Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital...

6
TSKS01 Digital Communication Lecture 2 Repetition of Probability Theory & Introduction to Stochastic Processes Mikael Olofsson Department of EE (ISY) Div. of Communication Systems 2010-09-07 TSKS01 Digital Communication - Lecture 2 2 A One-way Telecommunication System Channel Source encoder Source decoder Source Destination Channel encoder Modulator Channel decoder De- modulator Source coding Channel coding Packing Unpacking Error control Error correction Digital to analog Analog to digital Medium Digital modulation 2010-09-07 TSKS01 Digital Communication - Lecture 2 3 Probabilities and Distributions Probability: Pr{A} [0,1] Joint prob.: Pr{A,B} Cond. Prob.: Pr{ A|B } = Prob. distr.: F X (x)=Pr{} [0,1] Prob. density.: f X (x) = F X (x) Properties: F X (x) is non-decreasing f X (x for all x - f X (x) dx = 1 Pr{x 1 2 } = x 1 + f X (x) dx Pr{A,B} Pr{B} d dx x 2 + 2010-09-07 TSKS01 Digital Communication - Lecture 2 4 Example Game based on tossing two coins: 2 heads +400 2 tails –100 1 tail, one head –200

Transcript of Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital...

Page 1: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

TSKS01 Digital Communication

Lecture 2

Repetition of Probability Theory & Introduction to Stochastic Processes

Mikael Olofsson

Department of EE (ISY)

Div. of Communication Systems

2010-09-07 TSKS01 Digital Communication - Lecture 2 2

A One-way Telecommunication System

Channel

Source encoder

Source decoder

Source

Destination

Channel encoder

Modulator

Channel decoder

De-modulator

Source

coding

Channel

coding

Packing

Unpacking

Error control

Error correction

Digital to analog

Analog to digital

Medium

Digital

modulation

2010-09-07 TSKS01 Digital Communication - Lecture 2 3

Probabilities and Distributions

Probability: Pr{A} [0,1]

Joint prob.: Pr{A,B}

Cond. Prob.: Pr{ A|B } =

Prob. distr.: FX(x)=Pr{ !"} [0,1]

Prob. density.: fX(x) = FX(x)

Properties: FX(x) is non-decreasing

fX(x !"!#!!!for all x

!-" fX(x) dx = 1

Pr{x1# !"2} = !x1+ fX(x) dx

Pr{A,B} Pr{B}

d dx

"

x2+

2010-09-07 TSKS01 Digital Communication - Lecture 2 4

Example Game based on tossing two coins:

2 heads +400

2 tails –100

1 tail, one head –200

Page 2: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

2010-09-07 TSKS01 Digital Communication - Lecture 2 5

Expectations

2010-09-07 TSKS01 Digital Communication - Lecture 2 6

Example cont’d

2010-09-07 TSKS01 Digital Communication - Lecture 2 7

Gaussian Distributions, N(m, )

2010-09-07 TSKS01 Digital Communication - Lecture 2 8

Example of the Q Function

Q(1.96) ! 2.4998 ·10-2

Page 3: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

2010-09-07 TSKS01 Digital Communication - Lecture 2 9

Example of the Q Function cont’d

Q(x) = 10-6

x ! 4.75

2010-09-07 TSKS01 Digital Communication - Lecture 2 10

Other Common Distributions

Exponential distribution:

Binary distribution:

Uniform distribution:

2010-09-07 TSKS01 Digital Communication - Lecture 2 11

Two-Dimensional Stochastic Variables

2010-09-07 TSKS01 Digital Communication - Lecture 2 12

Dependencies

Definition: X & Y are independent if FX,Y(x,y) = FX(x)FY(y) holds.

Theorem: Independent " fX,Y(x,y) = fX(x) fY(y) holds.

Definition: Covariance: Cov{X,Y} = E{(X – mX )(Y – mY )}

Theorem: Cov{X,Y} = E{XY} – mXmY

Definition: X & Y are uncorrelated if Cov{X,Y} = 0 holds.

Theorem: Independent uncorrelated.

Note: Var{X} = Cov{X,X}

Theorem: Uncorrelated " E{XY} = E{X}E{Y}

" Var{X+Y} = Var{X} + Var{Y}

Page 4: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

2010-09-07 TSKS01 Digital Communication - Lecture 2 13

Bayes’ Rule

2010-09-07 TSKS01 Digital Communication - Lecture 2 14

Multi-Dimensional Stochastic Variables

2010-09-07 TSKS01 Digital Communication - Lecture 2 15

Jointly Gaussian Variables

2010-09-07 TSKS01 Digital Communication - Lecture 2 16

Stochastic Process

Page 5: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

2010-09-07 TSKS01 Digital Communication - Lecture 2 17

Examples of Stochastic Processes

Ex 1: Finite number of realizations:

X(t) = sin(t+ ), ! { 0, "/2, ", 3"/2 }

Ex 2: Infinite number of realizations:

X(t) = A·sin(t), A # N(0,1)

2010-09-07 TSKS01 Digital Communication - Lecture 2 18

Examples of Stochastic Processes cont’d

$cos("t), |t|<1/2 %&0, elsewhere

Ex 2: Infinite number of realizations:

X(t) = Ak·g(t – k), g(t) =

{Ak} independent, N(0,1)

A realization:

2010-09-07 TSKS01 Digital Communication - Lecture 2 19

Distributions and Densities

2010-09-07 TSKS01 Digital Communication - Lecture 2 20

Examples of Distributions and Densities

Page 6: Pr A TSKS01 Digital Communication Lecture 2 · 2011-09-12 · 2010-09-07 TSKS01 Digital Communication - Lecture 2 9 Example of the Q Function cont’d Q(x) = 10-6 x! 4.75 2010-09-07

www.liu.se