Powerpoint for bio lab

13
Factors Effecting Lung Capacity

description

Biology 101 lab final project

Transcript of Powerpoint for bio lab

Page 1: Powerpoint for bio lab

Factors Effecting Lung Capacity

Page 2: Powerpoint for bio lab

INTRODUCTION

Page 3: Powerpoint for bio lab

The Lungs• Lungs are present in all human bodies so that we can breathe.• Lungs make up a large part of our respiratory system.• They are located in our chest within the rib cage and connect to the

trachea.• The diaphragm is located directly behind the lungs. The diaphragm is a

muscle that allows us to breathe in and out.• We breathe in oxygen and release carbon dioxide through the lungs.

-This exchange occurs at the alveolar membrane, between the alveoli and capillaries in the lungs. The alveoli are tiny sacs at the furthest ends of the branching airways of the lungs. -As the lungs exhale, carbon dioxide exits the alveoli and leaves oxygen-enriched blood that travels to the heart, which pumps through the body

• All cells need oxygen to function properly, and our lungs give the cells the oxygen they need in order to do so.

Page 4: Powerpoint for bio lab

The Lungs

Page 5: Powerpoint for bio lab
Page 6: Powerpoint for bio lab

Lung Capacity•Lung capacity is the greatest amount of oxygen a persons lungs can hold within them.•The average total lung capacity of an adult human male is about6 liters of air, but only a small amount of this capacity is used during normal breathing.•An average human breathes some 12-20 times per minute.•The amount of air that you move in and out of your lungs while breathing normally is called TIDAL VOLUME. This amount of air provides enough oxygen for a person who is resting.•It is possible to inhale and exhale more forcefully - the maximum amount of air moved in and out of the lungs is called the VITAL CAPACITY.

Page 7: Powerpoint for bio lab

What Led us to our Hypothesis?• You know from experience that your lungs can respond to the body's changing

needs for oxygen.-When you exercise vigorously, you breathe deeper and faster to keep yourself going

• First, we formulated a hypothesis that athletes will have a greater lung capacity than non-athletes. BECAUSE:-Pulmonary ventilation is linked with the intake of oxygen at different levels of exercise.-Lung function limitations have a relationship with lifestyles, people who exercise vs. people who do not.-Due to regular exercise, athletes tend to have an increase in pulmonary capacity when compared to non-exercising individuals, especially when the exercise is strenuous.

• WHICH LEADS US TO OUR FIRST HYPOTHESIS: Athletes would have a higher lung capacity than non-athletes.

• After this, we looked at the collected data and noticed that we had many different heights and weights among the people that we tested.

• -WHICH LEADS US TO OUR SECOND HYPOTHESIS: The greater an individual’s weight and height, the higher the individuals lung capacity.

Page 8: Powerpoint for bio lab

METHODS•First we obtained a spirometer and filled the base up with water to the fill line.•Then, we placed a paperclip on the chain where the numbers above read 0.00.•After that, we put a cardboard cover over the end of the spirometer’s extended tube for each separate tested individual.•We gathered people from around campus, both athletic and non-athletic, to volunteer to be tested in the experiment.•Before we performed the experiment, we recorded if the person was athletic or non-athletic, their height, and their weight.•We measured the lung capacity by a person taking a very deep breath and blowing the collected air into the end of the tube extending from the spirometer.•Directly after, we recorded the measurement and repeated this two more times and recorded the highest number received out of the three tries for each individual.•Then, we calculated the average lung capacity of the athletes separate from the non-athletes and compared them.

Page 9: Powerpoint for bio lab

RESULTS: FIGURE 1

Page 10: Powerpoint for bio lab

RESULTS: FIGURE 2

Page 11: Powerpoint for bio lab

RESULTS: FIGURE 3

Page 12: Powerpoint for bio lab

DISCUSSION•Our first hypothesis was that athletes will have a higher lung capacity than non-athletes. Our first hypothesis was false. After further review, we tested the hypothesis that the greater an individual’s height and weight, then the higher the lung capacity.• In this experiment we have concluded that athleticism does not matter as much as the factors of height and weight in measuring Lung capacity.•The bigger the person is, the larger the lung capacity will be.

- The data that we took from individuals gave us a wide range of sizes to consider, and it matched our second hypothesis of lung capacity being dependant on

height and weight.•This hypothesis seems logical enough.

- If oxygen has to flow though a human’s entire body for our cells to function efficiently, then the larger individual would have a lot more space and

therefore needing more oxygen than a smaller person does.-So, lung capacity must be greater in a larger individual than a smaller

individual to hold and transport more oxygen than is needed in a smaller one.•Although, there are a few factors that could be looked at as well.

-Smoking could be a negative factor that affects lung capacity.- Also, maybe the gender of someone could be an aspect to look at as well.

In addition, people with asthma may have a weaker lung capacity than someone without asthma.

Page 13: Powerpoint for bio lab

THE END