marsh fish?”

Models – fish habitat use exampleSite + Season + Habitat + Site*Habitat + Season*Habitat + Site*SeasonSite + Season + Habitat + Site*Habitat + Season*HabitatSite + Season + Habitat + Site*Season + Site*HabitatSite + Season + Habitat + Site*Season + Season*Habitat Site + Season + Habitat + Site*HabitatSite + Habitat + Site*HabitatSite + Season + Habitat + Season*HabitatSeason + Habitat + Season*HabitatSite + Season + Habitat + Site*Season Site + Season + Site*SeasonSite + Season + HabitatSite + SeasonSite + HabitatSeason + HabitatSiteSeasonHabitat

Models – fish habitat use exampleSite + Season + Habitat + Site*Habitat + Season*Habitat + Site*SeasonSite + Season + Habitat + Site*Habitat + Season*HabitatSite + Season + Habitat + Site*Season + Site*HabitatSite + Season + Habitat + Site*Season + Season*Habitat Site + Season + Habitat + Site*HabitatSite + Habitat + Site*HabitatSite + Season + Habitat + Season*HabitatSeason + Habitat + Season*HabitatSite + Season + Habitat + Site*Season Site + Season + Site*SeasonSite + Season + HabitatSite + SeasonSite + HabitatSeason + HabitatSiteSeasonHabitat

Models – fish habitat use exampleSite + Season + Habitat + Site*Habitat + Season*Habitat + Site*SeasonSite + Season + Habitat + Site*Habitat + Season*HabitatSite + Season + Habitat + Site*Season + Site*HabitatSite + Season + Habitat + Site*Season + Season*Habitat Site + Season + Habitat + Site*HabitatSite + Habitat + Site*HabitatSite + Season + Habitat + Season*HabitatSeason + Habitat + Season*HabitatSite + Season + Habitat + Site*Season Site + Season + Site*SeasonSite + Season + HabitatSite + SeasonSite + HabitatSeason + HabitatSiteSeasonHabitat

The importance of a priori thinking…

You can’t go back home!

Modeling

• Trade-off between precision and bias

• Trying to derive knowledge / advance learning; not “fit the data”

• Relationship between data (quantity and quality) and sophistication of the model

Precision-Bias Trade-offB

ias

2

Model Complexity – increasing umber of Parameters

Precision-Bias Trade-offB

ias

2

varia

nce

Model Complexity – increasing umber of Parameters

Precision-Bias Trade-offB

ias

2

varia

nce

Model Complexity – increasing umber of Parameters

Kullback-Leibler Information

• Basic concept from Information theory• The information lost when a model is used

to represent full reality• Can also think of it as the distance

between a model and full reality

Kullback-Leibler Information

Truth / reality

G1 (best model in set)

G2

G3

Kullback-Leibler Information

Truth / reality

G1 (best model in set)

G2

G3

Kullback-Leibler Information

Truth / reality

G1 (best model in set)

G2

G3

Kullback-Leibler Information

Truth / reality

G1 (best model in set)

G2

G3The relative difference between models is constant

Akaike’s Contributions

• Figured out how to estimate the relative Kullback-Leibler distance between models in a set of models

• Figured out how to link maximum likelihood estimation theory with expected K-L information

• An (Akaike’s) Information Criteria • AIC = -2 loge (L{modeli }| data) + 2K

• Figured out how to estimate the relative K-L distance between models in a set of models

• Figured out how to link maximum likelihood estimation theory with expected K-L information

• An (Akaike’s) Information Criteria • AIC = -2 loge (L{modeli }| data) + 2K

Akaike’s Contributions

• Figured out how to estimate the relative K-L distance between models in a set of models

• Figured out how to link maximum likelihood estimation theory with expected K-L information

• An (Akaike’s) Information Criteria • AIC = -2 loge (L{modeli }| data) + 2K

Akaike’s Contributions

I-T mechanics

AICci = -2*loge (Likelihood of model i given the data) + 2*K (n/(n-K-1))

or

= AIC + 2*K*(K+1)/(n-K-1)

(where K = the number of parameters estimated and n = the sample size)

I-T mechanics

AICcmin = AICc for the model with the lowest AICc value

i = AICci– AICcmin

Model Probability (also Bayesian posterior model probabilities)

evidence ratio of model i to model j = wi / wj

I-T mechanics

R

rr

iiw

1

)2/1exp(

)2/1exp(

}|{Pr datagobw ii

I-T mechanics

Least Squares Regression

AIC = n loge () + 2*K (n/(n-K-1))

Where RSS / n

(explain offset for constant part)

I-T mechanics

Counting Parameters:

K = number of parameters estimated

Least Square Regression K = number of parameters + 2 (for intercept &

I-T mechanics

Counting Parameters:

K = number of parameters estimated

Logistic Regression K = number of parameters + 1 (for intercept

I-T mechanics

Counting Parameters:

Non-identifiable parameters

Comparing Models

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

I + S + H + I * H + S * H 278 264 14 -406.31 842.62 844.22 0.00 1.00 0.81 1.00 20I + S + H + I * S + I * H + S * H 278 255 23 -397.44 842.88 847.23 3.02 0.22 0.18 4.52 12I + S + H + I * S + I * H + S * H + I * S * H 278 248 30 -391.48 844.95 852.48 8.27 0.02 0.01 62.43 9I + S + H + I * S + S * H 278 258 20 -407.01 856.01 859.28 15.06 0.00 0.00 1867.01 14I + H + I * H 278 270 8 -420.96 859.91 860.45 16.23 0.00 0.00 3347.97 35I + S + H + S * H 278 267 11 -420.51 865.01 866.01 21.79 0.00 0.00 53913.94 25I + S + H + I * H 278 267 11 -420.65 865.29 866.29 22.07 0.00 0.00 62073.79 25I + S + H + I * S + I * H 278 258 20 -413.31 868.62 871.89 27.67 0.00 0.00 1.02E+06 14I + H 278 273 5 -437.56 887.12 887.34 43.12 0.00 0.00 2.31E+09 56I + S + H 278 270 8 -437.47 892.95 893.48 49.27 0.00 0.00 4.99E+10 35I + S + H + I * S 278 261 17 -427.95 891.90 894.25 50.04 0.00 0.00 7.33E+10 16S + H + S * H 278 270 8 -454.01 926.02 926.56 82.34 0.00 0.00 7.59E+17 35I 278 274 4 -459.68 929.36 929.50 85.29 0.00 0.00 3.31E+18 70I + S 278 271 7 -457.98 931.96 932.38 88.16 0.00 0.00 1.39E+19 40I + S + I * S 278 262 16 -448.31 930.61 932.70 88.48 0.00 0.00 1.64E+19 17H 278 276 2 -464.39 934.78 934.83 90.61 0.00 0.00 4.75E+19 139S + H 278 273 5 -463.96 939.92 940.14 95.93 0.00 0.00 6.77E+20 56S 278 274 4 -485.38 980.76 980.91 136.70 0.00 0.00 4.82E+29 70

Comparing Models

Combined model weight = 0.995

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

I + S + H + I * H + S * H 278 264 14 -406.31 842.62 844.22 0.00 1.00 0.81 1.00 20I + S + H + I * S + I * H + S * H 278 255 23 -397.44 842.88 847.23 3.02 0.22 0.18 4.52 12I + S + H + I * S + I * H + S * H + I * S * H 278 248 30 -391.48 844.95 852.48 8.27 0.02 0.01 62.43 9I + S + H + I * S + S * H 278 258 20 -407.01 856.01 859.28 15.06 0.00 0.00 1867.01 14I + H + I * H 278 270 8 -420.96 859.91 860.45 16.23 0.00 0.00 3347.97 35I + S + H + S * H 278 267 11 -420.51 865.01 866.01 21.79 0.00 0.00 53913.94 25I + S + H + I * H 278 267 11 -420.65 865.29 866.29 22.07 0.00 0.00 62073.79 25I + S + H + I * S + I * H 278 258 20 -413.31 868.62 871.89 27.67 0.00 0.00 1.02E+06 14I + H 278 273 5 -437.56 887.12 887.34 43.12 0.00 0.00 2.31E+09 56I + S + H 278 270 8 -437.47 892.95 893.48 49.27 0.00 0.00 4.99E+10 35I + S + H + I * S 278 261 17 -427.95 891.90 894.25 50.04 0.00 0.00 7.33E+10 16S + H + S * H 278 270 8 -454.01 926.02 926.56 82.34 0.00 0.00 7.59E+17 35I 278 274 4 -459.68 929.36 929.50 85.29 0.00 0.00 3.31E+18 70I + S 278 271 7 -457.98 931.96 932.38 88.16 0.00 0.00 1.39E+19 40I + S + I * S 278 262 16 -448.31 930.61 932.70 88.48 0.00 0.00 1.64E+19 17H 278 276 2 -464.39 934.78 934.83 90.61 0.00 0.00 4.75E+19 139S + H 278 273 5 -463.96 939.92 940.14 95.93 0.00 0.00 6.77E+20 56S 278 274 4 -485.38 980.76 980.91 136.70 0.00 0.00 4.82E+29 70

Comparing Models

Evidence Ratio = 4.52

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

I + S + H + I * H + S * H 278 264 14 -406.31 842.62 844.22 0.00 1.00 0.81 1.00 20I + S + H + I * S + I * H + S * H 278 255 23 -397.44 842.88 847.23 3.02 0.22 0.18 4.52 12I + S + H + I * S + I * H + S * H + I * S * H 278 248 30 -391.48 844.95 852.48 8.27 0.02 0.01 62.43 9I + S + H + I * S + S * H 278 258 20 -407.01 856.01 859.28 15.06 0.00 0.00 1867.01 14I + H + I * H 278 270 8 -420.96 859.91 860.45 16.23 0.00 0.00 3347.97 35I + S + H + S * H 278 267 11 -420.51 865.01 866.01 21.79 0.00 0.00 53913.94 25I + S + H + I * H 278 267 11 -420.65 865.29 866.29 22.07 0.00 0.00 62073.79 25I + S + H + I * S + I * H 278 258 20 -413.31 868.62 871.89 27.67 0.00 0.00 1.02E+06 14I + H 278 273 5 -437.56 887.12 887.34 43.12 0.00 0.00 2.31E+09 56I + S + H 278 270 8 -437.47 892.95 893.48 49.27 0.00 0.00 4.99E+10 35I + S + H + I * S 278 261 17 -427.95 891.90 894.25 50.04 0.00 0.00 7.33E+10 16S + H + S * H 278 270 8 -454.01 926.02 926.56 82.34 0.00 0.00 7.59E+17 35I 278 274 4 -459.68 929.36 929.50 85.29 0.00 0.00 3.31E+18 70I + S 278 271 7 -457.98 931.96 932.38 88.16 0.00 0.00 1.39E+19 40I + S + I * S 278 262 16 -448.31 930.61 932.70 88.48 0.00 0.00 1.64E+19 17H 278 276 2 -464.39 934.78 934.83 90.61 0.00 0.00 4.75E+19 139S + H 278 273 5 -463.96 939.92 940.14 95.93 0.00 0.00 6.77E+20 56S 278 274 4 -485.38 980.76 980.91 136.70 0.00 0.00 4.82E+29 70

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

SEX + lc2 45 42 3 -51.99 111.98 112.56 0.00 1.00 0.34 1.00 15SEX + lc2 + SEX * lc2 45 41 4 -51.21 112.41 113.41 0.85 0.65 0.22 1.53 11SEX + lc2 + weeks 45 41 4 -51.67 113.35 114.35 1.78 0.41 0.14 2.44 11SEX + landc 45 41 4 -51.89 113.78 114.78 2.22 0.33 0.11 3.03 11SEX + lc2 + weeks + SEX * lc2 45 40 5 -50.92 113.84 115.38 2.81 0.24 0.08 4.09 9SEX + landc + weeks 45 40 5 -51.61 115.23 116.77 4.20 0.12 0.04 8.17 9SEX + landc + lc2 + SEX * lc2 + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + weeks + SEX * landc 45 38 7 -50.62 117.24 120.27 7.70 0.02 0.01 47.02 6SEX 45 43 2 -57.47 120.94 121.22 8.66 0.01 0.00 75.90 23SEX + weeks 45 42 3 -56.64 121.27 121.86 9.29 0.01 0.00 104 15lc2 45 43 2 -59.67 125.34 125.63 13.06 0.00 0.00 686 23landc 45 42 3 -59.46 126.91 127.50 14.94 0.00 0.00 1751 15lc2 + weeks 45 42 3 -59.67 127.34 127.92 15.36 0.00 0.00 2163 15landc + weeks 45 41 4 -59.46 128.91 129.91 17.35 0.00 0.00 5854 11Null 45 44 1 -67.50 138.99 139.08 26.52 0.00 0.00 573574 45weeks 45 43 2 -67.34 140.67 140.96 28.40 0.00 0.00 1465539 23

Comparing Models

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

SEX + lc2 45 42 3 -51.99 111.98 112.56 0.00 1.00 0.34 1.00 15SEX + lc2 + SEX * lc2 45 41 4 -51.21 112.41 113.41 0.85 0.65 0.22 1.53 11SEX + lc2 + weeks 45 41 4 -51.67 113.35 114.35 1.78 0.41 0.14 2.44 11SEX + landc 45 41 4 -51.89 113.78 114.78 2.22 0.33 0.11 3.03 11SEX + lc2 + weeks + SEX * lc2 45 40 5 -50.92 113.84 115.38 2.81 0.24 0.08 4.09 9SEX + landc + weeks 45 40 5 -51.61 115.23 116.77 4.20 0.12 0.04 8.17 9SEX + landc + lc2 + SEX * lc2 + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + weeks + SEX * landc 45 38 7 -50.62 117.24 120.27 7.70 0.02 0.01 47.02 6SEX 45 43 2 -57.47 120.94 121.22 8.66 0.01 0.00 75.90 23SEX + weeks 45 42 3 -56.64 121.27 121.86 9.29 0.01 0.00 104 15lc2 45 43 2 -59.67 125.34 125.63 13.06 0.00 0.00 686 23landc 45 42 3 -59.46 126.91 127.50 14.94 0.00 0.00 1751 15lc2 + weeks 45 42 3 -59.67 127.34 127.92 15.36 0.00 0.00 2163 15landc + weeks 45 41 4 -59.46 128.91 129.91 17.35 0.00 0.00 5854 11Null 45 44 1 -67.50 138.99 139.08 26.52 0.00 0.00 573574 45weeks 45 43 2 -67.34 140.67 140.96 28.40 0.00 0.00 1465539 23

Comparing Models

Evidence Ratio = 3.03

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

SEX + lc2 45 42 3 -51.99 111.98 112.56 0.00 1.00 0.34 1.00 15SEX + lc2 + SEX * lc2 45 41 4 -51.21 112.41 113.41 0.85 0.65 0.22 1.53 11SEX + lc2 + weeks 45 41 4 -51.67 113.35 114.35 1.78 0.41 0.14 2.44 11SEX + landc 45 41 4 -51.89 113.78 114.78 2.22 0.33 0.11 3.03 11SEX + lc2 + weeks + SEX * lc2 45 40 5 -50.92 113.84 115.38 2.81 0.24 0.08 4.09 9SEX + landc + weeks 45 40 5 -51.61 115.23 116.77 4.20 0.12 0.04 8.17 9SEX + landc + lc2 + SEX * lc2 + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + weeks + SEX * landc 45 38 7 -50.62 117.24 120.27 7.70 0.02 0.01 47.02 6SEX 45 43 2 -57.47 120.94 121.22 8.66 0.01 0.00 75.90 23SEX + weeks 45 42 3 -56.64 121.27 121.86 9.29 0.01 0.00 104 15lc2 45 43 2 -59.67 125.34 125.63 13.06 0.00 0.00 686 23landc 45 42 3 -59.46 126.91 127.50 14.94 0.00 0.00 1751 15lc2 + weeks 45 42 3 -59.67 127.34 127.92 15.36 0.00 0.00 2163 15landc + weeks 45 41 4 -59.46 128.91 129.91 17.35 0.00 0.00 5854 11Null 45 44 1 -67.50 138.99 139.08 26.52 0.00 0.00 573574 45weeks 45 43 2 -67.34 140.67 140.96 28.40 0.00 0.00 1465539 23

Comparing Models

Evidence Ratio =4.28 (.34+.22+.14+.08) / (.11+.04+.02+.01)

Generalized Linear Models

Mathematical details

• Three parts to a GLM– Link function– linear equation– error distribution

Mathematical details

• General Linear Models – linear regression and ANOVA– Link function – Identity link– linear equation– error distribution – Normal Distribution (Gaussian)

Y = + 1X1 + 2X2 +

Mathematical details

• Logistic Regression– Link function - Logit link: ln( / (1-))– linear equation– error distribution – Binomial Distribution

Logit() = + 1X1 + 2X2 +

Mathematical details

• What types of models can be compared within a single I-T analysis?– Data must be fixed (including response)– Must be able to calculate maximum likelihood– (ways to deal with quasi-likelihood)– Models do not need to be nested– In some cases AIC is additive

Model Fitting Preliminaries

• Understanding the data/variables

• Avoid data dredging!

• safe data screening practices

• Detect outliers, scale issues, collinearity

• Tools in R

Tools in R

• Tools in R– Generalized linear models

• lm• glm

– Packages• Design Package

– FE Harrell. 2001. Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer.

• CAR package– Fox, J. 2002. An R and S-plus Companion to Applied

Regression. Sage Publications.

Tools in R

• Tools in R– Model formula

• Ex)

– Output• summary(model4)• model4$aic• Model4$coefficients

model4 <- glm(help~age2 + sex + mom_dad + suburb + brdeapp + matepp + density + I(density^2) , family=binomial,data=choices)

Tools in R

• Fitting the model set – – R program does the work

• Trouble-shooting

• Export results

Fish Example

Model Checking

• Model Checking– Global model must fit– Models used for inference must meet

assumptions, – Look for numerical problems

• Tools in R

Fish Example

Interpretation of I-T results

Interpretation of models for inference

• Case 1: One or a few models best models• Examining model parameters and predictions

– Effects– Prediction

• graphing results

– nomograms– Presenting Results

• Anderson, D. R., W. A. Link, D. H. Johnson, and K. P. Burnham. 2001. Suggestions for presenting the results of data analysis. Journal of Wildlife Management 65:373-378.

Tools

• Calculations in Excel

• AICc, Model weights, model likelihood, evidence ratios

• Sorting the models by evidence (exciting concept)

• Model weights, evidence ratios, relative variable importance

Fish Example

• Model selection uncertainty

• Model-average prediction

• Model-average parameter estimates

Multi-model Inference

Model Averaging Predictions

R

iiiYwY

1

R

iiiYwY

1

Model-averaged prediction

Model Averaging Predictions

R

iiiYwY

1

Prediction from modeli

Model Averaging Predictions

R

iiiYwY

1

Weight modeli

Model Averaging Predictions

R

i

iiw1

Model-averaged parameter estimate

Model Averaging Parameters

Unconditional Variance Estimator

2

1

varvar i

R

iiii gw

varSE

SECI *96.1%95

Unconditional Variance Estimator

Snake Example

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

SEX + lc2 45 42 3 -51.99 111.98 112.56 0.00 1.00 0.34 1.00 15SEX + lc2 + SEX * lc2 45 41 4 -51.21 112.41 113.41 0.85 0.65 0.22 1.53 11SEX + lc2 + weeks 45 41 4 -51.67 113.35 114.35 1.78 0.41 0.14 2.44 11SEX + landc 45 41 4 -51.89 113.78 114.78 2.22 0.33 0.11 3.03 11SEX + lc2 + weeks + SEX * lc2 45 40 5 -50.92 113.84 115.38 2.81 0.24 0.08 4.09 9SEX + landc + weeks 45 40 5 -51.61 115.23 116.77 4.20 0.12 0.04 8.17 9SEX + landc + lc2 + SEX * lc2 + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + SEX * landc 45 39 6 -50.90 115.81 118.02 5.45 0.07 0.02 15.28 8SEX + landc + weeks + SEX * landc 45 38 7 -50.62 117.24 120.27 7.70 0.02 0.01 47.02 6SEX 45 43 2 -57.47 120.94 121.22 8.66 0.01 0.00 75.90 23SEX + weeks 45 42 3 -56.64 121.27 121.86 9.29 0.01 0.00 104 15lc2 45 43 2 -59.67 125.34 125.63 13.06 0.00 0.00 686 23landc 45 42 3 -59.46 126.91 127.50 14.94 0.00 0.00 1751 15lc2 + weeks 45 42 3 -59.67 127.34 127.92 15.36 0.00 0.00 2163 15landc + weeks 45 41 4 -59.46 128.91 129.91 17.35 0.00 0.00 5854 11Null 45 44 1 -67.50 138.99 139.08 26.52 0.00 0.00 573574 45weeks 45 43 2 -67.34 140.67 140.96 28.40 0.00 0.00 1465539 23

Multi-model Inference

model rows model.df k sumlogL sumaic AICc i L(modeli) wi wi/wbest n/k

SEX + lc2 45 42 3 -51.99 111.98 112.56 0.00 1.00 0.43 1.00 15SEX + lc2 + SEX * lc2 45 41 4 -51.21 112.41 113.41 0.85 0.65 0.28 1.53 11SEX + lc2 + weeks 45 41 4 -51.67 113.35 114.35 1.78 0.41 0.18 2.44 11SEX + lc2 + weeks + SEX * lc2 45 40 5 -50.92 113.84 115.38 2.81 0.24 0.10 4.09 9SEX 45 43 2 -57.47 120.94 121.22 8.66 0.01 0.01 75.90 23SEX + weeks 45 42 3 -56.64 121.27 121.86 9.29 0.01 0.00 104 15lc2 45 43 2 -59.67 125.34 125.63 13.06 0.00 0.00 686 23lc2 + weeks 45 42 3 -59.67 127.34 127.92 15.36 0.00 0.00 2163 15Null 45 44 1 -67.50 138.99 139.08 26.52 0.00 0.00 573574 45weeks 45 43 2 -67.34 140.67 140.96 28.40 0.00 0.00 1465539 23

Multi-model Inference