PPT Diagram Fase Fe-Fe3C

34
METALLURGY I (RM-1420) Dosen: Wahyu Wijanarko Mechanical Engineering ITS- Surabaya Crystal Structures of Iron Fe – Fe 3 C Phase Diagram Steels Cast Iron MINGGU X MINGGU X Jadwal kuliah : Tiap hari Senin pukul 07.00 – 08.40 Ruang C-117

Transcript of PPT Diagram Fase Fe-Fe3C

Page 1: PPT Diagram Fase Fe-Fe3C

METALLURGY I(RM-1420)

Dosen:

Wahyu Wijanarko

Mechanical Engineering

ITS- Surabaya

Crystal Structures of Iron

Fe – Fe3C Phase Diagram

Steels

Cast Iron

MINGGU XMINGGU X

Jadwal kuliah :

Tiap hari Senin pukul 07.00 – 08.40 Ruang C-117

Page 2: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 2

|Jurusan Teknik Mesin ITS|

Crystal Structures of ironCrystal Structures of iron

Page 3: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 3

|Jurusan Teknik Mesin ITS|

Crystal Structures of ironCrystal Structures of iron

Page 4: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 4

|Jurusan Teknik Mesin ITS|

Reactions (Summary)Reactions (Summary)

Page 5: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 5

|Jurusan Teknik Mesin ITS|

Fe - FeFe - Fe33C Phase DiagramC Phase Diagram

Page 6: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 6

|Jurusan Teknik Mesin ITS|

Fe - FeFe - Fe33C Phase DiagramC Phase Diagram

Page 7: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 7

|Jurusan Teknik Mesin ITS|

Four Solid Phases Four Solid Phases

Page 8: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 8

|Jurusan Teknik Mesin ITS|

Four Solid PhasesFour Solid Phases

Page 9: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 9

|Jurusan Teknik Mesin ITS|

Three Invariant ReactionsThree Invariant Reactions

Page 10: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 10

|Jurusan Teknik Mesin ITS|

Critical TemperaturesCritical Temperatures

Page 11: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 11

|Jurusan Teknik Mesin ITS|

Plain Carbon SteelsPlain Carbon Steels

Page 12: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 12

|Jurusan Teknik Mesin ITS|

Plain Carbon SteelsPlain Carbon SteelsPlain Carbon Steels

1. They are very satisfactory where strength and other requirement are not too severe

2. They are used successfully at ordinary temperatures and in atmospheres that are not highly corrosive

3. Plain-carbon steels can be produced in a great range of strengths at a relatively low costPlain Carbon Steels Limitation

1. They cannot be strengthened beyond about 100.000 psi without significant loss in toughness (impact resistance) and ductility

2. Large section cannot be made with a martensitic structure throughout, and thus are not deep-hardenable

3. Rapid quench rates are necessary for full hardening in medium-carbon plain carbon steels to produce a martensitic structure. This rapid quenching leads to shape distortion and cracking of heat-treated steel

4. Plain-carbon steels show a marked softening with increasing tempering temperature

5. Plain-carbon steels have poor impact resistance at low temperatures

6. Plain-carbon steels have poor corrosion resistance for many engineering environments

7. Plain-carbon steels oxidize readily at elevated temperatures

Page 13: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 13

|Jurusan Teknik Mesin ITS|

Effect of Other Elements in Plain Carbon SteelsEffect of Other Elements in Plain Carbon SteelsPlain carbon steels contain the following other elements:

–Sulfur up to 0.05 percent

• Sulfur in commercial steels is generally kept below 0.05 percent

• Sulfur combines with iron to form iron sulfide (FeS), which usually occurs as a grain boundary precipitation

• FeS is hard and has a low melting point, it can cause cracking during hot working of steel (hot-short)

–Manganese up to 1.0 percent

• Manganese is present in all comercial plain carbon steels, in range of 0.03 to 1.00 percent

• The fuction of manganese in counteracting the ill effects of sulfur

• Manganese combines with the sulfur persent in the steels to produce manganese sulfide (MnS)

–Phosphorus up to 0.04 percent

• The phosphorus content is generally kept below 0.04 percent

• This small quantity tends to dissolve in ferrite, increasing the strength and hardness slightly

• In large quantities, phosphorus reduces ductility, thereby increasing the tendency of the steel to crack when cold worked (cold-short)

–Silicon up to 0.30 percent

• Most comercial steels contain between 0.05 and 0.3 percent silicon

• Silicon dissolves in ferrite, increasing the strength of the steel without greatly decreasing the ductility

• Silicon is used as a deoxidizer, and forms SiO2 or silicate inclusions

Page 14: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 14

|Jurusan Teknik Mesin ITS|

Alloying SteelsAlloying Steels

Plain Carbon SteelsPlain-carbon steels properties are

not always adequate for all engineering applications of steel

Alloy Steels1. Alloy steels have been developed which,

although they cost more, are more economical for many uses

2. In some applications, alloy steels are the only materials that are able to meet engineering requirements

3. The principal element that are added to make alloy steels are nickel, chromium, molybdenum, manganese, silicon, and vanadium

4. Other elements sometimes added are cobalt, cooper, and lead

Page 15: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 15

|Jurusan Teknik Mesin ITS|

Eutectoid SteelEutectoid Steel

Page 16: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 16

|Jurusan Teknik Mesin ITS|

Eutectoid SteelEutectoid Steel

Page 17: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 17

|Jurusan Teknik Mesin ITS|

Eutectoid SteelEutectoid Steel

Fe3C-Fe

Fe3C

-Fe

Fe3C

Page 18: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 18

|Jurusan Teknik Mesin ITS|

Eutectoid SteelEutectoid Steel

Page 19: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 19

|Jurusan Teknik Mesin ITS|

Hypoeutectoid SteelHypoeutectoid Steel

Page 20: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 20

|Jurusan Teknik Mesin ITS|

Hypoeutectoid SteelHypoeutectoid Steel

Page 21: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 21

|Jurusan Teknik Mesin ITS|

Hypoeutectoid SteelHypoeutectoid Steel

Page 22: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 22

|Jurusan Teknik Mesin ITS|

Hypereutectoid SteelHypereutectoid Steel

Page 23: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 23

|Jurusan Teknik Mesin ITS|

Hypereutectoid SteelHypereutectoid Steel

Page 24: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 24

|Jurusan Teknik Mesin ITS|

Hypereutectoid SteelHypereutectoid Steel

Page 25: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 25

|Jurusan Teknik Mesin ITS|

SummarySummary

Page 26: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 26

|Jurusan Teknik Mesin ITS|

Hardness and StrengthHardness and Strength

Page 27: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 27

|Jurusan Teknik Mesin ITS|

Toughness and DuctilityToughness and Ductility

Page 28: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 28

|Jurusan Teknik Mesin ITS|

PropertiesProperties

Page 29: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 29

|Jurusan Teknik Mesin ITS|

Cast IronCast Iron

Page 30: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 30

|Jurusan Teknik Mesin ITS|

White Cast IronWhite Cast Iron

• Chemical composition:– Carbon 1.8-3.6 %

– Silicon 0.5-1.9 %

– Manganese 0.25-0.80 %

– Sulfur 0.06-0.20 %

– Phosphorus 0.06-0.18 %

• Solidification rate fast enough• Carbon combined with iron cementite (hard,

brittle)• Microstructure pearlite in a white interdendritic

network of cementite• Shows a “white” crystalline fractured surface

Page 31: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 31

|Jurusan Teknik Mesin ITS|

White Cast IronWhite Cast Iron

• High compressive strength and excellent wear resistance but extremely brittle and difficult to machine

• Used where:– resistance to wear is most important– The service does not require ductility

• White cast iron Malleable cast iron (malleabilization)• Mechanical properties:

– Hardness brinell 375 – 600 BHN– Tensile strength 20.000 – 70.000 psi– Compressive strength 200.000 – 250.000 psi– Modulus of elasticity 24 – 28 milion psi

Page 32: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 32

|Jurusan Teknik Mesin ITS|

White Cast IronWhite Cast IronPada x3 :

reaksi eutectic

liquid + Fe3C (ledeburite)

Pada x4 :

reaksi eutectoid

+ Fe3C (pearlite)

Fasa liquid primer

Komposisi 4.3% C (titik E) 2% C (titik C)

Jumlah relatif 22% 78%

Pada x1 : -fasa liquid

-komposisi kimia 2.5%C

-jumlah relatif 100%

Pada x2 : -mulai terbentuk primer

Fasa Fe3C + primer

Komposisi 6.67% C (titik D) 2% C (titik C)

Jumlah relatif 11% 89%

Fasa Fe3C + primer

Komposisi 6.67% C (titik K) 0.8% C (titik J)

Jumlah relatif 29% 71%

Fasa Fe3C

Komposisi 6.67% C 0.025% C

Jumlah relatif 37% 63%

Page 33: PPT Diagram Fase Fe-Fe3C

METALLURGY I Wahyu Wijanarko

X 33

|Jurusan Teknik Mesin ITS|

White Cast IronWhite Cast Iron

Page 34: PPT Diagram Fase Fe-Fe3C

METALLURGY I(RM-1420)

Dosen:

Wahyu Wijanarko

Mechanical Engineering

ITS- Surabaya

MINGGU XI-XIIIMINGGU XI-XIII

Jadwal kuliah :

Tiap hari Senin pukul 07.00 – 08.40 Ruang C-117

TRANSFORMASITRANSFORMASI

NON EKUILIBRIUMNON EKUILIBRIUM