Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery...

45
Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講講講講 講講講講講講講講講講講 Professor Emeritus Stanford University School of Medicine, Stanford, CA

Transcript of Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery...

Page 1: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Potential Application of Computational Cellular Biology for

Cardiac Antiarrhythmic Drug Discovery

Ruey J. Sung, MD, FAHA,FHRS講座教授

中央大學生命科學研究所Professor Emeritus

Stanford University School of Medicine, Stanford, CA

Page 2: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 3: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Translational Medicine

Basic Science Clinical Medicine

Computational Biology

Page 4: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

• Hodgkin AL and Huxley AF, A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve, 1952, J. Physiol, 117:500-544.

• FitzHugh (1966) (1)The effect of temperature on action potential of squid axon. (2)Modified the original Hodgkin-Huxley equations by a temperature factor.

• Guttman and Barnhill (1970) Found repetitive firing by increasing temperature.

Page 5: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 6: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 7: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 8: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 9: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 10: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 11: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Major ionic currents

Page 12: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Cardiac ion currents and cloned subunits

Page 13: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

-80 mV

+30 mV

200 msec

Phase 0 : Upstroke

Phase 3: Rapid Repolarization (relative refractory, responding to large stimulus)

Phase 4: Diastole (excitable)

Phase 1: Early Repolarization (refractory)

Phase 2: Slow Repolarization (refractory)

Phase of Cardiac Action Potential

Refractoriness: time during which a second wave can not be initiated.

Page 14: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Action Potential

From: Efimov, Introduction to Biomedical Engineering and Cardiac

Bioelectricity. http://efimov.wustl.edu/class/EBME105/EBME105_3.pdf

APD (or ERP)

single cell

-60mV

Page 15: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 16: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Luo-Rudy Model

Page 17: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 18: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Causing Nernst potential (reverse potential).

Page 19: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Cardiac Cell Models

From: dos Santos and Bauer, Steps towards the modelling of myocardial inflammation. http://www.fisiocomp.ufjf.br/seminarios/talk150205.pdf

Page 20: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Application of HH model in other AP generating system—cardiac LRd model

Wu SN Chin. J. Physiol. (2004)

Page 21: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Rudy and Silva (2006) Q Rev Biophys 39: 57

Correlation between Simulation and Experiment

Page 22: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Formulations for IK1 and ICa

Page 23: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Intracellular Calcium Transients and Ionic Events

Luo-Rudy Model

Page 24: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

the ventricular wall

Antzelevitch and Fish

Electrical Heterogeneity within the ventricular Myocardium

Page 25: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Single and Multicellular LRd Ventricular Myocyte Models

Luo and Rudy (1994)

Page 26: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

The LRd Model

Page 27: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Clancy and Rudy (2001) Cardiovasc Res 50: 301

Addition of Markovian Scheme to LRd Model

Page 29: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Faber et al (2007) Biophy J 92:1552

Faber and Rudy( 2007) Cardiovasc Res 75:73

The Luo-Rudy Model: Bulk Myoplasm, Junctional Sarcoplasmic Reticulum (SR), Net SR, Mitochondria, and T-tubular Subspace

Page 30: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Initiation of Torsades de Pointes in LQTS

Page 31: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Tristani-Firouzi et al. J Clin Invest 2002; 110:381

Tawil et al. Ann Neurol 1994; 35: 326

Andersen-Tawil Syndrome Timothy Syndrome

Page 32: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 33: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Gene-Specific Multisystem Involvement in LQTS

• LQT7 and LOT8 also known as Andersen-Tawil syndrome and Timothy syndrome, respectively, are each a multisystem disease.

• LQT7 is caused by mutations in KCJN2 which encodes the cardiac and skeletal muscle inward rectifier K+ channel, Kir2.1, and LQT8 is due to mutations in CACNA1C that encodes the pore-forming α-subunit of the cardiac L-type Ca2+ channel.

• Both clinically manifest exercise-induced polymorphic VT.

• LQT8 is the most malignant LQTS as patients seldom survive beyond 3 years of age.

Splawski et al (2004) Cell,119:19

Page 34: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.
Page 35: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Andersen-Tawil Syndrome Simulation

Sung et al, Am J Physiol, 2006;291:H2597

A B

Page 36: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Timothy Syndrome Simulation

Sung et al

Page 37: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Timothy Syndrome Simulation

A B

Sung et al

Page 38: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Pseudo-ECG Obtained From the 1-D Multicelullar Strand (LRd) Model

Sung et al

Page 39: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Cellular Electrophysiology in Congestive Heart Failure (CHF)

Wehrens et al (2003) Cell 113:829

Page 40: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Strategy for Targeted Therapy

Marks (2003) Circulation 107:1456

Page 41: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Kaye, Hoshijima, and Chien, Annu Rev Med 2008;9:13

Page 42: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Wehrens XHT, et al. Cell, 2003;113:829-840Wehrens et al (2003) Cell 113:829

Page 43: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Conclusions• The computationally simulated cell and tissue models

can be used to simulate diseases with abnormal functions of ICa,L, RyR2 and/or other ion channels such as

Timothy syndrome, catecholaminergic polymorphic ventricular tachycardia, cadiomyopathies, CHF, etc.

• Consequently, not only arrhythmogenic mechanisms can be defined but also potential targeted sites of therapy can be identified.

• The above principles can then be applied for developing novel anti-arrhythmic drugs and/or cellular therapy.

Page 44: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Michailova and McCulloch, 2002

Page 45: Potential Application of Computational Cellular Biology for Cardiac Antiarrhythmic Drug Discovery Ruey J. Sung, MD, FAHA,FHRS 講座教授 中央大學生命科學研究所 Professor.

Thank you for your attention.