POSTER BIOL 499 (Uyen)

1
Relevant Research Literature Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organizaFon of funcFonally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9, 357381. doi: 10.1146/annurev.ne.09.030186.002041 UTer, A. A., & Basso, M. A. (2008). The basal ganglia: an overview of circuits and funcFon. Neurosci Biobehav Rev, 32(3), 333342. doi: 10.1016/j.neubiorev. 2006.11.003 ArbuthnoT, GW et al. (1990). DistribuFon and SynapFc Contacts of the CorFcal Terminals arising from Neurons in the Rat Ventromedial Thalamic Nucleus. Neuroscience, 38 (1): 4760. Buss, A.H., & Plomin, R. (1975). A temperament theory of personality development. Wiley, New York. Cardinal, R.N., PennicoT, D.R., Sugathapala, C.L., Robbins, T.W., and EveriT, B.J. (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292: 2499 2501. Evenden, J.L. (1998b). The pharmacology of impulsive behaviour in rats III: the effects of amphetamine, haloperidol, imipramine, chlordiaxepoxide and ethanol on a paced fixed consecuFve number schedule. Psychopharmacology, 138, 295304. Neill, Darryl B., Fenton, Howard, and JusFce, Joseph. (2002). Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic sFmulaFon. Behavioural Brain Research: 137, 129138 Nicholai, Henry and Neill, Darryl (2013). Roles of subregions of the Ventromedial Nucleus of the Thalamus (VMT) in an ATenFonal task. Honors thesis, Emory University. Paine, T.A., Slipp, L.E., and Carlezon, W.A., Jr. (2011) Schizophrenialike aTenFonal deficits following blockade of prefrontal cortex GABAA receptors.Neuropsychopharmalogy, 36: 1703 1713. Pezze MA, Dalley JW, Robbins TW (2009) RemediaFon of aTenFonal dysfuncFon in rats with lesions of the medial prefrontal cortex by intraaccumbens administraFon of the dopamine D2/3 receptor antagonist sulpiride. Psychopharmacology 202:307313. Acknowledgments The author would like to thank Dr. Darryl Neill and Akshay Goswami for their assistance as well as mentorship during the experimental process. Experimental Procedure Adult Sprague Dawley male rats were placed on a restricted feeding schedule maintaining them at 90% of their freefeeding weight, prior to training for the FR8 task. These rats had bilateral guide cannulae implanted top terminate 1 mm above the medial VMT. Based on the effecFve doses in the previous FCN8 study, 20 ng muscimol HBr dissolved in isotonic saline vehicle, or the vehicle alone, were injected into the VMT in a volume of 0.5 µl prior to tesFng sessions (see Fig. 2, Fig. 3) . Test sessions lasted 20 min. Conclusions The apparent increase in “impulsive” responding in the Fixed ConsecuFve Number (FCN)8 task following medial VMT injecFon of muscimol may actually be the result of an inability to maintain responding on the FCN lever of this two lever task. This experiment showed that, even when only one lever was present, and 8 leverpresses were required to obtain a food pellet (FR8), the musimol significantly depressed responding. A Study on Impulsive Behavior: Inves7ga7on of the Func7onal Connec7on between the Accumbens Core and the Medial Ventral Thalamus U. B. Hoang 1 , D. B. Neill 1,2 Program in Neuroscience and Behavioral Biology 1 , Department of Psychology 2 Emory University, Atlanta, GA 30322 IntroducFon The ventromedial nucleus of the thalamus (VMT) in rats is a major link between basal ganglia efferents and the cerebral cortex. In parFcular, the VMT receives GABAergic afferents from the substanFa nigra, pars reFculata, which in turn receives afferents from the nucleus accumbens core and the dorsal striatum via the “direct path” (see Fig. 4 ). Although the medial VMT (mVMT) and the accumbens core are connected anatomically, evidence is needed to determine whether the accumbens core and the mVMT are connected in a funcFonal circuitry. Previous work in the Neill lab showed that injecFon of the GABA agonist muscimol, which hyperpolarizes neurons, into the mVMT impairs impulse control in rats on the FixedConsecuFve Number (FCN8) task, causing: A significant decrease in bar presses on the FCN lever before switching to the Reinforcement lever. An overall decrease in overall barpressing No effect on the consummatory behavior (subjects would eat the food pellets presented in front of them). The decrease in overall barpressing suggests that there may be other factors, more complex than impulse control, which impair the subjects’ ability to complete the task in order to receive a reward. Therefore, this study was designed to invesFgate if injecFon of muscimol into the mVMT results in a decrease in leverpressing per se. This was done by removing the second (Reward) lever from the FCN8 task; the rats only had to press a single lever 8 Fmes to receive a food pellet. This procedure is called Fixed RaFo 8 (FR8). Hypothesis: If the medial VMT is responsible for controlling the subjects’ ability to complete the 8 presses of the FCN lever, muscimol injecFons into the medial VMT will result in a marked decrease in Fixed RaFo 8 responding. Nigrothalamic Projection (GABAergic Thalamocortical Projections (Glutamatergic) Substantia Nigra Pars Reticulata Ventromedial Nucleus of the Thalamus Frontal Cortex Activated by nociceptive stimuli Activated by rewarding stimuli? Fig. 2. GABAergic projection of the substantia nigra, pars reticulata, upon the VMT, and the glutamatergic projection of the VMT upon layer 1 of frontal neocortex. FOOD Reinforcement Lever Reinforcement Lever (1) (2) Fig.1. Experimental SetUp: (1) Fixed ConsecuFve Number 8: 2 levers are presented in a test chamber. The rats are required to complete a sequence of 8 consecuFve responses on the FCN lever, before pressing the the reinforcement lever, to receive a food reward. Premature response restarts the sequence. Therefore, impulsive response results in loss of a scheduled food delivery (2) Fixed RaFo 8: 1 lever is presented in a test chamber. The rats are required to complete a sequence of 8 consecuFve responses on the FCN lever to obtain a food reward. AP 6.84 AP 6.60 Fig.4. Sites of Muscimol Injections on the VMT-M Injection Sites Pre SAL Pre MUSC 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Pellets Received on FR-8 Schedule ** Pre SAL Pre MUSC 10 0 200 400 600 800 1000 1200 Lever Presses on FR-8 Schedule ** (1) (2) Fig.5. (1) Muscimol injection decreased the number of bar-presses, compared to performance after saline injections (**p <.01) (2) Muscimol injection decreased the number pellets received, compared to performance after saline injections (**p <.01) . Results InjecFon of 10 ng muscimol soluFon decreased the number of barpresses and pellets received compared to performance following saline vehicle injecFons (**p <.01) Possible RelaFonship to Disorders Characterized by Deficits in “Impulse” Control A number of psychological disorders include “impulsivity” as part of their collecFon of symptoms; most notably, ATenFon Deficit HyperacFvity Disorder (ADHD). These results suggest that the neural circuitry involving the ventromedial thalamus and prefrontal cortex may be involved in these symptoms. FCN Lever Fig.3. Proposed model of the Functional Circuitry between the Accumbens Core and the Ventral Medial Thalamus

Transcript of POSTER BIOL 499 (Uyen)

Page 1: POSTER BIOL 499 (Uyen)

Relevant  Research  Literature  

 Alexander,  G.  E.,  DeLong,  M.  R.,  &  Strick,  P.  L.  (1986).  Parallel  organizaFon  of    

 funcFonally  segregated  circuits  linking  basal  ganglia  and  cortex.  Annu  Rev  Neurosci,  9,  357-­‐381.  doi:  10.1146/annurev.ne.09.030186.002041  

UTer,  A.  A.,  &  Basso,  M.  A.  (2008).  The  basal  ganglia:  an  overview  of  circuits  and      funcFon.  Neurosci  Biobehav  Rev,  32(3),  333-­‐342.  doi:  10.1016/j.neubiorev.2006.11.003  

ArbuthnoT,  GW  et  al.  (1990).  DistribuFon  and  SynapFc  Contacts  of  the  CorFcal    Terminals  arising  from  Neurons  in  the  Rat  Ventromedial  Thalamic  Nucleus.    Neuroscience,  38  (1):  47-­‐60.  

Buss,  A.H.,  &  Plomin,  R.  (1975).  A  temperament  theory  of  personality  development.  Wiley,  New  York.  

Cardinal,  R.N.,  PennicoT,  D.R.,  Sugathapala,  C.L.,  Robbins,  T.W.,  and  EveriT,  B.J.  (2001)  Impulsive  choice  induced  in  rats  by  lesions  of  the  nucleus  accumbens  core.  Science,  292:  2499-­‐  2501.  

Evenden,  J.L.  (1998b).  The  pharmacology  of  impulsive  behaviour  in  rats  III:  the  effects  of  amphetamine,  haloperidol,  imipramine,  chlordiaxepoxide  and  ethanol  on  a  paced  fixed  consecuFve  number  schedule.  Psychopharmacology,  138,  295-­‐304.  

Neill,  Darryl  B.,  Fenton,  Howard,  and  JusFce,  Joseph.  (2002).  Increase  in  accumbal  dopaminergic  transmission  correlates  with  response  cost  not  reward  of  hypothalamic  sFmulaFon.  Behavioural  Brain  Research:  137,  129-­‐138  

Nicholai,  Henry  and  Neill,  Darryl  (2013).  Roles  of  sub-­‐regions  of  the  Ventromedial  Nucleus  of  the  Thalamus  (VMT)  in  an  ATenFonal  task.  Honors  thesis,  Emory  University.  

Paine,  T.A.,  Slipp,  L.E.,  and  Carlezon,  W.A.,  Jr.  (2011)  Schizophrenia-­‐like  aTenFonal  deficits  following  blockade  of  prefrontal  cortex  GABAA  receptors.Neuropsychopharmalogy,  36:  1703-­‐  1713.  

Pezze  MA,  Dalley  JW,  Robbins  TW  (2009)  RemediaFon  of  aTenFonal  dysfuncFon  in  rats  with  lesions  of  the  medial  prefrontal  cortex  by  intra-­‐accumbens  administraFon  of  the  dopamine  D2/3  receptor  antagonist  sulpiride.  Psychopharmacology  202:307-­‐313.  

 

 Acknowledgments    

The  author  would  like  to  thank  Dr.  Darryl  Neill  and  Akshay  Goswami  for  their    assistance  as  well  as  mentorship  during  the  experimental  process.    

   

 

Experimental  Procedure    

Adult  Sprague  Dawley  male  rats  were  placed  on  a  restricted  feeding  schedule  maintaining  them  at  90%  of  their  free-­‐feeding  weight,  prior  to  training  for  the  FR-­‐8  task.  These  rats  had  bilateral  guide  cannulae  implanted  top  terminate  1  mm  above  the  medial  VMT.  Based  on  the  effecFve  doses  in  the  previous  FCN-­‐8  study,  20  ng  muscimol  HBr  dissolved  in  isotonic  saline  vehicle,  or  the  vehicle  alone,  were  injected  into  the  VMT  in  a  volume  of  0.5  µl  prior  to  tesFng  sessions  (see  Fig.  2,  Fig.  3)  .  Test  sessions  lasted  20  min.  

Conclusions    The  apparent  increase  in  “impulsive”  responding  in  the  Fixed  ConsecuFve  Number  (FCN)-­‐8  task  following  medial  VMT  injecFon  of  muscimol  may  actually  be  the  result  of  an  inability  to  maintain  responding  on  the  FCN  lever  of  this  two-­‐lever  task.  This  experiment  showed  that,  even  when  only  one  lever  was  present,  and  8  lever-­‐presses  were  required  to  obtain  a  food  pellet  (FR-­‐8),  the  musimol  significantly  depressed  responding.    

This means only the “t” in “title” gets capitalized.

A  Study  on  Impulsive  Behavior:  Inves7ga7on  of  the  Func7onal  Connec7on  between the  Accumbens  Core  and  the  Medial  Ventral  Thalamus  

U.  B.  Hoang1,  D.  B.  Neill1,2  Program  in  Neuroscience  and  Behavioral  Biology1,  Department  of  Psychology2    

Emory  University,  Atlanta,  GA  30322  IntroducFon  

 

The  ventromedial  nucleus  of  the  thalamus  (VMT)  in  rats  is  a  major  link  between  basal  ganglia  efferents  and  the  cerebral  cortex.  In  parFcular,  the  VMT  receives  GABAergic  afferents  from  the  substanFa  nigra,  pars  reFculata,  which  in  turn  receives  afferents  from  the  nucleus  accumbens  core  and  the  dorsal  striatum  via  the  “direct  path”  (see  Fig.  4  ).    

Although  the  medial  VMT  (mVMT)  and  the  accumbens  core  are  connected  anatomically,  evidence  is  needed  to  determine  whether  the  accumbens  core  and  the  mVMT  are  connected  in  a  funcFonal  circuitry.  Previous  work  in  the  Neill  lab  showed  that  injecFon  of  the  GABA  agonist  muscimol,  which  hyperpolarizes  neurons,  into  the  mVMT  impairs  impulse  control  in  rats  on  the  Fixed-­‐ConsecuFve  Number  (FCN-­‐8)  task,  causing:  •  A  significant  decrease  in  bar  presses  on  the  FCN  lever  before  switching  

to  the  Reinforcement  lever.    •  An  overall  decrease  in  overall  bar-­‐pressing  •  No  effect  on  the  consummatory  behavior  (subjects  would  eat  the  food  

pellets  presented  in  front  of  them).      The  decrease  in  overall  bar-­‐pressing  suggests  that  there  may  be  other  factors,  more  complex  than  impulse  control,  which  impair  the  subjects’  ability  to  complete  the  task  in  order  to  receive  a  reward.  Therefore,  this  study  was  designed  to  invesFgate  if  injecFon  of  muscimol  into  the  mVMT  results  in  a  decrease  in  lever-­‐pressing  per  se.  This  was  done  by  removing  the  second  (Reward)  lever  from  the  FCN-­‐8  task;  the  rats  only  had  to  press  a  single  lever  8  Fmes  to  receive  a  food  pellet.  This  procedure  is  called  Fixed-­‐RaFo  8  (FR-­‐8).    Hypothesis:  If  the  medial  VMT  is  responsible  for  controlling  the  subjects’  ability  to  complete  the  8  presses  of  the  FCN  lever,  muscimol  injecFons  into  the  medial  VMT  will  result  in  a  marked  decrease  in  Fixed  RaFo  8  responding.    

NigrothalamicProjection (GABAergic)

ThalamocorticalProjections (Glutamatergic)

Substantia NigraPars Reticulata

VentromedialNucleus ofthe Thalamus

FrontalCortex Activated by nociceptive stimuli

Activated by rewarding stimuli?

Fig. 2. GABAergic projection of the substantia nigra, pars reticulata, upon the VMT, and the glutamatergic projection of the VMT upon layer 1 of frontal neocortex.

FOOD

Reinforcement LeverReinforcement Lever

                                             (1)                                                                                (2)  Fig.1.  Experimental  Set-­‐Up:  (1)  Fixed  ConsecuFve  Number  8:  2  levers  are  presented  in  a  test  chamber.  The  rats  are  required  to  complete  a  sequence  of  8  consecuFve  responses  on  the  FCN  lever,  before  pressing  the  the  reinforcement  lever,  to  receive  a  food  reward.  Premature  response  restarts  the  sequence.  Therefore,  impulsive  response   results   in   loss  of   a   scheduled   food  delivery   (2)   Fixed  RaFo  8:   1   lever   is  presented   in   a   test   chamber.   The   rats   are   required   to   complete  a   sequence  of  8  consecuFve  responses  on  the  FCN  lever  to  obtain  a  food  reward.         AP 6.84

AP 6.60

Fig.4. Sites of Muscimol Injections on the VMT-M

Injection Sites

Pre SAL Pre MUSC 100

102030405060708090

100110120130140150160170180190200

Pelle

ts R

ece

ived o

n F

R-8

Sch

edule

**

Pre SAL Pre MUSC 100

200

400

600

800

1000

1200L

eve

r P

ress

es

on

FR

-8 S

che

du

le

**

(1) (2)Fig.5. (1) Muscimol injection decreased the number of bar-presses, compared to performance after saline injections (**p <.01) (2) Muscimol injection decreased the number pellets received, compared to performance after saline injections (**p <.01) .

Results    

InjecFon  of  10  ng  muscimol  soluFon  decreased  the  number  of  bar-­‐presses  and  pellets  received  compared  to  performance  following  saline  vehicle  injecFons  (**p  <.01)  

Possible  RelaFonship  to  Disorders  Characterized  by  Deficits  in  “Impulse”  

Control    A  number  of  psychological  disorders  include  “impulsivity”  as  part  of  their  collecFon  of  symptoms;  most  notably,  ATenFon  Deficit  HyperacFvity  Disorder  (ADHD).  These  results  suggest  that  the  neural  circuitry  involving  the  ventromedial  thalamus  and  prefrontal  cortex  may  be  involved  in  these  symptoms.  

 

FCN Lever

Fig.3. Proposed model of the Functional Circuitry between the Accumbens Core and the Ventral Medial Thalamus