Porphyry Deposits

44
Porphyry Deposits

description

Porphyry Deposits. The Importance of Porphyry Deposits as a Copper and Gold Resource. Gold Resources. Copper Resources. A Geological Cross Section through the Batu Hijau Porphyry Deposit, Indonesia. (920 million tons of ore grading 0.55 wt.% Cu, 0.42 g/t Au). - PowerPoint PPT Presentation

Transcript of Porphyry Deposits

Page 1: Porphyry Deposits

Porphyry Deposits

Page 2: Porphyry Deposits

The Importance of Porphyry Deposits as a Copper and Gold Resource

Gold Resources Copper Resources

Page 3: Porphyry Deposits

A Geological Cross Section through the Batu Hijau Porphyry Deposit, Indonesia

(920 million tons of ore grading 0.55 wt.% Cu, 0.42 g/t Au)

Page 4: Porphyry Deposits

Batu Hijau Porphyry Cu-Au Deposit, Indonesia

Page 5: Porphyry Deposits

Batu Hijau Porphyry Cu-Au Deposit, Indonesia

Goethite-coated quartz veins cutting sericite-altered diorite

Tonalite porphyry

Page 6: Porphyry Deposits

Hydrothermal Alteration at Batu Hijau

Page 7: Porphyry Deposits

Batu Hijau Porphyry Cu-Au Ores

SupergeneHypogene

Chalcopyrite

Bornite

Malachite

Page 8: Porphyry Deposits

Spatial Distribution of Porphyry Deposits

Page 9: Porphyry Deposits

The Origin of Porphyry Cu-Au-Mo Magmas Hydration Melting

Page 10: Porphyry Deposits

Porphyry-epithermal-skarn system - overview

Page 11: Porphyry Deposits

Idealized Porphyry Alteration/Mineralization (Lowell and Gilbert, 1970)

Page 12: Porphyry Deposits

Schematic Porphyry-Epithermal AlterationSillitoe (2010)

Page 13: Porphyry Deposits

Potassic Alteration

High Grade Ore

BorniteChalcopyrite

Porphyry Ore and Alteration Textures

Phyllic Alteration

Page 14: Porphyry Deposits

Potassic Alteration Revealed by Staining

Page 15: Porphyry Deposits

3KAlSi3O8 + 2H+ = KAl3Si3O10(OH)2 + 6SiO2 + 2K+

K-feldspar Muscovite Quartz

Hydrothermal Alteration – Chemical Controls

2KAl3Si3O10(OH)2 + 2H+ + 3H2O = 3Al2Si2O5(OH)4 + 2K+

Muscovite Kaolinite

Page 16: Porphyry Deposits

Metal Zonation in Porphyry SystemsBingham Mineral Park

Page 17: Porphyry Deposits

Tectonic Setting of Porphyry Deposits

Page 18: Porphyry Deposits

Porphyry metal associations as a function of intrusive composition

Page 19: Porphyry Deposits

LV inclusions VL inclusions

LVHS inclusions

Fluid Inclusions in Porphyry Ore Depositing Systems

Aqueous-carbonicFluid inclusion

Page 20: Porphyry Deposits

100 m

Primary, Pseudosecondary and Secondary Fluid Inclusions

Primary and pseudosecondary fluid inclusions in dolomite

Page 21: Porphyry Deposits

Isochores for Fluid Inclusions in the System H2O

Page 22: Porphyry Deposits

Fluid Inclusion Microthermometry

Page 23: Porphyry Deposits

Microthermometry of Aqueous Fluid Inclusions

Page 24: Porphyry Deposits

Isochores for Halite-bearing inclusions

Page 25: Porphyry Deposits

Isochores for the System NaCl-H2O

Page 26: Porphyry Deposits

Salinity Determination from Halite Dissolution

Page 27: Porphyry Deposits

Salinity Determination from Ice Melting

Page 28: Porphyry Deposits

P-T-X Relationships in the System NaCl-H2O

Page 29: Porphyry Deposits

Salinity-Temperature Relationships in Porphyry Systems

Note existence of high temperature VL and LVS inclusions. Evidence of boiling or condensation?Data from the Sungun Cu-Mo porphyry, Iran (Hezarkhani and Williams-Jones, 1997)

Page 30: Porphyry Deposits

Laser Ablation ICP-MS and Fluid inclusions

Page 31: Porphyry Deposits

Stable Isotope Data for Porphyry Deposits

Page 32: Porphyry Deposits

Porphyry-Epithermal System Evolution

Page 33: Porphyry Deposits

Chemical Controls on Ore Formation

CuClo +FeCl2o + 2H2S + 0.5O2= CuFeS2 + 3H+ + 3Cl- + 0.5H2O

Deposition of Chalcopyrite (CuFeS2)

Deposition favoured by an increase in f O2, an increase in f H2S and an increase in pH

What about temperature?

Page 34: Porphyry Deposits

Decreasing Temperature – the Main Control on Porphyry Copper Ore Formation?

(Hezarkhani and Williams-Jones, 1998)

Modelling ore deposition in the Sungun porphyry, Iran. Solubility of chalcopyrite in a 1 m NaCl solution.

Copper solubility drops to ~ 4,000 ppm at 400 oC, the temperature of ore formation and 1 ppm at 300 oC

Page 35: Porphyry Deposits

Decreasing Temperature – the Main Control on Porphyry Copper Ore Formation

(Landtwing et al., 2005)

Copper concentrations in fluuid inclusions of the Bingham porphyry, USA

Page 36: Porphyry Deposits

Cu-Mo Zoning in Porphyry SystemsPorphyry Cu-Mo deposits are commonly zoned with a deeper, higher temperature molybdenite-rich zone and a shallower, lower temperature chalcopyrite-rich zone.

Cooling of an aqueous fluid initially containing 2 m NaCl, 0.5 m KCl, 4000 ppm Cu and 1000 ppm Mo in equilibrium with K-feldspar, muscovite and quartz.

Page 37: Porphyry Deposits

Magma Emplacement, and the Nature of the Exsolved Fluid

0.01 0.1 1 10 100

0

500

1000

1500

0

1.5

3.0

4.5

Vapour

Liquid

600C

800C

Halite

H2O-NaCl

V

V L

L

H

Magmatic fluid

Pre

ssur

e (b

ar)

Dep

th (

Km

)

Fluid inclusions

NaCl wt.%

Page 38: Porphyry Deposits

Transport of Metals by Vapour?

Extinct fumarole

Summit of Merapi volcano, Indonesia

Fumarole emitting magmatic gases at 600 oC

Mo3O8.nH2O

Ilsemanite

Page 39: Porphyry Deposits

Quartzmonzoniteporphyry

Equigranularmonzonite

>0.35%

Cu

<0.35% Cu

SedimentaryRocks

upper lim it ofc ritic al-typeinc lusions

<1 vol %quartz veins

5-10 vol. %quartz veins

b rin e in clu s io n s

c ri tic a l -ty p e in clu s io n s

v a p o r- ri ch in clu s io n s

2.5

3.0

3.5

2.0

Paleo-depth(km)

NNW

halite

opaq ue

va por

va por

va por

va por

sylvite

liq uid

liq uid

liq uid

chalc opyrite

10 m

10 m

10 m

hema titeSSE

The Bingham Porphyry Deposit - A Case for the Vapour Transport of Copper

(Williams-Jones and Heinrich, 2005)

Page 40: Porphyry Deposits

The Solubility of Chalcopyrite in Water Vapour

Increasing PH2O promotes hydration (and solubility) and increasing temperature inhibits hydration.

Migdisov et al. (2014)

Page 41: Porphyry Deposits

From Hypogene to Supergene

SupergeneHypogene

Chalcopyrite

Bornite

Malachite

Page 42: Porphyry Deposits

Oxidised zone

Primary zone

Enriched zone

Leached zone

Mineralized gravel

Mineralized bedrock

Barren gravel

Supergene enrichment

FeS2 + H2O + 7/2O2= Fe2+ + 2SO42- + 2H+

2Fe2+ + 2H2O + 1/2O2 = Fe2O3 + 4H+; 2Cu+ + H2O = Cu2O + 2H+

2Cu+ + SO42- = Cu2S + 4O2

Leached zone – acidity creation

CuFeS2 + 4O2= Fe2+ + Cu2+ + 2SO42-

Oxidised zone – Fe and Cu oxides, acidity creation

Enriched zone – reduction and sulphide deposition

Page 43: Porphyry Deposits

Cu2+

MalachiteCu2(OH)2CO3

Cuprite Cu2 O

Native Cu

Covellite

Chalcocite

H2 O

H2

O2 H

2 O

Eh

pH

Supergene enrichment

Page 44: Porphyry Deposits

References

Seedorff, E., Dilles, J.H., Proffett Jr, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A, 2006, Porphyry Deposits: Characteristics and origin of hypogene features in Hedenquist et Al. (eds) Economic Geology One Hundreth Anniversary Volume, p.251-298.

Williams-Jones, A.E. and Heinrich, C.H., 2005, Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: Econ. Geol., 100, p.1287-1312.

Evans, A.M., 1993, Ore geology and industrial minerals, an introduction: Blackwell Science, Chapter 14.

Pirajno, F. 2009, Hydrothermal processes and mineral systems, Springer, Chapter 5.

Sillitoe, R.H., 2010, Porphyry copper systems: Econ. Geol., 195, 3-41.