Power Mosfet

1183

description

Motorola Power Transistor Mosfet

Transcript of Power Mosfet

  • TMOS Power MOSFET Transistor Device Data

    Alphanumeric Index of Part Numbers 1

    Selector Guide

    Introduction to Power MOSFETsBasic Characteristics of Power MOSFETs

    Data Sheets

    Surface Mount Package Information andTape and Reel Specifications

    Package Outline Dimensions and Footprints

    Distributors and Sales Offices

    2

    3

    4

    5

    6

    7

  • ii

    Designers, SENSEFET, EFETs, ICePAK, HDTMOS, MiniMOS, SMARTDISCRETES,Thermopad and Thermowatt are trademarks of Motorola, Inc.Burst Mode is a trademark of Linear Technology Corp.ChoTherm is a registered trademark of Chromerics, Inc.Grafoil is a registered trademark of Union CarbideISOTOP is a trademark of SGSTHOMSON MicroelectronicsKapton is a registered trademark of E.I. DupontRubberDuc is a trademark of AAVID EngineeringSil Pad and Thermal Clad are trademarks of the Bergquist CompanySyncNut is a trademark of ITW ShakeproofThermal Clad is a trademark of the Bergquist CompanyThermasil is a registered trademark and Thermafilm is a trademark of Thermalloy, Inc.Bourns Knobpot is a registered trademark of Bourns Inc.

    are registered trademarks of Motorola, Inc.TMOS and

  • iii

    The information in this book has been carefully reviewed and is believed to be accurate; however, no responsibility is assumedfor inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor devices any license under thepatent rights to the manufacturer.

    Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume anyliability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including withoutlimitation consequential or incidental damages. Typical parameters which may be provided in Motorola data sheets and/orspecifications can and do vary in different applications and actual performance may vary over time. All operating parameters,including Typicals must be validated for each customer application by customers technical experts. Motorola does not conveyany license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use ascomponents in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or forany other application in which the failure of the Motorola product could create a situation where personal injury or death may occur.Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify andhold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, andexpenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated withsuch unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufactureof the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative ActionEmployer.

    Motorola, Inc. 1996Previous Edition 1994 All Rights ReservedPrinted in U.S.A.

  • iv

    MOTDIST

    Three Ways To Receive Motorola Semiconductor Technical Information

    Literature CentersPrinted literature can be obtained from the Literature Centers upon request. For those items that incur a cost, the U.S.Literature Center will accept Master Card and Visa.

    How to reach us:USA/EUROPE/Locations Not Listed: Motorola Literature Center

    P.O. Box 20912Phoenix, Arizona 85036Phone: 18004412447 or 6023035454

    JAPAN: Nippon Motorola Ltd.6F SeibuButsuryuCenter3142 Tatsumi KotoKuTokyo 135, JapanPhone: 038135218315

    ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.2 Dai King StreetTai Po Industrial EstateTai Po N.T. Hong KongPhone: 85226668333

    Mfax - TouchTone FaxMfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice instruc-tion, customers can request the documents needed, using their own touchtone telephones from any location, 7 days aweek and 24 hours a day. A number of features are offered within the Mfax system, including product data sheets, applica-tion notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training Information,and HOT DOCS (4digit code identifiers for currently referenced promotional or advertising material).INSTRUCTIONSYou will be asked to enter various pieces of information. To enter phone numbers, fax numbers, or hot document numberssimply enter numbers from your touch-tone keypad followed by the pound sign. For example, to enter a fax number, youmight enter 6025551212#. (Numeric Input)To enter combinations of letters and numbers (such as a part number, your first initial, your last name or company name),you must use sequences of two-digit codes to represent all of the letters and numbers. The telephone keypad groupsthree letters on each key. Numbers are prefixed with a 0. The number 7 would be entered as 07.

    Example of Text Input:The part number MC6530, would be translated as follows:Text to be entered: M C 6 5 3 0Two-digit codes: 61 23 06 05 03 00When prompted for a part number, you would enter 61 23 06 05 03 00 #

    Q is the fourth letter on the 7 key, Z is the fourth letter on the 9 key,and special characters , . and / are on the 1 key.We suggest that you translate and write out the required informationbefore starting your call. Then simply enter the pre-translated informa-tion.NOTE: The system will repeat each letter as you enter two-digit codes.Should you make an error, you can reject the entire entry and start overwhen asked to verify. Entering an Q will provide you with verbal instruc-tions on entering letters and numbers. During this help information, youmay press any key to skip the remaining message and proceed withordering your fax.Should you encounter any problems with this system please contact the system administrator at 602-244-6591.

    How to reach us:

    Mfax: [email protected] TOUCHTONE (602) 2446609 or via the http://DesignNET.com home page, select the Mfax Icon.

    1 2 3 . /

    1

    1 2 3A B C

    2

    1 2 3D E F

    31 2 3G H I

    4

    1 2 3J K L

    5

    1 2 3M N O

    6

    1 2 3P R S

    7

    1 2 3T U V

    8

    1 2 3W X Y

    9

    Q 0 #

    4Q

    4Z

  • vMotorola SPS World Marketing Internet ServerMotorola SPSs Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPSs technicaldata to the global Internet community. Technical data such as the complete Master Selection Guide along with the OEM NorthAmerican price book are available on the Internet server with full search capabilities. Other data on the server include abstractsof data books, application notes, selector guides, and textbooks. All have easy text search capability. Ordering literature fromthe Literature Center is available on line. Other features of Motorola SPSs Internet server include the availability of a searchablepress release database, technical training information, with online registration capabilities, complete online access to theMfax system for ordering faxes, an online technical support form to send technical questions and receive answers throughemail, information on product groups, full search capabilities of device models, a listing of the Domestic and International salesoffices, and links directly to other Motorola world wide web servers. For more information on Motorola SPSs Internet server youcan request BR1307/D from Mfax or the Literature Center.

    How to reach us:After accessing the Internet, use the following URL:

    http://DesignNET.com

    REV 1

  • vi

    Table of ContentsSECTION ONE Alphanumeric Index of Part NumbersAlphanumeric Index 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Obsolete Part Numbers Cross Reference 13. . . . . . . . . . . .

    SECTION TWO Selector GuideTMOS Power MOSFETs 21. . . . . . . . . . . . . . . . . . . . . . . . . .

    TMOS Power MOSFETs Numbering System 22. . . . . . SO8 (MiniMOS) 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Micro8 HDTMOS Products 23. . . . . . . . . . . . . . . . . . . . EZFET Power MOSFETs with Zener Gate Protection 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SOT223 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DPAK 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2PAK 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3PAK 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO220AB 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO247 (Isolated Mounting Hole) 28. . . . . . . . . . . . . . . . TO264 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT227B (ISOTOP) 29. . . . . . . . . . . . . . . . . . . . . . . . . SMARTDISCRETES 29. . . . . . . . . . . . . . . . . . . . . . . . . . IGBT Insulated Gate Bipolar Transistor 210. . . . . . . . Power MOS Gate Drivers 210. . . . . . . . . . . . . . . . . . . . . .

    SECTION THREE Introduction to Power MOSFETsChapter 1: Introduction to Power MOSFETs

    Symbols, Terms and Definitions 32. . . . . . . . . . . . . . . . . . Basic TMOS Structure, Operation and Physics 37. . . . . Distinct Advantages of Power MOSFETs 310. . . . . . . . .

    Chapter 2: Basic Characteristics of Power MOSFETsOutput Characteristics 313. . . . . . . . . . . . . . . . . . . . . . . . . Basic MOSFET Parameters 313. . . . . . . . . . . . . . . . . . . . . Temperature Dependent Characteristics 314. . . . . . . . . . Drain-Source Diode 315. . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Chapter 3: The Data Sheet 317. . . . . . . . . . . . . . . . . . . . . . .

    SECTION FOUR Data SheetsMC33153 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGP20N14CL 413. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGP20N35CL 415. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGP20N40CL 420. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGW12N120 425. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGW12N120D 430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGW20N60D 435. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGW20N120 440. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGW30N60 445. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY20N120D 449. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY25N120 454. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY25N120D 459. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY30N60D 464. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY40N60 469. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MGY40N60D 473. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLD1N06CL 478. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLD2N06CL 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLP1N06CL 490. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLP2N06CL 496. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF1N05E 4102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    MMDF2C01HD 4106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2C02E 4115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2C02HD 4123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2C03HD 4132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2N02E 4141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2P01HD 4147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2P02E 4154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2P02HD 4160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF2P03HD 4167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF3N02HD 4174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF3N03HD 4181. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF4N01HD 4187. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMDF4N01Z 4194. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMFT1N10E 4196. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMFT2N02EL 4202. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMFT2955E 4208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMFT3055V 4214. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMFT3055VL 4216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF2P02E 4218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF3P02HD 4224. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF3P02Z 4231. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF3P03HD 4238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF4P01HD 4245. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF4P01Z 4252. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF5N02HD 4259. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF5N03HD 4266. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF5N03Z 4273. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMSF7N03HD 4280. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2111 4287. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2112 4291. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2113 4295. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2117 4299. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2130 4303. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2131 4308. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPIC2151 4313. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB1N100E 4317. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB2N40E 4323. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB2N60E 4329. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB2P50E 4335. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB3N100E 4341. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB3N120E 4347. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB4N80E 4354. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB6N60E 4360. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB8N50E 4366. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB9N25E 4368. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB10N40E 4374. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB15N06V 4380. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB16N25E 4386. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB20N20E 4392. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB23P06V 4398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB30N06VL 4404. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB30P06V 4410. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB33N10E 4416. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB35N06ZL 4422. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB36N06V 4424. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB50P03HDL 4430. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB52N06V 4437. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB52N06VL 4439. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB55N06Z 4441. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB60N06HD 4443. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • vii

    Table of Contents (continued)SECTION FOUR Data Sheets (continued)MTB75N03HDL 4450. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTB75N05HD 4457. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD1N50E 4464. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD1N60E 4470. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD1N80E 4476. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD1P50E 4482. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD2N40E 4484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD2N50E 4490. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD3N25E 4496. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD4N20E 4502. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD5N25E 4508. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD5P06V 4514. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD6N10E 4520. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD6N15 4526. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD6N20E 4531. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD6P10E 4537. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD9N10E 4543. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD10N10EL 4549. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD12N06EZL 4555. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD15N06V 4561. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD15N06VL 4567. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20N03HDL 4569. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20N06HD 4576. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20N06HDL 4583. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20N06V 4590. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20P03HDL 4592. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD20P06HDL 4599. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD2955V 4606. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD3055V 4608. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTD3055VL 4614. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTDF1N02HD 4620. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTDF1N03HD 4628. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTE30N50E 4636. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTE53N50E 4642. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTE125N20E 4648. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTE215N10E 4654. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP1N50E 4660. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP1N60E 4666. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP1N80E 4672. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP1N100E 4678. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP2N40E 4684. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP2N50E 4690. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP2N60E 4696. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP2P50E 4702. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3N50E 4708. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3N60E 4714. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3N100E 4720. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3N120E 4726. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP4N40E 4733. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP4N50E 4735. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP4N80E 4741. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP5N40E 4747. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP5P06V 4753. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP6N60E 4759. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP6P20E 4765. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP7N20E 4771. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP8N50E 4777. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    MTP9N25E 4783. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP10N10E 4789. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP10N10EL 4795. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP10N40E 4801. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP12N10E 4807. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP12P10 4813. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP15N06V 4818. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP15N06VL 4824. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP16N25E 4826. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP20N06V 4832. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP20N20E 4834. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP23P06V 4840. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP27N10E 4846. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP30N06VL 4852. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP30P06V 4858. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP33N10E 4864. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP35N06ZL 4870. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP36N06V 4872. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP50P03HDL 4878. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP52N06V 4885. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP52N06VL 4887. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP55N06Z 4889. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP60N06HD 4891. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP75N03HDL 4898. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP75N05HD 4905. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP75N06HD 4911. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP2955V 4918. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3055V 4920. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTP3055VL 4926. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTSF1P02HD 4932. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTSF2P02HD 4940. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTSF3N02HD 4943. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTSF3N03HD 4951. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV6N100E 4959. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV10N100E 4965. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV16N50E 4971. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV20N50E 4977. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV25N50E 4983. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV32N20E 4989. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTV32N25E 4995. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW6N100E 41001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW7N80E 41007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW8N60E 41013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW10N100E 41019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW14N50E 41025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW16N40E 41031. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW20N50E 41037. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW24N40E 41043. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW32N20E 41049. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW32N25E 41055. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW35N15E 41061. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTW45N10E 41067. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY14N100E 41073. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY16N80E 41079. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY20N50E 41085. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY25N60E 41091. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY30N50E 41097. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY55N20E 41103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MTY100N10E 41109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • viii

    SECTION FIVE Surface Mount Package Informationand Tape and Reel SpecificationsSurface Mount Package Information 52. . . . . . . . . . . . . . . .

    Power Dissipation for a Surface Mount Device 52. . . . . Solder Stencil Guidelines 53. . . . . . . . . . . . . . . . . . . . . . . Soldering Precautions 53. . . . . . . . . . . . . . . . . . . . . . . . . . Typical Solder Heating Profile 54. . . . . . . . . . . . . . . . . . . Footprints for Soldering 55. . . . . . . . . . . . . . . . . . . . . . . . .

    Tape and Reel Specifications 56. . . . . . . . . . . . . . . . . . . . . . Ordering Information 56. . . . . . . . . . . . . . . . . . . . . . . . . . . Embossed Tape and Reel Data 57. . . . . . . . . . . . . . . . . .

    SECTION SIX Package Outline Dimensions and FootprintsPackage Outline Dimensions and Footprints 62. . . . . . . . .

    SECTION SEVEN Distributors and Sales OfficesDistributors and Sales Offices 72. . . . . . . . . . . . . . . . . . . . . .

  • 11Alphanumeric Index of Part NumbersMotorola TMOS Power MOSFET Transistors Device Data

    Alphanumeric Index of Part NumbersSection One

    Alphanumeric Index of Part Numbers 12. . . . . . . . . . . . . . . Obsolete Part Numbers Cross Reference 13. . . . . . . . . . . .

  • MotorolaPart Number

    Data SheetPage Number

    MotorolaPart Number

    Data SheetPage Number

    MotorolaPart Number

    Data SheetPage Number

    Alphanumeric Index of Part Numbers12

    Motorola TMOS Power MOSFET Transistor Device Data

    Alphanumeric Index of Part NumbersThe following index provides you with a quick page number reference for complete data sheets. Contact your local Motorola

    Sales Office for data sheets not referenced in this index.

    MC33153 42MGP20N14CL 413MGP20N35CL 415MGP20N40CL 420MGW12N120 425MGW12N120D 430MGW20N60D 435MGW20N120 440MGW30N60 445MGY20N120D 449MGY25N120 454MGY25N120D 459MGY30N60D 464MGY40N60 469MGY40N60D 473MLD1N06CL 478MLD2N06CL 484MLP1N06CL 490MLP2N06CL 496MMDF1N05E 4102MMDF2C01HD 4106MMDF2C02E 4115MMDF2C02HD 4123MMDF2C03HD 4132MMDF2N02E 4141MMDF2P01HD 4147MMDF2P02E 4154MMDF2P02HD 4160MMDF2P03HD 4167MMDF3N02HD 4174MMDF3N03HD 4181MMDF4N01HD 4187MMDF4N01Z 4194MMFT1N10E 4196MMFT2N02EL 4202MMFT2955E 4208MMFT3055V 4214MMFT3055VL 4216MMSF2P02E 4218MMSF3P02HD 4224MMSF3P02Z 4231MMSF3P03HD 4238MMSF4P01HD 4245MMSF4P01Z 4252MMSF5N02HD 4259MMSF5N03HD 4266MMSF5N03Z 4273MMSF7N03HD 4280MPIC2111 4287MPIC2112 4291MPIC2113 4295MPIC2117 4299MPIC2130 4303MPIC2131 4308MPIC2151 4313

    MTB1N100E 4317MTB2N40E 4323MTB2N60E 4329MTB2P50E 4335MTB3N100E 4341MTB3N120E 4347MTB4N80E 4354MTB6N60E 4360MTB8N50E 4366MTB9N25E 4368MTB10N40E 4374MTB15N06V 4380MTB16N25E 4386MTB20N20E 4392MTB23P06V 4398MTB30N06VL 4404MTB30P06V 4410MTB33N10E 4416MTB35N06ZL 4422MTB36N06V 4424MTB50P03HDL 4430MTB52N06V 4437MTB52N06VL 4439MTB55N06Z 4441MTB60N06HD 4443MTB75N03HDL 4450MTB75N05HD 4457MTD1N50E 4464MTD1N60E 4470MTD1N80E 4476MTD1P50E 4482MTD2N40E 4484MTD2N50E 4490MTD3N25E 4496MTD4N20E 4502MTD5N25E 4508MTD5P06V 4514MTD6N10E 4520MTD6N15 4526MTD6N20E 4531MTD6P10E 4537MTD9N10E 4543MTD10N10EL 4549MTD12N06EZL 4555MTD15N06V 4561MTD15N06VL 4567MTD20N03HDL 4569MTD20N06HD 4576MTD20N06HDL 4583MTD20N06V 4590MTD20P03HDL 4592MTD20P06HDL 4599MTD2955V 4606MTD3055V 4608MTD3055VL 4614

    MTDF1N02HD 4620MTDF1N03HD 4628MTE30N50E 4636MTE53N50E 4642MTE125N20E 4648MTE215N10E 4654MTP1N50E 4660MTP1N60E 4666MTP1N80E 4672MTP1N100E 4678MTP2N40E 4684MTP2N50E 4690MTP2N60E 4696MTP2P50E 4702MTP3N50E 4708MTP3N60E 4714MTP3N100E 4720MTP3N120E 4726MTP4N40E 4733MTP4N50E 4735MTP4N80E 4741MTP5N40E 4747MTP5P06V 4753MTP6N60E 4759MTP6P20E 4765MTP7N20E 4771MTP8N50E 4777MTP9N25E 4783MTP10N10E 4789MTP10N10EL 4795MTP10N40E 4801MTP12N10E 4807MTP12P10 4813MTP15N06V 4818MTP15N06VL 4824MTP16N25E 4826MTP20N06V 4832MTP20N20E 4834MTP23P06V 4840MTP27N10E 4846MTP30N06VL 4852MTP30P06V 4858MTP33N10E 4864MTP35N06ZL 4870MTP36N06V 4872MTP50P03HDL 4878MTP52N06V 4885MTP52N06VL 4887MTP55N06Z 4889MTP60N06HD 4891MTP75N03HDL 4898MTP75N05HD 4905MTP75N06HD 4911MTP2955V 4918MTP3055V 4920

  • MotorolaPart Number

    Data SheetPage Number

    MotorolaPart Number

    Data SheetPage Number

    MotorolaPart Number

    Data SheetPage Number

    13Alphanumeric Index of Part NumbersMotorola TMOS Power MOSFET Transistors Device Data

    ALPHANUMERIC INDEX OF PART NUMBERS (continued)

    MTP3055VL 4926MTSF1P02HD 4932MTSF2P02HD 4940MTSF3N02HD 4943MTSF3N03HD 4951MTV6N100E 4959MTV10N100E 4965MTV16N50E 4971MTV20N50E 4977MTV25N50E 4983MTV32N20E 4989

    MTV32N25E 4995MTW6N100E 41001MTW7N80E 41007MTW8N60E 41013MTW10N100E 41019MTW14N50E 41025MTW16N40E 41031MTW20N50E 41037MTW24N40E 41043MTW32N20E 41049

    MTW32N25E 41055MTW35N15E 41061MTW45N10E 41067MTY14N100E 41073MTY16N80E 41079MTY20N50E 41085MTY25N60E 41091MTY30N50E 41097MTY55N20E 41103MTY100N10E 41109

    Obsolete Part Numbers Cross ReferenceOld PartNumber

    New PartNumber

    BUZ11 MTP36N06VBUZ71 MTP15N06VBUZ71A MTP15N06VIRF510 MTP10N10EIRF520 MTP10N10EIRF530 MTP12N10EIRF540 MTP27N10EIRF610 MTP7N20EIRF620 MTP7N20EIRF630 MTP20N20EIRF640 MTP20N20EIRF720 MTP4N40EIRF730 MTP5N40EIRF740 MTP10N40EIRF820 MTP3N50EIRF840 MTP8N50E

    Old PartNumber

    New PartNumber

    IRFZ20 MTP15N06VMMFT3055E MMFT3055VMMFT3055EL MMFT3055VLMTB15N06E MTB15N06VMTB23P06E MTB23P06VMTB30N06EL MTB30N06VLMTB36N06E MTB36N06VMTB50N06E MTB50N06VMTB50N06EL MTB50N06VLMTD5P06E MTD5P06VMTD8N06E MTD15N06VMTD10N05E MTD15N06VMTD2955E MTD2955VMTD3055E MTD3055VMTD3055EL MTD3055VLMTP3N25E MTP9N25E

    Old PartNumber

    New PartNumber

    MTP8N06E MTP15N06VMTP15N05E MTP15N06VMTP15N05EL MTP15N06VLMTP15N06E MTP15N06VMTP23P06 MTP23P06VMTP30N06EL MTP30N06VLMTP36N06E MTP36N06VMTP50N05E MTP50N06VMTP50N05EL MTP50N06VLMTP50N06E MTP50N06VMTP2955E MTP2955VMTP3055E MTP3055VMTP3055EL MTP3055VLMTW20P10 MTP12P10MTW23N25E MTW32N25EMTW26N15E MTW35N15EMTW54N05E MTP50N06V

  • Alphanumeric Index of Part Numbers14

    Motorola TMOS Power MOSFET Transistor Device Data

  • 21Selector GuideMotorola TMOS Power MOSFET Transistors Device Data

    TMOS Power MOSFETsProducts Selector Guide

    Section Two

    In Brief . . .Motorola continues to build a world class portfolio of

    TMOS Power MOSFETs with new advances in silicon andpackaging technology. The following new advances havebeen made in the area of silicon technology. Additional high voltage devices with voltages up to

    1200 volts. The new High Cell Density (HDTMOS) Family of standard

    and Logic Level devices in both N and P-channel areavailable in SO8, DPAK and D2PAK surface mountpackages and in the industry standard TO-220 package.The following new advances have been made in the areaof packaging technology.

    Motorola has added Micro8, SO-8 (MiniMOS) andSOT-223 packages to the surface mount portfolio.

    New High Power packages capable of housing very largedie and higher power dissipation are now available in theTO-264 (TO-3PBL) and SOT-227B (ISOTOP) packages.

    Table of ContentsPage

    TMOS Power MOSFETs 21. . . . . . . . . . . . . . . . . . . . . . . . . . . TMOS Power MOSFETs Numbering System 22. . . . . . . SO8 (MiniMOS) 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Micro8 HDTMOS Products 23. . . . . . . . . . . . . . . . . . . . . EZFET Power MOSFETs with Zener Gate Protection 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    SOT223 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DPAK 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2PAK 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3PAK 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO220AB 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO247 (Isolated Mounting Hole) 28. . . . . . . . . . . . . . . . . TO264 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SOT227B (ISOTOP) 29. . . . . . . . . . . . . . . . . . . . . . . . . . SMARTDISCRETES 29. . . . . . . . . . . . . . . . . . . . . . . . . . . IGBT Insulated Gate Bipolar Transistor 210. . . . . . . . Power MOS Gate Drivers 210. . . . . . . . . . . . . . . . . . . . . .

  • Selector Guide22

    Motorola TMOS Power MOSFET Transistor Device Data

    TMOSPower MOSFETs

    TMOS Power MOSFETs Numbering SystemWherever possible, Motorola has used the following numbering systems for TMOS power MOSFET products.

    MTP75N06HDMOTOROLA

    X FOR ENGINEERING SAMPLESTMOST FOR TMOS

    L FOR SMARTDISCRETESG FOR IGBTP FOR MULTIPLE CHIP PRODUCTS

    PACKAGE TYPEP FOR PLASTIC TO220D FOR DPAKA FOR TO220 ISOLATEDW FOR TO247B FOR D2PAKY FOR TO264E FOR SOT227BV FOR D3PAK

    CURRENT

    OPTIONAL SUFFIX:L FOR LOGIC LEVELE FOR ENERGY RATEDT4 FOR TAPE & REEL (DPAK/D2PAK)RL FOR TAPE & REEL (DPAK/D3PAK)HD FOR HIGH CELL DENSITYV FOR TMOS V (FIVE)

    VOLTAGE RATING DIVIDED BY 10

    CHANNEL POLARITY, N OR P

    Example of exceptions: MTD/MTP3055EExample of exceptions: MTD/MTP2955E

    MMSF4P01HDR1MOTOROLA

    PACKAGE TYPEMMDF DUAL FET (SO8)MMSF SINGLE FET (SO8)MMFT FET TRANSISTOR (SOT223)MTSF SINGLE FET (Micro8)MTDF DUAL FET (Micro8)

    CURRENT

    OPTIONAL SUFFIX:E FOR ENERGY RATEDHD FOR HIGH CELL DENSITYL FOR LOGIC LEVELZ FOR ESD GATE PROTECTION

    VOLTAGE RATING DIVIDED BY 10CHANNEL POLARITY, N OR PC FOR COMPLEMENTARY

    SO8 (MiniMOS), Micro8 and SOT223 Power MOSFETs

    R2 FOR TAPE & REEL MiniMOS, Micro8T1 AND T3 FOR TAPE & REEL SOT223

  • 23Selector GuideMotorola TMOS Power MOSFET Transistors Device Data

    SO8 (MiniMOS)V(BR)DSS RDS(on) @ VGS ID

    (5)(3)PD(3)(V) 10 V

    (m)4.5 V(m)

    2.7 V(m)

    (A)Device(5)

    PackageType

    (3)PD(3)(Watts)

    MaxTable 1. SO8 NChannel

    50 300 500 1.5 MMDF1N05E SO8 2.040 80 100 3.4 MMDF3N04HD SO8 2.030 28 40 8 MMSF7N03HD SO8 2.5

    40 50 5 MMSF5N03HD SO8 2.570 75 2.8 MMDF3N03HD SO8 2.0

    70/200(11) 75/300 2 MMDF2C03HD SO8 2.020 25 40 5 MMSF5N02HD SO8 2.5

    90 100 3 MMDF3N02HD SO8 2.0100 200 2 MMDF2N02E SO8 2.0

    90/160(11) 100/180(11) 2 MMDF2C02HD SO8 2.0100/250(11) 200/400(11) 2 MMDF2C02E SO8 2.0

    12 45 55 4 MMDF4N01HD SO8 2.0 45/180 55/220(11) 2 MMDF2C01HD SO8 2.0

    Table 2. SO8 PChannel 30 100 110 3 MMSF3P03HD SO8 2.5

    200 300 2 MMDF2P03HD SO8 2.020 75 95 3 MMSF3P02HD SO8 2.5

    160 180 2 MMDF2P02HD SO8 2.0250 400 2 MMDF2P02E SO8 2.0250 400 2 MMSF2P02E SO8 2.0

    12 100 110 4 MMSF4P01HD SO8 2.5 180 220 2 MMDF2P01HD SO8 2.0

    1(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.1(5)

    Available in tape and reel only R1 suffix = 500/reel, R2 suffix = 2500/reel.(11) NChannel/PChannel RDS(on)

    Micro8 HDTMOS ProductsV(BR)DSS

    (Volts)Min

    @RDS(on)

    (m)Max

    VGS(Volts)

    ID(cont)Amps Device

    ProductDescription

    Table 3. NChannel and PChannel20 190 2.7 2 MTSF1P02HD Single PChannel

    200 1.5 MTDF1N02HD Dual NChannel30 75 4.5 3 MTSF3N03HD Single NChannel

    225 1.5 MTDF1N03HD Dual NChannel

    Devices listed in bold, italic are Motorola preferred devices.

    TM

  • Selector Guide24

    Motorola TMOS Power MOSFET Transistor Device Data

    EZFET Power MOSFETs with Zener Gate Protection

    V(BR)DSS(Volts)

    @RDS(on)

    (m)Max

    VGS(Volts) ID

    (cont)VGS

    (Volts)PD(3)

    (Watts)(Volts)Min Description 10 V 4.5 V 2.7 V

    (cont)Amps Device

    (Volts)Max Package

    (Watts)Max

    Table 4. SO8 NChannel20 Single NChannel 22 27 6 MMSF6N02Z 10 SO8 1.630 Single NChannel 35 30 5 MMSF5N03Z 1550 Dual NChannel 300 500 2 MMDF2N05Z60 NChannel 18 55 MTP55N06Z 20 TO220 136

    MTB55N06Z D2PAK 326 28 35 MTP35N06ZL 15 TO220 94

    MTB35N06ZL D2PAK 3

    SOT223V(BR)DSS

    (Volts)Min

    @RDS(on)(Ohms)

    Max

    ID(Amps)

    Device(12)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 5. SOT223 NChannel100 0.30 0.5 MMFT1N10E 1 0.8(3)60 0.14 0.75 MMFT3055VL(2) 1.5

    0.13 0.85 MMFT3055V 1.7

    20 0.15 1 MMFT2N02EL(2) 2Table 6. SOT223 PChannel

    60 0.30 0.6 MMFT2955E 1.2 0.8(3)1(1) TC = 25C1(2)

    Indicates logic level1(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(12)

    Available in tape and reel only T1 suffix = 1000/reel, T3 suffix = 4000/reel.

    DPAKV(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device(4)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 7. DPAK NChannel800 12 0.5 MTD1N80E 1 1.75(3)600 8 0.5 MTD1N60E 1500 5 0.5 MTD1N50E 1

    3.60 1 MTD2N50E 2400 3.50 1 MTD2N40E 2250 1.40 1.5 MTD3N25E 3

    1 2.5 MTD5N25E 5200 1.5 1.5 MTD3N20E 3

    1.20 2 MTD4N20E 40.70 3 MTD6N20E 6

    150 0.30 3 MTD6N15 6(1) TC = 25C (continued)(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(4) Available in tape and reel add T4 suffix to part number.

    Devices listed in bold, italic are Motorola preferred devices.

  • 25Selector GuideMotorola TMOS Power MOSFET Transistors Device Data

    DPAK (continued)V(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device(4)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 7. DPAK NChannel (continued)100 0.40 3 MTD6N10E 6 1.75(3)

    0.25 4.5 MTD9N10E 90.22 5 MTD10N10EL 10

    7 MTD14N10E 1460 0.15 4 MTD3055V 8

    0.18 6 MTD3055VL(2) 120.18 6 MTD12N06EZL(2)(13) 120.12 7.5 MTD15N06V 150.085 7.5 MTD15N06VL(2) 150.045 10 MTD20N06HD 200.045 10 MTD20N06HDL(2) 200.080 10 MTD20N06V 20

    30 0.035 10 MTD20N03HDL(2) 20Table 8. DPAK PChannel

    500 15.0 0.5 MTD1P50E 1 1.75(3)100 0.66 3 MTD6P10E 660 0.45 2.5 MTD5P06V 5

    0.30 6 MTD2955V 120.15 10 MTD20P06HDL(2) 20

    30 0.099 10 MTD20P03HDL(2) 19(1) TC = 25C(2)

    Indicates logic level(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(4) Available in tape and reel add T4 suffix to part number.(13) ESD protected to 4 kV.

    D2PAKV(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device(4)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 9. D2PAK NChannel1200 5.0 1.5 MTB3N120E 3 2.5(3)1000 9 0.5 MTB1N100E 1

    4 1.5 MTB3N100E 3800 3 2 MTB4N80E 4600 1.20 3 MTB6N60E 6

    4.16 1 MTB2N60E 2500 0.80 4 MTB8N50E 8400 3.50 1 MTB2N40E 2

    0.55 5 MTB10N40E 10250 0.50 4.5 MTB9N25E 9

    0.25 8 MTB16N25E 16(1) TC = 25C (continued)(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(4) Available in tape and reel add T4 suffix to part number.

    Devices listed in bold, italic are Motorola preferred devices.

  • Selector Guide26

    Motorola TMOS Power MOSFET Transistor Device Data

    D2PAK (continued)V(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device(4)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 9. D2PAK NChannel (continued)200 0.16 10 MTB20N20E 20 2.5(3)100 0.060 16.5 MTB33N10E 3360 0.12 7.5 MTB15N06V 15

    0.05 15 MTB30N06VL(2) 300.026 17.5 MTB35N06ZL 350.04 18 MTB36N06V 320.032 21 MTB50N06VL(2) 420.028 21 MTB50N06V 420.024 26 MTB52N06VL(2) 520.018 27.5 MTB55N06Z (13) 550.022 26 MTB56N06V 520.014 30 MTB60N06HD 600.01 37.5 MTB75N06HD 75

    50 0.0095 37.5 MTB75N05HD 7525 0.009 37.5 MTB75N03HDL(2) 75

    Table 10. D2PAK PChannel500 6 1 MTB2P50E 2 2.5(3)60 0.12 11.5 MTB23P06V 23

    0.080 15 MTB30P06V 3030 0.025 25 MTB50P03HDL(2) 50

    (1) TC = 25C(2) Indicates logic level

    (3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(4) Available in tape and reel add T4 suffix to part number.(13) ESD protected to 4 kV.

    D3PAKV(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device(4)ID

    (cont)Amps

    PD(1)(Watts)

    Max

    Table 11. D3PAK NChannel1000 1.50 3 MTV6N100E 6 178

    1.30 5 MTV10N100E 10 250500 0.400 8 MTV16N50E 16 250

    0.240 10 MTV20N50E 20 2500.200 12.5 MTV25N50E 25 250

    250 0.080 16 MTV32N25E 32 250200 0.075 16 MTV32N20E 32 180

    (1) TC = 25C(4) Available in tape and reel add T4 suffix to part number.

    Devices listed in bold, italic are Motorola preferred devices.

  • 27Selector GuideMotorola TMOS Power MOSFET Transistors Device Data

    TO220ABV(BR)DSS

    (Volts)Min

    @RDS(on)(Ohms)

    Max

    ID(Amps)

    Device

    ID(cont)Amps

    PD(1)(Watts)

    Max

    Table 12. TO220AB NChannel 1200 5.0 1.5 MTP3N120E 3 1251000 9 0.5 MTP1N100E 1 75

    4.0 1.5 MTP3N100E 3 125800 12 1 MTP1N80E 1 48

    3 2 MTP4N80E 4 125600 8 0.5 MTP1N60E 1 50

    3.80 1 MTP2N60E 22.20 1.5 MTP3N60E 3 751.20 3 MTP6N60E 6 125

    500 5 0.5 MTP1N50E 1 503.60 1 MTP2N50E 2 75

    3 1.5 MTP3N50E 3 501.50 2 MTP4N50E 4 750.80 4 MTP8N50E 8 125

    400 3.50 1 MTP2N40E 2 501.80 2 MTP4N40E 4

    1 2.5 MTP5N40E 5 750.55 5 MTP10N40E 10 125

    250 0.5 4.5 MTP9N25E 9 750.25 8 MTP16N25E 16 125

    200 0.70 3.5 MTP7N20E 7 750.16 10 MTP20N20E 20 125

    100 0.25 5 MTP10N10E 10 750.22 5 MTP10N10EL 10 400.16 6 MTP12N10E 12 750.070 13.5 MTP27N10E 27 1250.060 16.5 MTP33N10E 33 150

    60 0.18 6 MTP3055VL(2) 12 480.15 6 MTP3055V 120.12 7.5 MTP15N06V 15 600.085 7.5 MTP15N06VL 150.080 10 MTP20N06V 20 900.05 15 MTP30N06VL(2) 300.026 17.5 MTP35N06ZL 35 940.04 18 MTP36N06V 32 900.032 21 MTP50N06VL(2) 42 1500.028 21 MTP50N06V 420.022 26 MTP52N06V 520.024 26 MTP52N06VL 520.018 22.5 MTP55N06Z 550.014 30 MTP60N06HD 600.01 37.5 MTP75N06HD 75

    50 0.0095 37.5 MTP75N05HD 7525 0.009 37.5 MTP75N03HDL(2) 75

    (1) TC = 25C (continued)(2) Indicates logic level

    Devices listed in bold, italic are Motorola preferred devices.

  • Selector Guide28

    Motorola TMOS Power MOSFET Transistor Device Data

    TO220AB (continued)V(BR)DSS

    (Volts)Min

    @RDS(on)(Ohms)

    Max

    ID(Amps)

    Device

    ID(cont)Amps

    PD(1)(Watts)

    Max

    Table 13. TO220AB PChannel 500 6 1 MTP2P50E 2 75

    200 1 3 MTP6P20E 6

    100 0.30 6 MTP12P10 12 88

    60 0.45 2.5 MTP5P06V 5 40

    0.30 6 MTP2955V 12 60

    0.12 11.5 MTP23P06V 23 125

    0.08 15 MTP30P06V 30 125

    30 0.025 25 MTP50P03HDL (2) 50 150(1) TC = 25C(2) Indicates logic level

    TO247 (Isolated Mounting Hole)V(BR)DSS

    (Volts)Min

    ID(Amps)@

    RDS(on)(Ohms)

    Max Device

    ID(cont)Amps

    PD(1)(Watts)

    Max

    Table 14. TO247 NChannel 1000 1.50 3 MTW6N100E 6 180

    1.30 5 MTW10N100E 10 250800 1 3.5 MTW7N80E 7 180600 0.55 4 MTW8N60E 8 180500 0.40 7 MTW14N50E 14 180

    0.24 10 MTW20N50E 20 250400 0.24 8 MTW16N40E 16 180

    0.16 12 MTW24N40E 24 250250 0.08 16 MTW32N25E 32 250200 0.075 16 MTW32N20E 32 180150 0.05 17.5 MTW35N15E 35 180100 0.035 22.5 MTW45N10E 45 180

    (1) TC = 25C

    TO264V(BR)DSS

    (Volts)Min

    @RDS(on)(Ohms)

    Max

    ID(Amps)

    Device

    ID(cont)Amps

    PD(1)(Watts)

    Max

    Table 15. TO264 NChannel 1000 0.80 7 MTY14N100E 14 568800 0.50 8 MTY16N80E 16 568600 0.21 12.5 MTY25N60E 25 568500 0.26 10 MTY20N50E 20 300

    0.15 15 MTY30N50E 30 568200 0.028 27.5 MTY55N20E 55 568100 0.011 50 MTY100N10E 100 568

    (1) TC = 25C

    Devices listed in bold, italic are Motorola preferred devices.

  • 29Selector GuideMotorola TMOS Power MOSFET Transistors Device Data

    SOT227B (ISOTOP)V(BR)DSS

    (Volts)Min

    @RDS(on)(Ohms)

    Max

    ID(Amps)

    Device

    ID(cont)Amps

    PD(1)(Watts)

    Max

    Table 16. SOT227B (ISOTOP)500 0.15 15 MTE30N50E 30 250

    0.08 26.5 MTE53N50E 53 460200 0.015 62.5 MTE125N20E 125 460100 0.0055 107 MTE215N10E 215 460

    (1) TC = 25C

    SMARTDISCRETESTable 17. Ignition IGBTs

    BVCES (Volts)Clamped

    VCE(on)@ 10 A Device

    PD(1)(Watts) Max Package

    140 V 1.8 MGP20N14CL 150 TO220AB350 V 1.8 MGP20N35CL 150 TO220AB

    MGB20N35CL 2.5(3)(4) D2PAK400 V 1.8 MGP20N40CL 150 TO220AB

    MGB20N40CL 2.5(3)(4) D2PAKTable 18. TO220AB

    V(BR)DSS(Volts) Min

    RDS(on)(Ohms) Max

    ID(Amps) Device

    ID (cont)Amps

    PD(1)(Watts) Max

    60 Clamped Voltage 0.75 1 MLP1N06CL Current Limited 4062 Clamped Voltage 0.4 2 MLP2N06CL Current Limited 40

    Table 19. DPAKV(BR)DSS(Volts) Min

    RDS(on)(Ohms) Max

    ID(Amps) Device

    ID (cont)Amps

    PD(1)(Watts) Max

    60 Clamped Voltage 0.75 1 MLD1N06CL Current Limited 1.7562 Clamped Voltage 0.4 2 MLD2N06CL Current Limited 1.75

    (1) TC = 25C(3) Power rating when mounted on an FR4 glass epoxy printed circuit board with the minimum recommended footprint.(4) Available in tape and reel add T4 suffix to part number.

    Devices listed in bold, italic are Motorola preferred devices.

    Indicates UL Recognition File #E69369

  • Selector Guide210

    Motorola TMOS Power MOSFET Transistor Device Data

    IGBT Insulated Gate Bipolar Transistor

    Device

    BVCES

    (V)

    IC90

    (A)

    IC@ 25C

    (A)

    VCE(on) @ IC90(V)typ

    Eoff @ IC90(mJ)

    typ @ 125C PackageTable 20. IGBT NChannelMGP20N60 600 20 32 2.90 1.20 TO220MGW20N60D TO247MGW30N60 30 50 2.60 1.80 TO247MGY30N60D TO264MGY40N60 40 66 2.60 2.40 TO264MGY40N60DMGW10N120 1200 12 20 3.10 1.43 TO247MGW10N120DMGY25N120 25 38 2.90 4.29 TO264MGY25N120D

    IC90 = Collector current rating at 90C case temperature

    Power MOS Gate DriversDevice Description Package

    Table 21. MC33153D VCCVEE = 23 V, 1 A Source, 2 A Sink Low Side Driver 8 Pin SOICMC33153P (Can be used as High Side Driver with Optocoupler) 8 Pin PDIPMPIC2111D 600 V, 420 mA, Half Bridge Driver 8 Pin SOICMPIC2111P 8 Pin PDIPMPIC2112DW 600 V, 420 mA, Half Bridge Driver 16 Pin SOICWideMPIC2112P 14 Pin PDIPMPIC2113DW 600 V, 2 A, Half Bridge Driver 16 Pin SOICWideMPIC2113P 14 Pin PDIPMPIC2117D 600 V, 420 mA, High Side Driver 8 Pin SOICMPIC2117P 8 Pin PDIPMPIC2130P 600 V, 420 mA, Three Phase Driver 28 Pin PDIPMPIC2130FN 44 Pin PLCC (modified)MPIC2131P 600 V, 420 mA, Three Phase Driver 28 Pin PDIPMPIC2131FN 44 Pin PLCC (modified)MPIC2151D 600 V, 210 mA, Self Oscillating, Half Bridge Driver 8 Pin SOICMPIC2151P 8 Pin PDIP

    Devices listed in bold, italic are Motorola preferred devices.

  • 31Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Section ThreeIntroduction to Power MOSFETsBasic Characteristics of Power MOSFETs

    Table of ContentsChapter 1: Introduction to Power MOSFETs

    Symbols, Terms and Definitions 32. . . . . . . . . . . . . . . . . . Basic TMOS Structure, Operation and Physics 37. . . . . Distinct Advantages of Power MOSFETs 310. . . . . . . . .

    Chapter 2: Basic Characteristics of Power MOSFETsOutput Characteristics 313. . . . . . . . . . . . . . . . . . . . . . . . . Basic MOSFET Parameters 313. . . . . . . . . . . . . . . . . . . . . Temperature Dependent Characteristics 314. . . . . . . . . . Drain-Source Diode 315. . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Chapter 3: The Data Sheet 317. . . . . . . . . . . . . . . . . . . . . .

  • Introduction and Basic Characteristics32

    Motorola TMOS Power MOSFET Transistor Device Data

    Chapter 1: Introduction to Power MOSFETsSymbols, Terms and Definitions

    The following are the most commonly used letter symbols, terms and definitions associated with Power MOSFETs.

    Symbol Term Definition

    Cds drainsource capacitance The capacitance between the drain and source terminalswith the gate terminal connected to the guard terminal ofa threeterminal bridge.

    Cdg draingate capacitance The same as Crss See Crss.

    Cgs gatesource capacitance The capacitance between the gate and source terminalswith the drain terminal connected to the guard terminal ofa threeterminal bridge.

    Ciss shortcircuit input capacitance,commonsource

    The capacitance between the input terminals (gate andsource) with the drain shortcircuited to the source foralternating current. (Ref. IEEE No. 255)

    Coss shortcircuit output capacitance,commonsource

    The capacitance between the output terminals (drain andsource) with the gate shortcircuited to the source foralternating current. (Ref. IEEE No. 255)

    Crss shortcircuit reverse transfercapacitance, commonsource

    The capacitance between the drain and gate terminalswith the source connected to the guard terminal of athreeterminal bridge.

    gFS commonsource largesignaltransconductance

    The ratio of the change in drain current due to a change ingatetosource voltage.

    ID drain current, dc The direct current into the drain terminal.

    ID(on) onstate drain current The direct current into the drain terminal with a specifiedforward gatesource voltage applied to bias the device tothe onstate.

    IDSS zerogatevoltage drain current The direct current into the drain terminal when thegatesource voltage is zero. This is an onstate current ina depletiontype device, an offstate in an enhancementtype device.

    IG gate current, dc The direct current into the gate terminal.

    IGSS reverse gate current, drain shortcircuitedto source

    The direct current into the gate terminal of a junctiongatefieldeffect transistor when the gate terminal is reversebiased with respect to the source terminal and the drainterminal is shortcircuited to the source terminal.

    IGSSF forward gate current, drain shortcircuitedto source

    The direct current into the gate terminal of an insulatedgate fieldeffect transistor with a forward gatesourcevoltage applied and the drain terminal shortcircuited tothe source terminal.

    IGSSR reverse gate current, drain shortcircuitedto source

    The direct current into the gate terminal of an insulatedgate fieldeffect transistor with a reverse gatesourcevoltage applied and the drain terminal shortcircuited tothe source terminal.

  • 33Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Symbol Term Definition

    IS source current, dc The direct current into the source terminal.

    PT, PD total nonreactive power input to allterminals

    The sum of the products of the dc input currents andvoltages.

    Qg total gate charge The total gate charge required to charge the MOSFETsinput capacitance to VGS(on).

    RDS(on) static drainsource onstate resistance The dc resistance between the drain and source terminalswith a specified gatesource voltage applied to bias thedevice to the on state.

    RCA thermal resistance, casetoambient The thermal resistance (steadystate) from the devicecase to the ambient.

    RJA thermal resistance, junctiontoambient The thermal resistance (steadystate) from the semicon-ductor junction(s) to the ambient.

    RJC thermal resistance, junctiontocase The thermal resistance (steadystate) from the semicon-ductor junction(s) to a stated location on the case.

    RJM thermal resistance, junctiontomountingsurface

    The thermal resistance (steadystate) from the semicon-ductor junction(s) to a stated location on the mountingsurface.

    TA ambient temperature or freeairtemperature

    The air temperature measured below a device, in anenvironment of substantially uniform temperature, cooledonly by natural air convection and not materially affectedby reflective and radiant surfaces.

    TC case temperature The temperature measured at a specified location on thecase of a device.

    tc turnoff crossover time The time interval during which drain voltage rises from10% of its peak offstate value and drain current falls to10% of its peak onstate value, in both cases ignoringspikes that are not chargecarrier induced.

    TJ channel temperature The temperature of the channel of a fieldeffect transistor.

    Tstg storage temperature The temperature at which the device, without any powerapplied, may be stored.

    td(off) turnoff delay time Synonym for current turnoff delay time (see Note 1)*.td(off)i current turnoff delay time The interval during which an input pulse that is switching

    the transistor from a conducting to a nonconducting statefalls from 90% of its peak amplitude and the drain currentwaveform falls to 90% of its onstate amplitude, ignoringspikes that are not chargecarrier induced.

    td(off)v voltage turnoff delay time The time interval during which an input pulse that isswitching the transistor from a conducting to a noncon-ducting state falls from 90% of its peak amplitude and thedrain voltage waveform rises to 10% of its offstateamplitude, ignoring spikes that are not chargecarrierinduced.

    td(on) turnon delay time Synonym for current turnon delay time (see Note 1)*.td(on)i current turnon delay time The time interval during which can input pulse that is

    switching the transistor from a nonconducting to aconducting state rises from 10% of its peak amplitude andthe drain current waveform rises to 10% of its onstateamplitude, ignoring spikes that are not chargecarrierinduced.

  • Introduction and Basic Characteristics34

    Motorola TMOS Power MOSFET Transistor Device Data

    Symbol Term Definition

    td(on)v voltage turnon delay time The time interval during which an input pulse that isswitching the transistor from a nonconducting to aconducting state rises from 10% of its peak amplitude andthe drain voltage waveform falls to 90% of its offstateamplitude, ignoring spikes that are not chargecarrierinduced.

    tf fall time Synonym for current fall time (see Note 1)*.tfi current fall time The time interval during which the drain current changes

    from 90% to 10% of its peak offstate value, ignoringspikes that are not chargecarrier induced.

    tfv voltage fall time The time interval during which the drain voltage changesfrom 90% to 10% of its peak offstate value, ignoringspikes that are not chargecarrier induced.

    toff turnoff time Synonym for current turnoff time (see Note 1)*.toff(i) current turnoff time The sum of current turnoff delay time and current fall time,

    i.e., td(off)i + tfi.toff(v) voltage turnoff time The sum of voltage turnoff delay time and voltage rise

    time, i.e., td(off)v + trv.ton turnon time Synonym for current turnon time (see Note 1)*.ton(i) current turnon time The sum of current turnon delay time and current rise

    time, i.e., td(on)i + tri.ton(v) voltage turnon time The sum of voltage turnon delay time and voltage fall

    time, i.e., td(on)v + tfv.tp pulse duration The time interval between a reference point on the leading

    edge of a pulse waveform and a reference point on thetrailing edge of the same waveform.Note: The two reference points are usually 90% of thesteadystate amplitude of the waveform existing after the leadingedge, measured with respect to the steadystate amplitudeexisting before the leading edge. If the reference points are 50%points, the symbol tw and term average pulse duration should beused.

    tr rise time Synonym for current rise time (see Note 1)*.tri current rise time The time interval during which the drain current changes

    from 10% to 90% of its peak onstate value, ignoringspikes that are not chargecarrier induced.

    trv voltage rise time The time interval during which the drain voltage changesfrom 10% to 90% of its peak offstate value, ignoringspikes that are not chargecarrier induced.

    tti current fall time The time interval following current fall time during whichthe drain current changes from 10% to 2% of its peakonstate value, ignoring spikes that are not chargecarrierinduced.

    tw average pulse duration The time interval between a reference point on the leadingedge of a pulse waveform and a reference point on thetrailing edge of the same waveform, with both referencepoints being 50% of the steadystate amplitude of thewaveform existing after the leading edge, measured withrespect to the steadystate amplitude existing before theleading edge.Note: If the reference points are not 50% points, the symbol tpand term pulse duration should be used.

  • 35Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Symbol Term Definition

    V(BR)DSR drainsource breakdown voltage with(resistance between gate and source)

    The breakdown voltage between the drain terminal and thesource terminal when the gate terminal is (as indicated bythe last subscript letter) as follows:R = returned to the source terminal through a specifiedresistance.

    V(BR)DSS gate shortcircuited to source S = shortcircuited to the source terminal.V(BR)DSV voltage between gate and source V = returned to the source terminal through a specified

    voltage.

    V(BR)DSX circuit between gate and source X = returned to the source terminal through a specifiedcircuit.

    V(BR)GSSF forward gatesource breakdown voltage The breakdown voltage between the gate and sourceterminals with a forward gatesource voltage applied andthe drain terminal shortcircuited to the source terminal.

    V(BR)GSSR reverse gatesource breakdown voltage The breakdown voltage between the gate and sourceterminals with a reverse gatesource voltage applied andthe drain terminal shortcircuited to the source terminal.

    VDD, VGGVSS

    supply voltage, dc (drain, gate, source)voltage

    The dc supply voltage applied to a circuit or connected tothe reference terminal.

    VDGVDSVGDVGSVSDVSG

    draintogatedraintosourcegatetodraingatetosourcesourcetodrainsourcetogate

    The dc voltage between the terminal indicated by the firstsubscript and the reference terminal indicated by thesecond subscript (stated in terms of the polarity at theterminal indicated by the first subscript).

    VDS(on) drainsource onstate voltage The voltage between the drain and source terminals witha specified forward gatesource voltage applied to bias thedevice to the on state.

    VGS(th) gatesource threshold voltage The forward gatesource voltage at which the magnitudeof the drain current of an enhancementtype fieldeffecttransistor has been increased to a specified low value.

    ZJA(t) transient thermal impedance,junctiontoambient

    The transient thermal impedance from the semiconductorjunction(s) to the ambient.

    ZJC(t) transient thermal impedance,junctiontocase

    The transient thermal impedance from the semiconductorjunction(s) to a stated location on the case.

    Note 1: As names of time intervals for characterizing switching transistors, the terms fall time and rise time always refer to the change that istaking place in the magnitude of the output current even though measurements may be made using voltage waveforms. In a purely resistivecircuit, the (current) rise time may be considered equal and coincident to the voltage fall time and the (current) fall time may be considered equaland coincident to the voltage rise time. The delay times for current and voltage will be equal and coincident. When significant amounts ofinductance are present in a circuit, these equalities and coincidences no longer exist, and use of the unmodified terms delay time, fall time, andrise time must be avoided.

  • Introduction and Basic Characteristics36

    Motorola TMOS Power MOSFET Transistor Device Data

    Figure 11. Waveforms for ResistiveLoad Switching

    Figure 12. Waveforms for Inductive Load Switching, TurnOff

    NOTE: Vclamp (in a clamped inductiveload switching circuit) or V(BR)DSX (in an unclamped circuit) is the peak offstate voltage excluding spikes.

    90%

    Input Voltage(Idealized wave shape)

    10%

    90%

    10%

    90%

    10%

    DrainVoltage(Idealized wave shape)

    DrainCurrent(Idealized wave shape)

    DrainCurrent(Practical wave shapeincluding spikes causedby currents that arenot chargecarrierinduced)

    toff toff(i)toff ton(i)

    td(off) = td(off)i

    ID(on)

    tf tfi

    td(off)v

    ID(off)toff(v)

    trvtfv

    tr tri

    td(on) = td(on)i

    ton(v)

    td(on)v

    VDS(on)

    100%

    Pulseamplitude

    VDD

    90%

    InputVoltage

    2%10%

    DrainVoltage

    DrainCurrent

    toff(i)

    td(off)i

    IDM

    tfi

    td(off)v

    ID(off)

    toff(v)

    ttitrv VDSM

    VDD

    90%

    10%

    90%

    tc (or txo)

    Vclamp or V(BR)DSX(See Note)

    VDS(on)

  • 37Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Basic TMOS Structure, Operation and Physics

    Structures:Motorolas TMOS Power MOSFET family is a matrix of dif-

    fused channel, vertical, metaloxidesemiconductor powerfieldeffect transistors which offer an exceptionally widerange of voltages and currents with low RDS(on). The inherentadvantages of Motorolas power MOSFETs include: Nearly infinite static input impedance featuring:

    Voltage driven input Low input power Few driver circuit components

    Very fast switching times No minority carriers Minimal turnoff delay time Large reversed biased safe operating area High gain bandwidth product

    Positive temperature coefficient of onresistance Large forward biased safe operating area Ease in paralleling

    Almost constant transconductance High dv/dt immunity

    Motorolas TMOS power MOSFET line is the latest step inan evolutionary progression that began with the conventionalsmallsignal MOSFET and superseded the intermediate lat-eral double diffused MOSFET (LDMOSFET) and the verticalVgroove MOSFET (VMOSFET).

    The conventional smallsignal lateral NchannelMOSFET consists of a lightly doped Ptype substrate intowhich two highly doped N+ regions are diffused, as shown inFigure 13. The N+ regions act as source and drain whichare separated by a channel whose length is determined byphotolithographic constraints. This configuration resulted inlong channel lengths, low current capability, low reverseblocking voltage and high RDS(on).

    Two major changes in the smallsignal MOSFET structurewere responsible for the evolution of the power MOSFET.One was the use of self aligned, double diffusion techniquesto achieve very short channel lengths, which allowed higherchannel packing densities, resulting in higher current capa-bility and lower RDS(on). The other was the incorporation of alightly doped N+ region between the channel and the N+drain allowing high reverse blocking voltages.

    These changes resulted in the lateral double diffusedMOSFET power transistor (LDMOS) structure shown inFigure 14, in which all the device terminals are still on thetop surface of the die. The major disadvantage of this config-uration is its inefficient use of silicon area due to the areaneeded for the top drain contact.

    Figure 13. Conventional SmallSignal MOSFET hasLong Lateral Channel Resulting in Relatively High

    DraintoSource Resistance

    DRAIN METAL + VDD

    SOURCE METAL

    PSUBSTRATE AND BODY

    NCHANNEL(CURRENT PATH)

    DEPLETIONREGION

    GATE + VGCURRENT

    Figure 14. Lateral Double Diffused MOSFETStructure Featuring Short Channel Lengths and High

    Packing Densities for Lower On Resistance

    Channel Current

    N

    N + N +P

    SiO2

    DS G

    The next step in the evolutionary process was a verticalstructure in which the drain contact was on the back of thedie, further increasing the channel packing density. The initialconcept used a Vgroove MOSFET power transistor asshown in Figure 15. The channels in this device are definedby preferentially etching Vgrooves through double diffusedN+ and P regions. The requirements of adequate packingdensity, efficient silicon usage and adequate reverse block-ing voltage are all met by this configuration. However, due toits nonplanar structure, process consistency and cleanli-ness requirements resulted in higher die costs.

  • Introduction and Basic Characteristics38

    Motorola TMOS Power MOSFET Transistor Device Data

    The cell structure chosen for Motorolas TMOS powerMOSFETs is shown in Figure 16. This structure is similar tothat of Figure 14 except that the drain contact is droppedthrough the N substrate to the back of the die. The gatestructure is now made with polysilicon sandwiched betweentwo oxide layers and the source metal applied continuouslyover the entire active area. This two layer electrical contactgives the optimum in packing density and maintains theprocessing advantages of planar LDMOS. This results in ahighly manufacturable process which yields low RDS(on) andhigh voltage product.

    Figure 15. VGroove MOSFET Structure HasShort Vertical Channels with Low

    DraintoSource Resistance

    X of

    n +

    A1 SiO2

    D

    S G

    p

    n

    n +

    S

    Figure 16. TMOS Power MOSFET Structure OffersVertical Current Flow, Low Resistance Paths andPermits Compact Metalization on Top and Bottom

    Surfaces to Reduce Chip Size

    SOURCE SITE

    NCHANNEL

    DRAIN CURRENT

    INSULATING OXIDE, SiO2

    NSUBSTRATE

    NEpi LAYER DRAINMETALIZATION

    SOURCEMETALIZATION

    SILICONGATE

    Operation:Transistor action and the primary electrical parameters of

    Motorolas TMOS power MOSFET can be defined as follows:

    Drain Current, ID:When a gate voltage of appropriate polarity and magnitude

    is applied to the gate terminal, the polysilicon gate inducesan inversion layer at the surface of the diffused channelregion represented by rCH in Figure 17 (page A8). Thisinversion layer or channel connects the source to the lightlydoped region of the drain and current begins to flow. Forsmall values of applied draintosource voltage, VDS, draincurrent increases linearly and can be represented by Equa-tion (1).(1) ID ZL Co [VGSVGS(th)] VDS

    As the drain voltage is increased, the drain current satu-rates and becomes proportional to the square of the appliedgatetosource voltage, VGS, as indicated in Equation (2).

    (2) ID Z2L Co [VGSVGS(th)]2

    Where = Carrier MobilityCoZL

    = Gate Oxide Capacitance per unit area= Channel Width= Channel Length

    These values are selected by the device design engineerto meet design requirements and may be used in modelingand circuit simulations. They explain the shape of the outputcharacteristics discussed in Chapter 2.

    Transconductance, gFS:The transconductance or gain of the TMOS power

    MOSFET is defined as the ratio of the change in drain cur-rent and an accompanying small change in applied gatetosource voltage and is represented by Equation (3).

    (3) gFS ID(sat)VGS

    ZL Co [VGSVGS(th)]

    The parameters are the same as above and demonstratethat drain current and transconductance are directly relatedand are a function of the die design. Note that transconduc-tance is a linear function of the gate voltage, an importantfeature in amplifier design.

    Threshold Voltage, VGS(th)Threshold voltage is the gatetosource voltage required

    to achieve surface inversion of the diffused channel region,(rCH in Figure 17) and as a result, conduction in thechannel.

    As the gate voltage increases the more the channel isenhanced, or the lower its resistance (rCH) is made, themore current will flow. Threshold voltage is measured at aspecified value of current to maintain measurement correla-tions. A value of 1.0 mA is common throughout the industry.This value is primarily a function of the gate oxide thicknessand channel doping level which are chosen during the diedesign to give a high enough value to keep the device off withno bias on the gate at high temperatures. A minimum valueof 1.5 volts at room temperature will guarantee the transistorremains an enhancement mode device at junction tempera-tures up to 150C.

    OnResistance, RDS(on):Onresistance is defined as the total resistance encoun-

    tered by the drain current as it flows from the drain terminal tothe source terminal. Referring to Figure 17, RDS(on) is com-posed primarily of four resistive components associated with:

    The Inversion channel, rCH; the GateDrain AccumulationRegion, rACC; the junction FET Pinch region, rJFET; and thelightly doped Drain Region, rD, as indicated in Equation (4).

    (4) RDS(on) rCH rACC rJFET rD

  • 39Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Figure 17. TMOS Device OnResistance

    P+

    D

    S G

    P+

    N +N +

    N

    POLY

    N+

    rD

    rJFETrCH rACC

    Figure 18. TMOS Device Parasitic Capacitances

    n +

    P+

    Cds

    D

    S G

    Cgs

    P+

    N +N +

    N +

    N

    POLY

    Cgd

    A

    Cgs

    Whereas the channel resistance increases with channellength, the accumulation resistance increases with polywidth and the JFET pinch resistance increases with epiresistivity and all three are inversely proportional to the chan-nel width and gatetosource voltage. The drain resistanceis proportional to the epi resistivity, poly width and inverselyproportional to channel width. This says that the onresis-tance of TMOS power FETs with the thick and high resistivityepi required for high voltage parts will be dominated by rD.

    Low voltage devices have thin, low resistivity epi and rCHwill be a large portion of the total onresistance. This iswhy high voltage devices are full on with moderate voltageson the gate, whereas with low voltage devices the on

    resistance continues to decrease as VGS is increased towardthe maximum rating of the device.

    Note: RDS(on) is inversely proportional to the carrier mobility. Thismeans that the RDS(on) of the PChannel MOSFET is approximately2.5 to 3.0 times that of a similar NChannel MOSFET. Therefore, inorder to have matched complementary on characteristics, the Z/L ratioof the PChannel device must be 2.53.0 times that of the NChanneldevice. This means larger die are required for PChannel MOSFETswith the same RDS(on) and same breakdown voltage as an NChanneldevice and thus device capacitances and costs will becorrespondingly higher.

    Breakdown Voltage, V(BR)DSS:Breakdown voltage or reverse blocking voltage of the

    TMOS power MOSFET is defined in the same manner asV(BR)CES in the bipolar transistor and occurs as an avalanchebreakdown. This voltage limit is reached when the carrierswithin the depletion region of the reverse biased PN junc-tion acquire sufficient kinetic energy to cause ionization orwhen the critical electric field is reached. The magnitude ofthis voltage is determined mainly by the characteristics of thelightly doped drain region and the type of termination of thedies surface electric field.

    Figure 19 shows a schematic representation of thecrosssection in Figure 18 and depicts the bipolar transistorbuilt in the epi layer. Point A shows where the emitter andbase of the bipolar is shorted together. This is why V(BR)DSSof the power FET is equal to V(BR)CES of the bipolar. Alsonote the short brings the base in contact with the source met-al allowing the use of the basecollector junction. This is thediode across the TMOS power MOSFET.

    Figure 19. Schematic Diagram of all the Componentsof the Cross Section of Figure 17

    G G

    S S

    D D

  • Introduction and Basic Characteristics310

    Motorola TMOS Power MOSFET Transistor Device Data

    TMOS Power MOSFET Capacitances:Two types of intrinsic capacitances occur in the TMOS

    power MOSFET those associated with the MOS structureand those associated with the PN junction.

    The two MOS capacitances associated with the MOSFETcell are:

    GateSource Capacitance, CgsGateDrain Capacitance, Cgd

    The magnitude of each is determined by the die geometryand the oxides associated with the silicon gate.

    The PN junction formed during fabrication of the powerMOSFET results in the draintosource capacitance, Cds.This capacitance is defined the same as any other planarjunction capacitance and is a direct function of the channeldrain area and the width of the reverse biased junction deple-tion region.

    The dielectric insulator of Cgs and Cgd is basically a glass.Thus these are very stable capacitors and will not vary withvoltage or temperature. If excessive voltage is placed on the

    gate, breakdown will occur through the glass, creating a re-sistive path and destroying MOSFET operation.

    Optimizing TMOS Geometry:The geometry and packing density of Motorolas

    MOSFETs vary according to the magnitude of the reverseblocking voltage.

    The geometry of the source site, as well as the spacing be-tween source sites, represents important factors in efficientpower MOSFET design. Both parameters determine thechannel packing density, i.e.: ratio of channel width per cell tocell area.

    For low voltage devices, channel width is crucial for mini-mizing RDS(on), since the major contributing component ofRDS(on) is rCH. However, at high voltages, the major contrib-uting component of resistance is rD and thus minimizingRDS(on) is dependent on maximizing the ratio of active drainarea per cell to cell area. These two conditions for minimizingRDS(on) cannot be met by a single geometry pattern for bothlow and high voltage devices.

    Distinct Advantages of Power MOSFETsPower MOSFETs offer unique characteristics and capabili-

    ties that are not available with bipolar power transistors. Bytaking advantage of these differences, overall systems costsavings can result without sacrificing reliability.

    SpeedPower MOSFETs are majority carrier devices, therefore

    their switching speeds are inherently faster. Without theminority carrier stored base charge common in bipolar tran-sistors, storage time is eliminated. The high switchingspeeds allow efficient switching at higher frequencies whichreduces the cost, size and weight of reactive components.

    MOSFET switching speeds are primarily dependent oncharging and discharging the device capacitances and areessentially independent of operating temperature.

    Input CharacteristicsThe gate of a power MOSFET is electrically isolated from

    the source by an oxide layer that represents a dc resistancegreater than 40 megohms. The devices are fully biasedonwith a gate voltage of 10 volts. This significantly simplifies thedrive circuits and in many instances the gate may be drivendirectly from logic integrated circuits such as CMOS and TTLto control high power circuits directly.

    Since the gate is isolated from the source, the driverequirements are nearly independent of the load current.This reduces the complexity of the drive circuit and results inoverall system cost reduction.

    Safe Operating AreaPower MOSFETs, unlike bipolars, do not require derating

    of power handling capability as a function of applied voltage.

    The phenomena of second breakdown does not occur withinthe ratings of the device. Depending on the application,snubber circuits may be eliminated or a smaller capacitancevalue may be used in the snubber circuit. The safe operatingboundaries are limited by the peak current ratings, break-down voltages and the power capabilities of the devices.

    OnVoltageThe minimum onvoltage of a power MOSFET is deter-

    mined by the device onresistance RDS(on). For low voltagedevices the value of RDS(on) is extremely low, but with highvoltage devices the value increases. RDS(on) has a positivetemperature coefficient which aids in paralleling devices.

    Examples of Advantages Offered byMOSFETsHigh Voltage Flyback Converter

    An obvious way of showing the advantages of powerMOSFETs over bipolars is to compare the two devices in thesame system. Since the drive requirements are not thesame, it is not a question of simply replacing the bipolar withthe FET, but one of designing the respective drive circuits toproduce an equivalent output, as described in Figures 110and 111.

    For this application, a peak output voltage of about 700 Vdriving a 30 k load (PO(pk) 16 W) was required. With thecomponent values and timing shown, the inductor/devicecurrent required to generate this flyback voltage would haveto ramp up to about 3.0 A.

  • 311Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Figure 110. TMOS Output Stage

    Figure 111. Bipolar Driver and Output Stage

    Figures 110 and 111. Circuit Configurations for a TMOS andBipolar Output Stage of a High Voltage Flyback Converter

    15 V

    0PW 350 s

    f = 1.7 kHz

    68

    1.0 k

    MTP4N80EQ1

    +VDD 36 V

    1.6 mH L

    1N4725

    RL30 k CL

    Vo 800 V

    0.5 F

    VI

    0

    0.01 F

    270

    1N914

    150 pF

    82

    180

    27

    Q2100

    Q3MJ8505

    V

    D3

    D2

    D1

    +VCC 32 V+V

    2.2 2.0 W

    MJE200Q1

    47

    Q430 k 0.5 F

    Vo 700 V

    2N2905

    1.0 k

    MJE200

    Figure 110 shows the TMOS version. Because of its highinput impedance, the FET, an MTP4N80E, can be directlydriven from the pulse width modulator. However, the PWMoutput should be about 15 volts in amplitude and for relative-ly fast FET switching be capable of sourcing and sinking100 mA. Thus, all that is required to drive the FET is a resis-tor or two. The peak drain current of 3.2 A is within theMTP4N80E pulsed current rating of 18.0 A (4.0 A continu-ous), and the turnoff load line of 3.2 A, 700 V is well withinthe Switching SOA (18.0 A/800 V) of the device. Thus, thecircuit demonstrates the advantages of TMOS: High input impedance Fast Switching No Second breakdown

    Compare this circuit with the bipolar version of Figure111.

    To achieve the output voltage, using a high voltage Switch-mode MJ8505 power transistor, requires a rather complexdrive circuit for generating the proper IB1 and IB2. This circuituses three additional transistors (two of which are powertransistors), three Baker clamp diodes, eleven passive com-ponents and a negative power supply for generating an offbias voltage. Also, the RBSOA capability of this device isonly 3.0 A at 900 V and 4.7 A at 800 V, values below the18.0 A/800 V rating of the MOSFET. A detailed description ofthese circuits is shown in Chapter 8, Switching PowerSupplies.

  • Introduction and Basic Characteristics312

    Motorola TMOS Power MOSFET Transistor Device Data

    Figure 112. TMOS Version Figure 113. Bipolar Version

    Figures 112 and 113. Comparison of Power MOSFET and Bipolarin the Power Output Stage of a 20 kHz Switcher

    MC3406PWM

    VCC

    +170 V

    56

    Q1MTP4N50E

    MC34060

    1N4933 +10 F

    Q1 10 H

    47

    MPSA55

    200

    +170 V

    Q2MJE13005

    20 kHz SwitcherAn example of MOSFET advantage over bipolar that illus-

    trates its superior switching speed is shown in the power out-put section of Figures 112 and 113. In addition to the drivesimplicity and reduced component count, the faster switchingspeed offers better circuit efficiency. For this 35 W switchingregulator, using the same small heatsink for either device, acase temperature rise of only 18C was measured for theMTP4N50E power MOSFET compared to a 46C rise for the

    MJE13005 bipolar transistor. Although the saturation losseswere greater for the TMOS, its lower switching losses pre-dominated, resulting in a more efficient switching device.

    In general, at low switching frequencies, where staticlosses predominate, bipolars are more efficient. At higherfrequencies, above 50 kHz, the power MOSFETs are moreefficient.

  • 313Introduction and Basic CharacteristicsMotorola TMOS Power MOSFET Transistors Device Data

    Chapter 2: Basic Characteristics of Power MOSFETsOutput Characteristics

    Perhaps the most direct way to become familiar with thebasic operation of a device is to study its output characteris-tics. In this case, a comparison of the MOSFET characteris-tics with those of a bipolar transistor with similar ratings is inorder, since the curves of a bipolar device are almost univer-sally familiar to power circuit design engineers.

    As indicated in Figures 21 and 22, the output character-istics of the power MOSFET and the bipolar transistor can bedivided similarly into two basic regions. The figures alsoshow the numerous and often confusing terms assigned tothose regions. To avoid possible confusion, this section willrefer to the MOSFET regions as the on (or ohmic) andactive regions and bipolar regions as the saturation andactive regions.

    Figure 21. IDVDS Output Characteristics of a PowerMOSFET. Region A is Called the Ohmic, On, ConstantResistance or Linear Region. Region B is Called the

    Active, Constant Current, or Saturation Region.

    10

    9.0

    8.0

    7.0

    6.0

    5.0

    4.0

    3.0

    2.0

    1.0

    00 4.0 8.0 12 16

    VDS, DRAINSOURCE VOLTAGE (VOLTS)

    I D, D

    RAI

    N C

    UR

    REN

    T (A

    MPS

    )

    10 V

    REGION A9.0 V

    REGION B

    6.0 V

    POWER MOSFET

    VGS = 5.0 V

    8.0 V

    7.0 V

    IB = 20 mA

    IB = 10 mA

    0 4.0 8.0 12 16

    100 mAREGION A

    REGION B

    Figure 22. ICVCE Output Characteristics of a BipolarPower Transistor. Region A is the Saturation Region.

    Region B is the Linear or Active Region.

    VCE, COLLECTOREMITTER VOLTAGE (VOLTS)

    BIPOLAR POWER TRANSISTOR10

    9.0

    8.0

    7.0

    6.0

    5.0

    4.0

    3.0

    2.0

    1.0

    0

    One of the three obvious differences between Figures 21and 22 is the family of curves for the power MOSFET isgenerated by changes in gate voltage and not by base cur-rent variations. A second difference is the slope of the curvein the bipolar saturation region is steeper than the slope inthe ohmic region of the power MOSFET indicating that theonresistance of the MOSFET is higher than the effectiveonresistance of the bipolar.

    The third major difference between the output characteris-tics is that in the active regions the slope of the bipolar curveis steeper than the slope of the TMOS curve, making theMOSFET a better constant current source. The limiting of IDis due to pinchoff occurring in the MOSFET channel.

    Basic MOSFET ParametersOnResistance

    The onresistance, or RDS(on), of a power MOSFET is animportant figure of merit because it determines the amount ofcurrent the device can handle without excessive power dis-sipation. When switching the MOSFET from off to on, thedrainsource resistance falls from a very high value toRDS(on), which is a relatively low value. To minimize RDS(on)the gate voltage should be large enough for a given draincurrent to maintain operation in the ohmic region. Datasheets usually include a graph, such as Figure 23, whichrelates this information. As Figure 24 indicates, increasingthe gate voltage above 12 volts has a diminishing effect onlowering onresistance (especially in high voltage devices)and increases the possibility of spurious gatesource voltagespikes exceeding the maximum gate voltage rating of20 volts. Somewhat like driving a bipolar transistor deep intosaturation, unnecessarily high gate voltages will increaseturnoff time because of the excess charge stored in the in-put capacitance. All Motorola TMOS FETs will conduct therated continuous drain current with a gate voltage of 10 volts.

    As the drain current rises, especially above the continuousrating, the onresistance also increases. Another importantrelationship, which is addressed later with the other tempera-ture dependent parameters, is the effect that temperaturehas on the onresistance. Increasing TJ and ID both effect anincrease in RDS(on) as shown in Figure 25.

    TransconductanceSince the transconductance, or gFS, denotes the gain of

    the MOSFET, much like beta represents the gain of the bipo-lar transistor, it is an important parameter when the device isoperated in the active, or constant current, region. Definedas the ratio of the change in drain current corresponding to achange in gate voltage (gFS = dID/dVGS), the transconduc-tance varies with operating conditions as seen in Figure 26.The value of gFS is determined from the active portion of theVDSID transfer characteristics where a change in VDS nolonger significantly influences gFS. Typically the transcon-ductance rating is specified at half the rated continuous draincurrent and at a VDS of 15 V.

  • Introduction and Basic Characteristics314

    Motorola TMOS Power MOSFET Transistor Device Data

    VDS = 15 VTC = 25C

    RD

    S(on

    ), D

    RAI

    NT

    OS

    OU

    RC

    E R

    ESIS

    TAN

    CE

    (OH

    MS)

    0.5

    0.4

    0.3

    0.2

    00 5.0 10 15 20 25

    TJ = 100C

    0.1

    1.25

    4.0 6.0 8.0 10 12 20

    HIGH VOLTAGEMOSFET

    1.20

    1.15

    1.10

    1.05

    1.00

    0.95

    0.90

    0.85

    0.80

    0.7514 16 18

    LOWVOLTAGEMOSFET

    NO

    RM

    ALIZ

    ED O

    NR

    ESIS

    TAN

    CE

    I D, D

    RAI

    N C

    UR

    REN

    T (A

    MPS

    )

    8.0

    6.0

    4.0

    2.0

    00 2.0 4.0 6.0 8.0 10

    VDS = 30 V

    TJ = 100C

    55C

    25C

    Figure 23. Transfer Characteristics

    VGS, GATETOSOURCE VOLTAGE (VOLTS) VGS, GATETOSOURCE VOLTAGE (VOLTS)

    ID, DRAIN CURRENT (AMPS)

    Figure 24. The Effect of GatetoSourceVoltage on OnResistance Varies with a

    Devices Voltage Rating

    Figure 25. Variation of RDS(on) with DrainCurrent and Temperature

    VGS, GATETOSOURCE VOLTAGE (VOLTS)

    Figure 26. SmallSignal Transconductanceversus VGS

    g FS

    , FO

    RWAR

    D T

    RAN

    SCO

    ND

    UC

    TAN

    CE

    (SIE

    MEN

    S)

    3.0

    2.0

    1.0

    04.0 5.0 6.0 7.0 8.0 9.0 10 11 12

    CURVE FALLS ASDEVICE ENTERSOHMIC REGION(VDS DEPENDENT)

    TJ = 25C

    TJ = 55C

    For designers interested only in switching the powerMOSFET between the on and off states, the transconduc-tance is often an unused parameter. Obviously when the de-vice is switched fully on, the transistor will be operating in itsohmic region where the gate voltage will be high. In that re-gion, a change in an already high gate voltage will do little toincrease the drain current; therefore, gFS is almost zero.

    Threshold VoltageThreshold Voltage, VGS(th), is the lowest gate voltage at

    which a specified