[PPT]PowerPoint Presentation - 复旦大学物理教学实验中...

1
sic research in fabrication CIGS solar sic research in fabrication CIGS solar Hao Xu, Fang Lu Hao Xu, Fang Lu Department of Physics, Fudan University, Shanghai 200433, China Department of Physics, Fudan University, Shanghai 200433, China •Grid Al •ZnO:Al(200~400nm) •i-ZnO(80~100nm) •CdS(50nm) •CuIn 0.7 Ga 0.3 Se 2 (1~2μm) •Mo(0.5~1μm) •Sola-lime glass (SLG) 30 40 50 60 70 Dst=7cm Dst=6cm Dst=4.5cm R elative Inten sity 2(deg) (a) 526 528 530 532 534 536 538 0 20000 40000 60000 80000 100000 O 1s C ount B in din g e n e rgy (eV ) (a) 1018 1020 1022 1024 1026 1028 0 50000 100000 150000 200000 250000 300000 350000 Z n 2p3/2 C ount B in ding en erg y (eV ) (b) 200 300 400 500 600 700 800 900 0 20 40 60 80 100 Transm ittan ce (% T) W avelength (nm ) 4 .5 cm 6cm 7cm (a ) 3.0 3.2 3.4 3.6 3.8 0.00E+000 5.00E+009 1.00E+010 1.50E+010 2.00E+010 (cm -2 ) P hoton E n e rgy (eV ) 4.5cm 6cm 7cm (b ) 1E 19 1E20 1E21 0 25 50 75 100 M o bility (cm 2 V -1 s -1 ) C on ce ntra tio n (cm -3 ) 1.0m cm 0.5m cm 10 0 10 1 10 2 10 3 10 -4 10 -3 R e sistivity ( cm ) E xposure T im e (h ) AZO (1% ) SAZO (1% ,1% ) AZO (2% ) SAZO (2% ,0.5% ) Homogeneous process Cd(CH 3 COO) 2 →Cd 2+ +2CH 3 COO - CS(NH 2 ) 2 +OH - →SH - +CH 2 N 2 +H 2 O SH - +OH - →S 2- +H 2 O Cd 2+ +S 2- →CdS↓ Heterogeneous process NH 4+ +OH - ↔NH 3 +H 2 O Cd 2+ +4NH 3 ↔Cd(NH 3 ) 4 2+ 5 6 7 10 -4 10 -3 10 -2 10 20 10 21 0 10 20 30 R esistivity R e sistivity ( .cm ) D istance (cm ) C on ce n tratio n C on centratio n (cm -3 ) M o bility M ob ility (cm 2 V -1 s -1 ) hemical bath deposition (CdS buffer layer) 1 RF Magnetron Sputtering (AZO buffer layer) Small, compact CdS grain (50~100nm) 2 2 1 1 1 min max min ) / ( 1 ) / ( 1 n n n n ref ref M ) 8 exp( . 2 ) / exp( . 0 2 2 * 0 NkT Q e kT m eL kT E t b S Semi-empirical model in ZnO single crystal presented by Masetti Grain boundary scattering limited transport model of Seto Resistivity stability of window layer can be improved by doping Si impurity g E h 2 t e I I 0 High conductivity and optical transmittance in visible region, non- toxicity, low cost, material abundance, relatively low deposition temperature, and high stability. Burstein-Moss shift of the absorption edge S M 1 1 1 Combined model in AZO films Only strong (002) peak is observed in XRD, which indicates a hexagonal wurtzite structure. XPS show stoichiometric and non- stoichiometric atomic ratio of O/Zn in different deposition distances. 1. Complete coverage of the rough absorber surface 2. Remove natural oxide from film surface 3. Passivate CIGS surface to prevent surface inversion 4. Protect CIGS from subsequent Advantages of CBD Introduction CuIn 0.7 Ga 0.3 Se 2 (CIGS) based solar cell is one of the most promising thin films solar cells. Its advantages include less amount materials, light mass, high radiation hardness and highest conversion efficiency in single-junction solar cell. Structure 0 1000 2000 3000 4000 0 500 1000 1500 2000 2500 3000 3500 S u rfa ce R oughness (nm ) D ista n ce ( m) 3 Laser surface anealing and C-V The roughness in absorber lead to short circuit of solar cell. A beam of unfocused laser was introduced to melt and smooth surface. A r A r D qN A V qN A V C 0 2 0 2 2 2 2 1 Plot of 1/C 2 vs. V, yielding N A =2×10 15 cm -3 and build-in field V D =0.894V. -0 .6 -0 .4 -0 .2 0.0 30 40 50 C a p a cita n ce (p F ) R eversed B ias (V ) 300K 270K 200K

Transcript of [PPT]PowerPoint Presentation - 复旦大学物理教学实验中...

Basic research in fabrication CIGS solar cellsBasic research in fabrication CIGS solar cellsHao Xu, Fang LuHao Xu, Fang Lu

Department of Physics, Fudan University, Shanghai 200433, ChinaDepartment of Physics, Fudan University, Shanghai 200433, China

•Grid Al•ZnO:Al(200~400nm)•i-ZnO(80~100nm)•CdS(50nm)•CuIn0.7Ga0.3Se2(1~2μm)•Mo(0.5~1μm)•Sola-lime glass (SLG)

30 40 50 60 70

Dst=7cm

Dst=6cm

Dst=4.5cm

Rel

ativ

e In

tens

ity

2(deg)

(a)

526 528 530 532 534 536 5380

20000

40000

60000

80000

100000

O1s

Cou

nt

Binding energy (eV)

(a)

1018 1020 1022 1024 1026 10280

50000

100000

150000

200000

250000

300000

350000

Zn 2

p3/2

Cou

nt

Binding energy (eV)

(b)

200 300 400 500 600 700 800 9000

20

40

60

80

100

Tran

smitt

ance

(%T)

Wavelength (nm)

4.5cm 6cm 7cm

(a)

3.0 3.2 3.4 3.6 3.80.00E+000

5.00E+009

1.00E+010

1.50E+010

2.00E+010

(cm

-2)

Photon Energy (eV)

4.5cm 6cm 7cm

(b)

1E19 1E20 1E210

25

50

75

100

M

obili

ty (c

m2 V

-1s-1

)

Concentration (cm-3)

1.0m

cm

0.5m

cm

100 101 102 10310-4

10-3

Res

istiv

ity

(cm

)

Exposure Time (h)

AZO(1%) SAZO(1%,1%) AZO(2%) SAZO(2%,0.5%)

Homogeneous process Cd(CH3COO)2→Cd2++2CH3COO-

CS(NH2)2+OH-→SH-+CH2N2+H2O SH-+OH- →S2-+H2O Cd2++S2- →CdS↓ Heterogeneous process NH4++OH-↔NH3+H2O Cd2++4NH3 ↔Cd(NH3)4

2+

5 6 710-4

10-3

10-2

1020

1021

0

10

20

30 Resistivity

Res

istiv

ity (

.cm

)

Distance (cm)

Concentration

Con

cent

ratio

n (c

m-3)

Mobility

Mob

ility

(cm

2 V-1s-1

)

2 Chemical bath deposition (CdS buffer layer)

1 RF Magnetron Sputtering (AZO buffer layer)

Small, compact CdS grain (50~100nm)

22

11

1

minmaxmin )/(1)/(1

nnnn refrefM

)8

exp(.2

)/exp(.

0

22

*

0

NkTQe

kTm

eL

kTE

t

bS

Semi-empirical model in ZnO single crystal presented by Masetti

Grain boundary scattering limited transport model of Seto

Resistivity stability of window layer can be improved by doping Si impurity

gEh 2teII 0

High conductivity and optical transmittance in visible region, non-toxicity, low cost, material abundance, relatively low deposition temperature, and high stability.

Burstein-Moss shift of the absorption edge

SM 111

Combined model in AZO films

Only strong (002) peak is observed in XRD, which indicates a hexagonal wurtzite structure.XPS show stoichiometric and non- stoichiometric atomic ratio of O/Zn in different deposition distances.

1. Complete coverage of the rough absorber surface2. Remove natural oxide from film surface3. Passivate CIGS surface to prevent surface inversion4. Protect CIGS from subsequent ZnO sputtering

Advantages of CBD

Introduction

CuIn0.7Ga0.3Se2 (CIGS) based solar cell is one of the most promising thin films solar cells. Its advantages include less amount materials, light mass, high radiation hardness and highest conversion efficiency in single-junction solar cell.

Structure

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

Sur

face

Rou

ghne

ss (n

m)

Distance (m)

3 Laser surface anealing and C-V

The roughness in absorber lead to short circuit of solar cell. A beam of unfocused laser was introduced to melt and smooth surface.

ArAr

D

qNAV

qNAV

C 02

022

221

Plot of 1/C2 vs. V, yielding NA =2×1015 cm-3 and build-in field VD=0.894V.

-0.6 -0.4 -0.2 0.030

40

50

Cap

acita

nce

(pF)

Reversed Bias (V)

300K

270K

200K