Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel...

20
Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity grid Fuel cells Renewable electricity sources Transport fuel Hydrogen storage Gas grid Anaerobic digester Electricity Natural gas Hydrogen

Transcript of Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel...

Page 1: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Power-to-gas and SOFCfor mobilityOlivier Thomann

Fuel cells and hydrogen intransportation applications09.10.2017

Electrolyser

Electricity grid

Fuel cells

Renewableelectricitysources

Transport fuelHydrogen storage

Gas grid

Anaerobicdigester

Electricity Natural gasHydrogen

Page 2: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

SOFC for mobilityapplications

Page 3: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

310/10/2017 3

Proton exchange membrane fuel cell (PEMFC)versusSolid oxide fuel cell (SOFC)

PEMFC SOFCElectrolyte material Polymer Ceramic

Operating temperature °C 80 600-850

Efficiency % 40-50 45-60Largest stack size kW 100 10

Fuel High purity H2H2, CO,

CH4

Page 4: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

410/10/2017 4

Fuel processing for fuel cells

S=sulfur removal, E&M=evaporation and mixing, SR=steam reforming,ATR=auto thermal reforming, CPO= catalytic partial oxidation, Shift=water gasshift reactor, PROX=Preferential oxidation, PSA= pressure swing adsorption

Page 5: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

510/10/2017 5

SOFC for mobility applications

Wärtsilä MethanolAPU Demo

§ Methanol-fueled SOFCAPU by Wärtsilä FuelCells§ 20 kW auxiliary power§ Wallenius car carrier

e4Ships / SchIBZ

§ Diesel-fueled SOFCAPU by Sunfire§ 50 kW auxiliary power§ MS Forester

Nissan ethanol SOFC

§ SOFC range extenderfor electric vehicle§ In collaboration with

Ceres power§ 5 kW§ Driving Range: 600km-

plus

Page 6: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Power-to-gas

Page 7: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

710/10/2017 7

How is hydrogen produced nowaday?

• 57 million tons of hydrogen: worldwide production, 2004• 96 % from fossil fuel

Airox Nigen

Steam reforming of naturalgas/methanol/naphta

Electrolysis of waterHydrogen is as green asthe electricity used!

Page 8: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

810/10/2017 8

Power-to-gas vision

§ Connect§ The electricity grid§ The natural gas grid§ And the transportation

fuel distribution§ Using existing

hydrocarbon distributioninfrastructure

Electrolyser

Electricity grid

Fuel cells

Renewableelectricitysources

Transport fuelHydrogen storage

Gas grid

Anaerobicdigester

Electricity Natural gasHydrogenReprinted fromhttp://www.fuelcelltoday.com/media/1871508/water_electrolysis___renewable_energy_systems.pdf

Page 9: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

910/10/2017 9

Power-to-gas demonstration project

Source: http://www.europeanpowertogas.com/

Page 10: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1010/10/2017 10

Electrolyser technologyALKALINE PROTON EXCHANGE MEMBRANE

(PEM)SOLID OXIDE

(SOE)

Low capital costMature technology

Fast start-upHigh purity hydrogen

Commercial technology

High electrical efficiencyCo-electrolysis (H2O & CO2)

Reversible operationHigh purity hydrogen

Limited operation flexibilityLimited hydrogen quality

High operational costHigh capital cost R&D

not commercialised

System scale Up to 50 MW Up to 2 MW Up to 150 kW

System cost 1000-1200 €/kW 1900-2300 €/kW target <2000 €/kWby 2020

Electricalefficiency 60-75% 65-90% 80-100%

Page 11: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1110/10/2017 11

Electrolyser development strategy (according toDoE)§Develop new materials and systems to improve efficiency

=> reduce electricity cost§New designs with lower cost materials and advanced

manufacturing methods => reduce capital cost§Develop hydrogen production from renewable electricity

(wind and solar)

Page 12: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1210/10/2017 12

Current density

ReferenceButtler et al.https://doi.org/10.1016/j.rser.2017.09.003

Current density (A/cm2)Lower capital cost

Effic

ienc

yLo

wer

oper

atio

nalc

ost

Page 13: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1310/10/2017 13

Solid oxide electrolysis cell with ultra-highcurrent densityVersa Power/FuelCell Energy

Reference:A. Wood, H. He, T. Joia, M. Krivy, D. Steedman; “Communication—Electrolysis at High Efficiency withRemarkable Hydrogen Production Rates”, Journal of Electrochemical Society, 2016 volume 163, issue 5, F327-F329https://www.hydrogen.energy.gov/pdfs/review16/pd124_petri_2016_o.pdf

3 A/cm2 @1.4 V <2%/kh @ 3 A/cm2

Page 14: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1410/10/2017 14

European Adel and SOPHIA project: highdurability SOE stack from Solidpower

§ Degradation0.5 %/kh>10'000 h durabilitytest @ 0.5 A/cm2

ReferenceRinaldi, Giorgio, et al. "Post-test Analysis on a Solid Oxide Cell Stack Operated for 10,700 Hours in Steam ElectrolysisMode." Fuel Cells (2017).http://onlinelibrary.wiley.com/doi/10.1002/fuce.201600194/full

Page 15: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1510/10/2017 15

European BALANCE project§ Development of reversible

Solid Oxide Cell(electrolyser and fuel cell)§ Electrical grid stabilisation§ Electrical energy storage

This project has received funding fromthe European Union’s Horizon 2020research and innovation programmeunder grant agreement No 731224.

https://www.balance-project.org/

rSOC demonstrationsystem at VTT inearly 2019

Picture and performance figure: courtesy of DTU

Page 16: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1610/10/2017 16

Conclusions

§ Power-to-gas§ Green hydrogen for mobility§ Link with renewable intermittent electricity

§Main issue is cost & durability

Contact:Olivier Thomann [email protected] +358 40 124 7497Olli Himanen [email protected] +358 40 352 6298

Page 17: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

17

Thank you for your attention!Any question?

Olivier Thomann [email protected] +358 40 124 7497Olli Himanen [email protected] +358 40 352 6298

Page 18: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1810/10/2017 18

Available solution for electrical energy storage

CAES: compressed air electrical storageSNG: synthetic natural gas

Large-scale storage§ Pumped hydro§ Compressed air§ Power-to-gas

Page 19: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

1910/10/2017 19

Target in wind andsolar energy, 2020

Renewable electricity in Europe. Maija Ruska,Juha Kiviluoma. VTT Research Notes

3731

252123

1921

14118

63

00

584

71

01

00

0

0 10 20 30 40

IrelandDenmark

GreeceSpain

PortugalGermany

United KingdomEstoniaFrance

SwedenFinland

Hungary

% of total electricity consumption

WindSolar

In 2016: 35%

In 2015: 31%

Page 20: Power-to-gas and SOFC for mobility - VTT...Power-to-gas and SOFC for mobility Olivier Thomann Fuel cells and hydrogen in transportation applications 09.10.2017 Electrolyser Electricity

Click to edit Master title style

§ Click to edit Master text styles§ Second level

§ Third level§ Fourth level

§ Fifth level

2010/10/2017 20

Consumption and production mismatch

§ Emergence of an electrical energy storage market§ Prevent curtailment of renewable electricity§ Increase renewable electricity penetration

0

1000

2000

3000

4000

5000

6000

7000

115

130

145

160

175

190

110

5112

0113

5115

0116

5118

0119

5121

0122

5124

0125

5127

0128

51

MW

Hours

Hourly Danish wind output vs total consumption2016

Total gross consumption

Total wind production