Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA...

7
HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 732-738 (Journal of the Korean Institute of Chemical Engineers) 732 Polystyrene * ** *** * * ** *** (2000 2 7 , 2000 7 4 ) Pyrolysis Characteristics of Polystyrene on Stirred Batch Reactor Seung-Soo Kim , Byung-Hee Chun*, Chan Jin Park**, Wang Lai Yoon*** and Sung Hyun Kim* Dept. of Env. Eng., Tonghae University, Tonghae, Korea *Dept. of Chem. Eng., Korea University, Seoul, Korea **Dept. of Env. Eng., Junior College of Inchon, Inchon, Korea ***Energy Conversion Team, Korea Institute of Energy Research, Taejon, Korea (Received 7 February 2000; accepted 4 July 2000) 0.5, 1.0 2.0 o C/min poly- styrene . polystyrene 1% 100% . . 380-400 o C 60 , styrene . Abstract - Kinetic tests on pyrolysis of polystyrene were carried out by thermo gravimetric technique heating the sample at the rates of 0.5, 1.0, 2.0 o C/min in a stirred batch reactor. The activation energy and the reaction order were determined at con- versions from 1 to 100%. The activation energies increased slowly until the conversion increased to a certain extent. Polysty- rene was thermally cracked in a semi-batch reactor at 380-400 o C for 60 minutes. As the reaction temperature increased, the yields of product oil increased but those of light hydrocarbon oil were almost constant. Also, the selectivity of hydrocarbons corresponding to the styrene monomer and dimer was very high. Key words: Polystyrene, Pyrolysis, Thermogravimetric Technique E-mail: [email protected] 1. 1998 762 [1], 1997 polystyrene(PS) 95 , . . , [2-10]. , [4-6, 8]. , . , . , dioxine, furan , [7]. (material recycle) (chemical recycle) . , [4].

Transcript of Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA...

Page 1: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 732-738(Journal of the Korean Institute of Chemical Engineers)

��� ����� Polystyrene �� �� �

���†����*��**��� *** ����*

����� ����*���� ����

** ������� ����***���������� �������

(2000 2! 7" #$, 2000 7! 4" %&)

Pyrolysis Characteristics of Polystyrene on Stirred Batch Reactor

Seung-Soo Kim†, Byung-Hee Chun*, Chan Jin Park**, Wang Lai Yoon*** and Sung Hyun Kim*

Dept. of Env. Eng., Tonghae University, Tonghae, Korea*Dept. of Chem. Eng., Korea University, Seoul, Korea

**Dept. of Env. Eng., Junior College of Inchon, Inchon, Korea***Energy Conversion Team, Korea Institute of Energy Research, Taejon, Korea

(Received 7 February 2000; accepted 4 July 2000)

� �

� ����� ���� ���� �� ����� ����� 0.5, 1.0 � 2.0oC/min� �� !"� poly-

styrene# �$�� ��%& '(�)*. +� ���� polystyrene# �$ ,-.� 1%��/0 100%1 2

34# 56��74 � ��8'� ��)*. ��� 9:�; <(=� �>�� 56��74� ?<@A� BC�)

*. ������� ����� 380-400oC� �� !"� 60DE �$�� %& '(F GH ����C BC

I'J K6L �$ M1# NO BC�4P K6Q# RS' T� U# 1V�; WXYAZ, styrene [\] �

\� $^�� R�'S�_Q# `a6� bc d; WXY*.

Abstract − Kinetic tests on pyrolysis of polystyrene were carried out by thermo gravimetric technique heating the sample at

the rates of 0.5, 1.0, 2.0oC/min in a stirred batch reactor. The activation energy and the reaction order were determined at con-

versions from 1 to 100%. The activation energies increased slowly until the conversion increased to a certain extent. Polysty-

rene was thermally cracked in a semi-batch reactor at 380-400oC for 60 minutes. As the reaction temperature increased, the

yields of product oil increased but those of light hydrocarbon oil were almost constant. Also, the selectivity of hydrocarbons

corresponding to the styrene monomer and dimer was very high.

Key words: Polystyrene, Pyrolysis, Thermogravimetric Technique

†E-mail: [email protected]

1. � �

���� ��� ��� � 1998� ���� 762������

[1], 1997� �� polystyrene(PS) ���� 95�����, �� ���

� � !�"� #$�%. ���� �&' �()*+ ���

, -.� +/&� 0' 12�� !�� 3 4� �5�, 67

!8*, 9: �() ;< �=� �()+ >?3 @A� !�" #

$� BC: D, EF:�� GH < 0� IJKL �=��M N

++' OP Q%� R < 0%. S: IJTU� VMW, !�", 8

*X &' �=YZ� C[\]� ^� _[6 <`\� 0%[2-10].

!�� , #$&� a- Hbc�� ^� �\' de� Of,

Fg h ij k� 0%[4-6, 8]. Of� +: !�� + #$de

� Of)+ �l, IJTU h )mno+ �p k�� Of) qK�

:r6 0%. �� , _F&] s� Z5�, 6)� 0�t�, �u

Fg&v �()u ;<R < 0� !�"+ �pM GH < 0%' w

x� 0%. Nyz !�� , FgR JP �5 Z�� +: Fg�

+ �{�z �� � Fg� |� }, x~\' �� h Fg� +

- Z�\' dioxine, furan k �-6�+ ���=, �()+ �3c�

;<�= k� OP �C: ��x�� )c\� 0%[7].

!�� , ij&' de��' "�c ij(material recycle)

3 X�c ij(chemical recycle) k� 0%. "�c ij+ �

�� \' �� Hbc�� 65&v }�i��� 6�: 56F�

�� ��, 5JX� �� + JP�' ��-� �Li� �

&' de� 0%[4]. Nyz E� ��+ J���6 �)� �o�+

�j<�� ���� �� : � ��� "�, ;<&v i�&

' �� �: �{� �) �� ��� ij1c� OP �, �

732

Page 2: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

Polystyrene� ��� �� �� 733

 ¡� "$c�� 2¢, 3¢c� ij, R JP E£c��' ij

¤+ "$c� ¥� ¦&� !�"� \t� ��� c§c� #$

de��� R < V%.

X�c ij� !�� , �¨L+ ©�ª(monomer), «�X�

*¬ S' _¬� �&' de�%[4, 6, 8-9]. Hbc�� ��8u

©�ª� LI&' JP <­� PET, Nylon, Urethane k+ ester®

¨, 67 �¯¨� �� + JP�' D°c s)�, polyethylene

3 polypropylene k� ©�ª <­� � � ©�ª ij de��

' �c¨: ��� ±²³ 0%. 5�-de� �F´ µ¶ V� ·

� �F6 ¸¹: �º�� �»�� *¬"�, �-&' de�%[8].

��8 "�, 5�- de�� #$R JP 6_�+ �ª ·� ¼ª

�º+ _¬u ½, < 0' @A� 2¢ !�", Z�A¾) �'%

' wx, 6)� 0%. !�� , 5�-&�, � 6w ¿ wx

� �� + £À h �-Á�� �� 2M+ ¢�' 0)� 5,

6&] Âà �-6 6�&�, �� ��� TH3 6�' _¬� �

6�&� ���%.

Ä _[��' polystyrene(PS), 5�� �«e�� 65ÅMu Æ

XAÇ ½� 5��ÈÉ���Ê Ë�e, �&v LI­ ÆX� �

: j�X�()ÆX h bÌ¢<u [&�%.S: bÌ»M(380-400oC)

+ ÆX� �� ��� TH+ ��, �«&v 5�- bÌ ¥�,

�Í&�%.

2. ��� �

2-1. Polystyrene� �� �� ��

PS+ JP 5�- bÌ� +: ©�ª(monomer)+ ;<­� 60-

70% 2M� ±²³ 0��, ©�ª� ;<&v 8*�� ijR <

0' 6��� ¿ "�� ±²³ 0%. PS 5�-� Î: _[' ©

�ª+ ;<�� ^� 5�- bÌ� %Ï � �� � D- Â%

' x ��� ^� _[8�� +- 7`\Ð Ñ%[11-27].

PS+ 5�- bÌ� n�Ò� >©\Ð ©�ª� ;<\' ���

±²³ 0�� Fig. 13 4� �- bÌ �[u Ó'%[14]. Carniti k

� Ô<: PS' Fig. 2 4� �-�%� ZÕ&���, PS+ 5�-

� +: TH+ ;<­� 80% 2M��, 6�+ ��Ö� 10% Ë�

�� F�+ ×Q6 ��\' ��� ZÕ&�%[22].

2-2. ��� ��

TGA(Thermogravimetirc Analyzer)' »M+ Ø<�Ù ��ÆXu _

Åc�� Ú2&' wÛ�� ��8"�+ 5�- bÌ�� bÌ��"

+ ���«� Â) �� JP ��ÆX��Ê ÜÝ bÌ ÅM _[u

a- ^� �\Ð Ñ%. TGAu �: 5�� 1Þ� ß»ÅMu

H2&à �)&v à2� »Má) �ßA¾' Dk» 1Þ(non-

isothermal experimental)3 �2� »M�� < &' k» 1Þ(isother-

mal experimental)� 0%. Dk» 1Þ��' »M â6� �Ï A¬+

��ÆX6 0, < 0�� �u �W&v ÜÝ bÌ ÅM� �: _

[u R < 0�, k» 1Þ��' �2� »M�� Aã ÆX� �:

A¬+ ��ÆX��Ê ÜÝ bÌ ÅM� �: _[u <`R < 0%.

�� �W� 1Þä� Ë�e3 c�e, �&v 5�- 32��

HÐz' bÌ ÅM �<, j�X�() h bÌ ¢< k, r�R <

0%.

5�� �«e�� ½� ÈÉ+ �å���Ê Ë�e, �&v j

�X�(), bÌ¢< h bÌ ÅM �<u [&' _[' ^� 7`

\Ð Ñ%. Friedman� �æ: Dk» 5�� 1Þ®3+ -«� 6w

ç$ �\' de� �- àè&] %é3 4%[28-31].

5�- bÌ�� LIÅM dX/dt' %é { (7)3 4� Õê�%.

(7)

bÌ ÅM �< k' »M +/�, zë�' Arrhenius {� +-

{ (8)3 4%.

(8)

»M� +/&) �' LI­Ø< f(X)' { (9) 4� zëì < 0

%.

(9)

{ (8)3 (9)u { (7)� �í&v 2$&] { (10)3 4� Õê�%.

(10)

� (10)� ��� ��� � (11)� � ��� .

(11)

Xddt------- kf X( )=

k AE–

RT-------

exp=

f X( ) 1 X–( )n=

dXdt------- A E–

RT-------

exp 1 X–( )n=

dXdt-------

ln A 1 X–( )n[ ] ER----1

T---–ln=

Fig. 1. Mechanism of depolymerization of polystyrene.

Fig. 2. Mechanism of ββββ-scission of polystyrene.

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

Page 3: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

734 �� �������������

v��� A : îM�8(min−1)

n : b̢<

E : j�X�()(kJ/mol)

R : �ª�<(8.314 J/mol�K)

T : »M(K)

t : Aã(min)

X : LI­

a { (11)�� ln(dX/dt) 1/T+ Îru �&v �2� LI­��

j�X�()´ bÌ¢<u [R < 0%.

3. �

3-1. �� ��

PS' �Õc� 56F�<)�� styrene ©�ªu �¨&v ¨�&

�, H2: [Áu 67 syndiotactic polystyrene3 H2: [Áu 6

)� 0) �' atactic polystyrene�� [��%. Ä _[� ��

�� atactic polystyrene�� �ï��� +- vy 6) H¤, �

ð'ñ ��%. 6w ç$ �\' �ò' C[óô �, �[, õ

[ ·� PSu ZöAÇ� �÷ ��øô ù, L8�¤+ õ�� �Á

k P$+ �j nÆ�� úûà �\� 0%[4].

1Þ� �� PS+ "�Û�, Table 1� zë�ü��, *F �«

®3´ H/CDu Table 2� zë�ü%. H/CD' _¬+ ��66Ûu

zë�' ýM� �\�, 1Þ� �� PS+ H/CD6 1.06��%.

3-2. ��� ����� ��� ��

1Þ� �� A¬+ 5�� ÈÉ���Ê 5�- bÌ ÅMu Ú2

&� a- �þ� 1ÞwÛ' Fig. 3 4%. 1ÞwÛ' 5�- bÌ

�(R-201, Reaction Engineering), »M�ÿ� Á>wÛ, 5�- bÌ�

� ��� �ªu ̯A� < 0' ̯�, ̯�� �g�ªu �

�&' ÔI�(RBC-10, JEIO TECH), �ª+ å, Ú2&' �{6

�ËÊ(W-NK-1A, SINAGAWA CORP), ��� TH+ �Ãu Ú2

&' ¦�(GT410, OHAUS), �Ãu 1Aã�� �WR < 0' ñ�

Ê ¦w A� h ��� TH, �«&' Gas chromatography(M600D,

Young-Lin)� [�\Ð 0%.

5�-1Þ� %é3 4� de�� <`&�%.

(1)�p6 1,000 ml� 5�- bÌ�� 300 g+ 1ÞA¬u ní:

%. 1; 1Þ� ní� A¬+ å� �÷ 1Þ� @H&%.

(2) N2u bÌ�� Ð bÌ��� 0' ��u õL� ��A�%.

(3)°b�� bÌ", °bA¾]� bÌ�+ »Mu �%. 5�-

bÌ� 7`\) �' 0-300oCá)+ ß»ÅMu 10oC/min� �ßA

��� 300-500oC+ »M�a ��� ß»ÅMu 0.5-2.0oC/min� Æ

XA¾]� â6A�%.

(4)̯�u ÔI&' �ª+ »M' 0 oC� �2AÇ 5�- ��

", ̯A�%.

(5)̯� TH� ¦� a� 0' �� <�\� �c\' TH+

�Ã' ¦��� zT' RS-232C ��u ��Ê´ _®&v 10� ã

��� �ÃÆXu ¦w&�%. PS 5�- bÌ�� ��\' TH+

LI­(X)� %é { (12) 4� 2+&�%.

(12)

v�� W0, W W�' 1Þ� �� polystyrene+ �Ã, 5�- b

Ì�� ��� TH+ �à h polystyrene, 500oCá) 5�-&�

, � bÌ�� � 0' ËbÌ"+ �Ã�%.

(6) 5�- b�� ��� TH+ �F<' GCu �&v ASTM

D2887 de�� �«&�%.

3-3. GC� ��� �� �!

PSu 5�-&v ��� TH��3 �F< �ö' Dkx�öu �

&v ®2&�%. �«�' Gas Chromatography(GC)u �&��

� ASTM D 2887de, �: �� âÀu 9- �'x+ �öu

Ú2: %é Hewlett-Packard�� ��&' �F<´ �'xã+ 8¬

[33-34]u �&v TH��+ �F< �öu ®2&�%. �� �«A

¬� 5�-��"� CS2 O� 5%� ¸«&v GC� ní&�%.

GC+ �$��� �J� 0.53 mm,�� 5 m+ HP-1 capillary column,

�&�%. 5�- ��" �«, a: GC+ Y�c� Á�� %é3

4%. Detector' FIDu �&��, injector' 100oC�� 400oCá)

XW

W0 W∞–---------------------=

Fig. 3. Schematic diagram of pyrolysis reactor for thermogravimetricanalysis.1. Nitrogen bomb 9. Condenser2. Flowmeter 10. Circulator3. Ball valve 11. Solenoid valve4. Heater 12. Cylinder5. Pyrolysis reactor 13. Wet gas meter6. Thermocouple 14. Reservoir7. Stirrer 15. Balance8. Temperature, pressure and 16. GC

rpm controller 17. Computer

Table 1. Characteristics of polystyrene used in this study

Tg

[oC] ∆Cp

[J/g �

oC] Tm

[oC]∆Hm

[J/g �

oC]

PSa 313,700 169,500 101.48b 0.29b - -aHannam Chemical Co. [GP-150]bMeasured by DSC [PERKIN-ELMER 7 Series Thermal Analysis System]

Mw Mn

Table 2. Elemental analysis of polystyrene

Element(wt%) H/C ratio

C H N S

Polystyrene 91.60 8.07 - 0.15 1.06

���� �38� �5� 2000� 10�

Page 4: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

Polystyrene� ��� �� �� 735

10 oC/min�� ß»A��, oven� 50oC�� 350oCá) 10oC/min��

ß»A���, detector»M' 350oC� �2&�%. Carrier gas' Helium

, �&�� �� 17 ml/min�%.

3-4. Polystyrene ��� "#

PS' ��8u [�&' ©�ª(monomer)� ! ", &z# öØ

&� 0%. Ä _[� �� PS A¬+ �� $%�8�� 313,700

�� < $%�8�� 169,500�%.

bÌ ÿ� 1�ÿ�� 5�- bÌ� HÐz' 300-500oC+ »M[

ã�� 5�- bÌ�+ ß»ÅMu 0.5-2.0oC/min� ÆXA�, �

PS+ 5�� ÆX ÈÉ, Fig. 4� zë�ü%. Ä _[ L� <`:

8@¢ !&j�' ���«� ASTM D 2140�� <`&��� '

�(r6 58 wt%�� z)*r6 42 wt%� [�� +¨"�%. !

&j�u @H: bÌ��� ß»ÅMu 0.5, 1.03 2.0oC/min� �)

�, � 5�- bÌ� gg 419, 423, 437oC+ »M�� HÐz� A

þ�%. !&j�+ 5�- bÌ� 380oC�� ��� 7`\� Aþ&

��� 400-460oC »M[ã�� ��&à HÐ,%[2, 32]. @H: 1

ÞÁ��� PS' !&j� K% ? 20oC �� »M�� 5�-6 A

þ\ü%. PS+ 5��ÆX ÈÉ�� ß»ÅM6 0.5oC/minH � �

��6 �+ �É, zë�' »M' 365oC ���Ê��� �� L

I­� ? 5%�%. ��� � ��, 5�- bÌ� ��&à 7`\

' Aþ »M� K-, � 5�- bÌ� ��&à 7`\' »M�a

�� ß»ÅM6 þ,<W TH+ LI­� ��&à â6&' »M'

� 7%. �' @H: bÌ Á��� ß»ÅM6 �,<W H2: »

M� M.&' Aã� �Ð)� PS6 �-/ < 0' ªÀAã� â

6&� ���%.

PS+ ©�ª(monomer) �F<' C8�� 5�- 6� ��� �g�

+ »Mu 0 oC� Á>�, � ̯\) �' 6�+ å� �{6�Ë

Ê� Ú2&�%. PS+ JP 5�- bÌ 32 � �X<F �ª'

Ú2\) �-'ñ ��� 500oC �&+ ¦» 5�- bÌ�� PSu

5�-R JP 0�Ò� 0' ! "� �-\) �' �, +Ë:%.

��� �F< C4 �&� �X<FX¨"� ��\) �'%. PSu 5

�-&] n� ��\' �� styrene ©�ª´ ��ª(dimer) 4� æ

2: "��� F�+ 1�ª(trimer) kM ���%[18]. �´ 4� ®

3' Ä _[��M GCu �: �F< �«®3� q�&�%. ��

� PS+ 5�- bÌ�� bÌ LI­� { (12)u �&v TH+

å��� r�&�%. PS+ 5�- bÌ� bÌ ÿ�� 1�ÿH �

360oC ���� 7`\� Aþ&��� 370-410oC »M�a�� �

�&à HÐ,%. 5�� ÈÉ�� ���+ ä� 6)' +Ë' »M

ÆX� �Ï �� TH+ ÆX�, zë2%. @H: 1ÞÁ��� !

&j�u 5�-: ®3[2, 32]u PS D°�, � gg+ ß»ÅM�

� PS+ ���6 3 ¿ ä, zë4%. ��� PS+ �-bÌ� !

&j�K% 3 5� »M�a�� ��&à 7`�%' �, +Ë:%.

S: Westerhout k[19]+ _[� +&] 5�- bÌ�� 0�Ò,

67 ��8"�� 0�Ò, 6)� 0) �� �K% �� »M��

�-bÌ� 3 6 7`�%� ZÕ: �3 4� ®3�%.

Fig. 5' ß»ÅMu 0.5, 1.0 h 2.0oC/min�, � LI­ ÆXÅM

u »Mâ6� ��� zë2 ��%. LI­ ÆXÅM6 E�� »M

' gg+ ß»ÅM�� 376, 3913 401oC���, �� ��� $%

TH+ å� ? 40%�%. S: Fig. 4��Ê PS+ 5�- bÌ� L

I­� 5% ��H � ��&à 7`\' �, q�R < 0ü%. Ä

_[�� �: A¬' atactic polystyrene��, � JP PS+ 7'

x� /i&) �'%. ��� PS6 Tg(�$L�»M) ��+ »M��

¼��� /i&%6 5�- »Má) M.&] n�Ò+ �-6 �Å

&Ã 7`\' �, +Ë:%.

Fig. 6� ß»ÅMu ÆXA�, � gg+ ß»ÅM�� H2: LI

­H �+ LI­ ÆXÅM ln(dX/dt) 1/T��Ê r�: j�X�(

)u zë2 ��%. j�X�()' 5�- bÌ� Aþ/ ��Ê x

7c�� â6&' J�, zë�� 0�� LI­ ÆX� �� 164-

249 kJ/mol+ �a �� �ö&� 0%. ��� !&j�+ 5�- b

Fig. 4. Effect of different heating rates on the conversion in the pyroly-sis of polystyrene.

Fig. 5. Variation in the instantaneous reaction rate of polystyrene pyrol-ysis temperature at different heating rates.

Fig. 6. Calculated activation energies at different conversions of poly-styrene pyrolysis.

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

Page 5: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

736 �� �������������

Ì3 896)� PS 4� n�Ò� : ��8"�� 5�-/ �

D°c �8�� %å: %���� �-\' �, +Ë:%. LI­�

â6Ø� �� j�X�()6 â6&' ��' PS6 }� �º�

/i&%6 �-6 Aþ\]� bÌ���' D°c �F��6 ;�

�X<F X¨"3 n�Ò� <� ! "� �-\�, Aã� )��

�� x7c�� n�Ò+ C-C ®¨� �-\� ��� ��� =©�

%. Nyz Fig. 6�� LI­ ÆX� �- j�X�() �öä+ ú

� !&j�K% þ� �, ± < 0%. ��� PS6 �-/ � �-

��"� !&j�+ 5�- ��"K% D°c ©Ô: �º� �-�

%' �, +Ë:%. 1� ��"+ ��, GC� �«: ®3 styrene

©�ª´ ��ª� ->&' C83 C16 ��� 6w ^� ��� �,

q�R < 0ü%. GCu �: 5�- ��"+ �F< �«®3'

%é >� 8?� %@MW &A%.

Ä _[�� PSu 5�-�, � LI­ ÆX� ��� [: j�

X�()+ $%ä� 221.04 kJ/mol��%. � ä� Sato k� �F�

a��� 100-600oC+ »M�a�� r�: ä 177 kJ/mol, Wu k�

367-487oC+ »M�a�� r�: ä 173 kJ/mol3 Westerhout k�

365-400oC+ »M�a�� 5�- bÌ LI­� 70-90%H � r�

: ä 204 kJ/molK% ÁB s� ä, zë4%[10].

5�� ÆXÈÉ���Ê LI­ ÆX� �� [: bÌ¢<(n) î

M�8u { (11), �&v Fig. 8� zë�ü%. Ä _[�� PS6

5�-/ � ��� TH+ LI­��Ê r�: bÌ¢<' 0.32��

�, Sato k� �F�a��� 100-600oC+ »M�a�� r�: ä

0.75, Wuk� 367-487oC+ »M�a�� r�: ä 0.5 Westerhout

k� 365-400oC+ »M�a�� 5�- bÌ LI­� 70-90%H �

r�: ä 1K% �� ä, zë4%[10]. 1ÞÁ�� ��� %Ï _

[8�� [: bÌ¢<, j�X�() h îM�8u Table 3� zë

�ü%. gg+ ä�� 1Þ� �� A¬+ £À, 1Þ »M [ã h

1Þ���Ê ½� 5��®3�� ñ�Êu -«: LI­ [ã� �

� %F ¢�6 z' ��� =©�%.

»MÆX� �Ï PS+ 5�- ¥�, �Í&� a- bÌ»Mu �

2&� ��\' TH+ �Ãu Ú2&�� ��"+ Á�, �«&�

%. Fig. 9' à2»Mu 380, 390 h 400oC� �2&� ß»ÅMu

10oC/min� �)&v gg+ »M� M.: Aã ÆX� �Ï PS

+ 5��ÈÉ, zë2 ��%. DSC� �«: PS+ �$L�»M

(Tg)' 101.48oC���, �$L�»M K% 3 »Mu �ßA¾] PS

' ¼��� /i&%6 n�Ò� �-\� Aþ:%. Fig. 4+ 5��

�«�� q�: ®3 PSu 65&] ¼��� /i&%6 350oC �

��� n�Ò� �-\� Aþ&�%. à2� 5�-»M6 380oCH

� �-bÌ� 8� �Ê Aþ\ü� 390oC 400oC��' gg 6

�3 2� �Ê 5�- bÌ� Aþ\ü%. ��� à2»M� M.R

�á) ��� 5�� PS+ n�Ò, �-R < 0, 2M� ���

��\) �� ���%. 5�- »M 380oC, 390oC 400oC��+

Aã)_� �´ 4� �� ��� Z�: ��� =©�%. gg+

5�-»M�� 1Aã @æ �)&�, � TH+ LI­� 70.6, 73.1

h 83.8%���, @H: »M�� Aã� â6-M ��\' TH+

å� Qà Æ&) �' �, q�R < 0%. Fig. 4�� ß»ÅMu

ÆXA¾]� »Mu 500oCá) �ßA�, � PS+ TH LI­�

? 100%� M.�%. Nyz »Mu 400oC� �2A¾� 1Aã @æ

�)u -M bÌ LI­� 83.8%� zë,'ñ, ��� bÌ� ��

� 0' ���� ��� C-C ®¨� : ��8 "��� bÌAãK

% »M â6� +- oC&à �-\' "��� =©�%.

3-5. Polystyrene ��� $%� � �!

PS+ 5�-6 7`\) �' 20-300oC[ã� 10oC/min+ ß»Å

M� »Mu �ßA�� 5�- bÌ� 7`\' 300-500oC[ã�

0.5, 1.0 h 2.0oC/min+ ß»ÅM� »Mu �ßA�, � 5�- 3

2�� ��� TH+ ��, Fig. 9� zë�ü%. �� TH+ ��

�«� Gas Chromatographyu �: ASTM D 2887de�� <`

&�%.PS+ 5�-� ��� TH� ���� styrene ©�ª(monomer)

´ ��ª(dimer)� ->&' �F< �öu zë�� 0� F�+ 1

�ª(trimer)6 ��\ü%. Styrene©�ª´ ��ª ��� ->&'

C10-C13 �X<F X¨"� LD ��\) �-%. ��� 500oC �

&+ ¦» 5�- bÌ�� PS+ ©�ª� öØ� ! "� �-\

) �' �, q�R < 0%.

ß»ÅM6 �,<W @H: »M� M.&' Aã� E� ���

PS6 bÌ���� ªÀ&' Aã� �Ð)� PSu �-R � ��\

' 5�M â6&� ��� �F�Ò� 3 ;à �-�%. �F ®3'

Fig. 7. Overall reaction order in the pyrolysis of polystyrene.

Fig. 8. Effect of temperature on the pyrolysis rate of polystyrene.

Table 3. Kinetic parameters reported in literature for the pyrolysis ofpolystyrene

Authors T(oC) ζ(wt%) n(-) k0 Eact

(kJ/mol)

Sato et al. 100-600 - 0.75 3.5 �1011 177Wu et al. 367-487 - 0.5 5.0 �1010 173Westerhout et al. 365-400 70-90 1 3.3� 1013 204This study

313,700300-500 0-100 0.32 60.6 164-249

avg. 221Mw

���� �38� �5� 2000� 10�

Page 6: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

Polystyrene� ��� �� �� 737

.

s,

tics

y-

Fig. 9�� q�R < 0�� ß»ÅM6 �,<W styrene ©�ª NG

�� C9+ å� â6&��, styrene ��ª NG�� C16� CF&�

C156 â6&�%. S: styrene 1�ª� ->\' C24 �X<F X¨

"+ Ø�� GÐð' �, q�R < 0%. �L _[�� !&j�

5�- ��"� ¥2 �X<F+ ÉH�� �� b] PSu 5�-�,

� bÌ ��"� OP æ2: �º� /i&�, styrene ©�ª´ ��

ª+ ÉH�� OP s� �, ± < 0%.

Carniti k[18]� PS+ �-6 %é3 4� 2©r+ _ÅbÌ�� 7

`�%� 62&�%. �´ 4� �-bÌ mechanism� ë>�� 0'

��� =©�%.

k1PS (and heavy products of partial degradation) � (13)

k2C13-C24 � C6-C11 (14)

Table 4' 380, 390h 400oC+ »M�� 1Aã@æ PSu 5�-�,

� ��TH, C5-C113 C12-C25 I Y+ �X<F X¨" NG��

[�&v ��J Ø�, zë2 ��%. 1Þ� 20oC�� 380, 390

h 400oCá) M.\' @æ+ »M�ßÅMu 10oC/min� à2&�

1Þ»M�� 1Aã@æ �)A�%. ��� TH+ �F< �«®3�

� »M6 â6R<W C5-C11+ Ø�� CF&�%. �´ 4� ê��

»M6 â6R<W PS+ 5�- ÅM6 K�� PS+ 5�- ��"�

� styrene ��ªz 1�ª k� %A �-\Ð styrene ©�ª� �

-/ < 0' ��: ªÀAã� �l&� ��� ��� �g�%.

PSu 5�-&v �F�Ò, ��� þà LÐ� styrene ©�ªu ;

<&�z ·� _¬� �&� a: _¬�u ½� a-�' 5�-

bÌ »M h H2: ªÀAã� BC&%. Ä _[�� �� ;�

{ bÌ�´ 4� open system��' »M6 â6Ø� �� �-ÅM

6 â6&v 5�- 32�� ��� �ã"�� bÌ��� ªÀ&]

� K% �F<6 þ� �X<F "�� �-\) M&� âZ\� �

�� »M6 â6R<W C5-C11+ Ø�� CF&' ��%.

Fig. 8�� 1Aã ��� TH+ LI­� 380oC, 390oC 400oC

�� gg 70.6%, 73.2% 83.8%�%. ��� ��� TH+ LI­

, �²�, � 400oC�� C5-C11 �X<F X¨"+ Ø�� 6w ¿

�, ± < 0%.

4. � �

Polystyrene+ 5�� ÆX ¥�, 'N&� a&v ß»ÅM´ »M

u ÆXA¾]� 5�-u <`&v ½� ®O� %é3 4%.

(1);�{ bÌ��� ß»ÅMu ÆXA¾]� polystyrene+ 5�-

bÌ 1Þ, <`&v gg+ LI­�� j�X�()u r�&���

j�X�()' LI­ ÆX� �� 164-249 kJ/mol+ �a �� �ö&

�%. j�X�()' LI­� â6R<W x7c�� â6&�%. 1Þ

ä, �&v LI­ ÆX� �� [: bÌ¢<(n)' 0.32�%.

(2) Polystyrene+ ß»ÅM ÆX� �: 5�� 1Þ���Ê ���

TH+ �F< �« ®3 styrene ©�ª´ ��ª� �: ÉH�� O

P sà zë,%.

(3);�{ bÌ�+ »Mu 380oC, 390oC 400oC� �2&v

5�- 1Þ, <`&�, � gg+ »M�� ��� TH+ LI­�

70.6%, 73.1% 83.88%�%. ��� TH+ LI­3 �F< �« ®

3u �²�, � 400oC�� C5-C11 �X<F X¨"+ Ø�� 6w

¿ �, ± < 0%.

���

1. Register of Korean Plastic Industries, Plastics Information(1999)

2. Kim, S.-S.: “Pyrolysis Characteristics of Waste Lubricating Oil, Plastic

and their Mixtures,” Ph.D Thesis, Korea University(2000).

3. Son, J. E., et al.: “Study of Technologies for Recovering Energy from

Specified Wastes,” Ministry of Science & Technology(1993)

4. Kim, H., Song, B., Park, C. and Park, Y.: “A Study on The Generation

and The New Technologies for the Recycling of The Commingled Plas

Waste,”Korea Resources Recovery & Reutilization Corporation(1996).

5. Seo, I. S.: Polymer Technology, 36, September, 9(1996).

6. Choi, J. W.: Polymer Technology, 36, September, 38(1996).

7. Shin, D. H.: Polymer Technology, 36, September, 52(1996).

8. Brandrup, J.: “Recycling and Recovery of Plastics,” Hanser Publish-

ers(1996).

9. Scheirs, J.: “Polymer Recycling,” John Wiley & Sons(1998).

10. Westerhout, R.: “Recycling of Plastic Waste by High Temperature P

rolysis,” Ph.D Thesis(1998).

11. Seul, S. D., Kim, N. S., Wang, S. J. and Na, S. D.: Journal of the

Korea Institute of Rubber Industry, 30(2), 105(1995).

12. Sato, S�, Murakata, T�, Baba, S�, Saito, Y� and Watanabe, S.: Jour-

Fig. 9. Carbon number distribution in polystyrene pyrolysis at differ-ent heating rates.

Table 4. Analysis of product oil for the pyrolysis of polystyrene-effect oftemperature(380-400oC)

Temperature(oC)

Conversion(%)

C5-C11

( % )C12-C25

(%)>C25

(%)

380 70.6 66.48 33.52 -390 73.1 58.86 41.14 -400 83.8 56.90 43.10 -

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

Page 7: Polystyrene - CHERIC · Polystyrene 735 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000 10 oC/min oA ß» ,oven 50 C 350oCá) 10 C/min ß»A ,detector»M' 350 oC% 2& .Carriergas' Helium,

738 �� �������������

u-

nal of Applied Polymer Science, 40, 2065(1990).

13. Kim, G. J., Jo, D.-S., Yoon, C.-H. and Won, Y.-M.: J. Korean Solid Wastes

Engineering Society, 12(3), 279(1995).

14.����: �����, 46(4), 50(1994).

15.����, �� !, "#$%, &'(): *+(Japan), 36(5), 342

(1994).

16.,'-.: /012(Japan), 41(11), 79(1994).

17. Madras, G.� Chung, G.Y., Smith, J. M. and McCoy, B. J.: Ind. Eng.

Chem. Res., 36, 2019(1997).

18. Carniti, P., Beltrame, P. L., Armada, M., Gervasini, A. and Audisio,

G.: Ind. Eng. Chem. Res., 30(7), 1624(1991).

19. Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M. and van Swaaij,

W. P. M.: Ind. Eng. Chem. Res., 36(6), 1955(1997).

20. Fan, X., Okazaki, H., Yamnye, M., Hamada, T., Yanai, T., Take-

mura, S. and Kito, T.: Ind. Eng. Chem. Res., 35(10), 3431(1997).

21. Xue, T. J. and Wilkie, C. A.: Polymer Degradation and Stability, 56,

109(1997).

22. Carniti, P., Gervasini, A., Beltrame, P. L., Audisio, G. and Bertini, F.:

Applied Catalysis A : General, 127, 139(1995).

23. Ghim, Y. S.: HWAHAK KONGHAK, 30, 133(1992).

24. Ghim, Y. S., Cho, S. H. and Son, J. E.: HWAHAK KONGHAK, 30, 261

(1992).

25. Madras, G., Smith, J. M. and McCoy, B. J.: Polymer Degradation and

Stability, 58, 131(1997).

26. Oh, S. W. and Broadbelt, L. J.: Catalysis Today, 40, 121(1998).

27.345, 678: “9:;<=>?@ ABC <=>DEF GHI,”

�JKLMN, OPQR 81-870.

28. Liebman, S. A. and Levy, E. J.:“Pyrolysis and GC in Polymer Analy-

sis,” MARCEL DEKKER, INC.(1984).

29. Liebman, S. A. and Levy, E. J.: “Pyrolysis and GC in Polymer Anal-

ysis,” MARCEL DEKKER, INC.(1984).

30. Friedman, H. L.: Journal of Polymer Science, 6, 183(1963).

31. Antal, M. J. Jr., Friedman, H. L. and Rogers, F. E.: Combustion Sci-

ence and Technology, 21, 141(1980).

32. Kim, S. S., Yoon, W. L. and Kim, S. H.: HWAHAK KONGHAK, 37,

828(1999).

33. ASTM D 2887, “Standard Test Method for Boiling Range Distrib

tion of Petroleum Fractions by Gas Chromatography”.

34. Lintelmann, K. A.: Analytical Chemistry, 67(12), 327(1995).

���� �38� �5� 2000� 10�