Polynomials, Number Theory, and Experimental Mathematics ¢â‚¬¢...

download Polynomials, Number Theory, and Experimental Mathematics ¢â‚¬¢ Experimental mathematics in number theory:

of 41

  • date post

    18-Jul-2020
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Polynomials, Number Theory, and Experimental Mathematics ¢â‚¬¢...

  • Challenges in 21st Century Experimental Mathematical Computation

    Polynomials, Number Theory, and Experimental Mathematics Michael Mossinghoff! Davidson College

    ICERM! Brown University! July 21-25, 2014

  • Overview

    • Three experimental investigations.

    • Highlight facets of experimental approach.

  • 1. Refining Directions in Research

  • Barker Sequences • a0, a1, ..., an−1 : finite sequence, each ±1.

    • For 0 ≤ k ≤ n−1, define the kth aperiodic autocorrelation by

    • k = 0: peak autocorrelation.

    • k > 0: off-peak autocorrelations.

    • Goal: make off-peak values small.

    • Barker sequence: |ck| ≤ 1 for k > 0.

    ck = n�k�1X

    i=0

    aiai+k.

  • Polynomials

    • Erdös, Littlewood, Newman, Mahler: Do there exist polynomials with all ±1 coefficients that remain flat over the unit circle?

    • A long Barker sequence would be much flatter than best known polynomials.

    • Let f(z) = n�1X

    k=0

    akz k.

  • All(?) n Sequence 1 + 2 ++ 3 ++- 4 +++- 5 +++-+ 7 +++--+- 11 +++---+--+-

    13 +++++--++-+-+

    Barker Sequences

    • Turyn & Storer (1961): No more of odd length.

  • Properties • n = 4m2, with m odd.

    • Each prime divisor of m is 1 mod 4.

    • m must satisfy certain complicated conditions.

    • For each p | m, one requires either

    • qp−1 ≡ 1 mod p2 for some prime q | m, or

    • p | q−1 for some prime q | m.

    • Former: (q, p) is a Wieferich prime pair.

    • Rare! q = 5: only p = 53471161, 6692367337, 188748146801 up to 1017.

  • • Leung & Schmidt (2005): m > 5⋅1010, so n > 1022.

    • No plausible value known in 2005!

    • Do any exist?? Experiment!

    Lower Bounds

  • • Wish to find all permissible m ≤ M.

    • Create a directed graph, D = D(M).

    • Vertices: subset of primes p ≤ M.

    • Directed edge from q to p in two cases:

    • qp−1 ≡ 1 mod p2 and pq ≤ M.

    • p | (q − 1) and pq ≤ M.

    • Need a subset of vertices where each indegree is positive in the induced subgraph.

    Search Strategy

  • Results • M. (2009):

    • Leung & Schmidt (2012):

    n = 189 260 468 001 034 441 522 766 781 604, n > 2⋅1030.or

    If a Barker sequence of length n > 13 exists, then either

    Two new restrictions for the Barker problem.

  • If a Barker sequence of length n > 13 exists, then

    • Leung & Schmidt (2012):

    n > 2⋅1030.

    Results

  • • Theorem (P. Borwein & M., 2014): If n > 13 is the length of a Barker sequence, then either

    n = 3 979 201 339 721 749 133 016 171 583 224 100, or n > 4⋅1033.

    More Recent Result

    138200401

    295341

    29

    5 13138200401

    295341

    13

    • Large list of additional plausible values.

  • 99995507756741087451736040784945981261228240243352 81106341441590852061005613123255433352037667736004

    76704103313

    97 4794006457

    53 13

    349 29

    89

    12197

    3049

    41

    268693

    149

    37

  • 0.0 0.1 0.2 0.3 0.4 0.5

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    I c e r m

  • 2. Discovering Identities

  • Mahler’s Measure • f(z) =

    nX

    k=0

    akz k = an

    nY

    k=1

    (z � �k) in Z[z].

    • M(f) = |an| nY

    k=1

    max{1, |�k|}.

    • (Kronecker, 1857) M(f) = 1 ⇔ f(z) is a product of cyclotomic polynomials, and a power of z.

    • Lehmer’s problem (1933): Is there a constant c > 1 so that if M(f) > 1 then M(f) ≥ c?

    • M(z10+z9–z7–z6–z5–z4–z3+z+1) = 1.17628… .

  • Measures and Heights

    • Height of f: H(f) = max{|ak| : 0 ≤ k ≤ n}.

    • For r > 1, let Ar denote the complex annulus Ar = {z ∊ C : 1/r < |z| < r}.

    • If H(f) = 1 and f(β) = 0 (β ≠ 0) then β ∊ A2.

    • Bloch & Pólya (1932), Pathiaux (1973): If M(f) < 2 then there exists F(z) with H(F) = 1 and f(z) | F(z).

  • Newman Polynomials • All coefficients 0 or 1, and constant term 1.

    • Odlyzko & Poonen (1993): If f(z) is a Newman polynomial and f(β) = 0, then β ∊ Aτ, where τ denotes the golden ratio.

  • • Is there a constant σ so that if M(f) < σ then there exists Newman F(z) with f(z) | F(z)?

    • Assume f(z) has no positive real roots.

    • Can we take σ = τ?

    Newman Polynomials • All coefficients 0 or 1, and constant term 1.

    • Odlyzko & Poonen (1993): If f(z) is a Newman polynomial and f(β) = 0, then β ∊ Aτ, where τ denotes the golden ratio.

  • Degree Measure Newman Half of Coefficients 10 1.17628 13 ++000+ 18 1.18836 55 ++++++0+000000000+000000000 14 1.20002 28 +00+0+00000000 18 1.20139 19 +00+0++++ 14 1.20261 20 ++0000000+ 22 1.20501 23 ++++0+00+0+ 28 1.20795 34 +0+000000000000+0 20 1.21282 24 ++0000000 20 1.21499 34 +0+0+000000+0+000 10 1.21639 18 ++0000000 20 1.21839 22 +000++0++++ 24 1.21885 42 +++++0000000++0000000 24 1.21905 37 +00+0+0++0+0+00000 18 1.21944 47 ++++++000+0000000000000 18 1.21972 46 ++000++0000+00000000000 34 1.22028 95 ++++++++++++++0+++++++++000000000+00000000000000

  • Pisot and Salem Numbers • A real algebraic integer β < –1 is a (negative)

    Pisot number if all its conjugates β´ have |β´| < 1.

    • All such numbers > –τ are known: four infinite families and one sporadic.

    • A (negative) Salem number is a real algebraic integer α < –1 whose conjugates all lie on the unit circle, except for 1/α.

    • Salem: If f(z) is the min. poly. of a Pisot number β of degree n, then zmf(z) ± znf(1/z) has a Salem number αm as a root (for large m) and αm → β.

  • Experimental Investigations

    • Can we represent small negative Pisot and Salem numbers with Newman polynomials?

    • Given f(z), determine if there is a Newman polynomial F(z) so deg(F) = N and f(z) | F(z).

    • Sieving strategy: f(k) must divide F(k) for several k.

  • ++0+0+++++0+++0+++++0+0++ ++0+0+++0000+++++++0000+++0+0++ ++0+0+00+00++0+++++0++00+00+0+0++ ++0+0+++++0+0000+0000+0+++++0+0++ ++0+0+++00++000+++000++00+++0+0++ ++0+0+00+0++0+0+0+0+0+0++0+00+0+0++ ++0+0+++00++000+00+00+000++00+++0+0++ ++0+0+++0000+00+0+++0+00+0000+++0+0++ ++0+0+++0000++00+0+0+00++0000+++0+0++ ++0+0+00+++0+00000+++00000+0+++00+0+0++ ++0+0+00+000000+++0+++0+++000000+00+0+0++ ++0+0+00+00++000+0+0+0+0+000++00+00+0+0++ ++0+0+00+++0+00000+00+00+00000+0+++00+0+0++

    Q+5,4(z)(z24 � 1)(z5 + 1) (z8 � 1)(z6 � 1)(z2 � 1) ,

    Q+5,4(z)

    (z � 1)2 = 1 + 3z + 4z 2 + 5z3 + 6z4 + 6z5 + 5z6 + 4z7 + 3z8 + z9

  • z(zn + 1)

    ✓m�32X

    k=0

    z2k ◆✓n/2X

    k=0

    zk(m+2n+1) ◆ +

    n+m�12X

    k=0

    zk(n+2).

    Q+m,n(z) � z(m+2n+1)(n+2)/2 � 1

    � � zn+1 + 1

    (zm+2n+1 � 1)(zn+2 � 1)(z2 � 1) =

    • Leads to (m odd, n even):

    Q+m,n(z) � z(m+n)(m�1)/2 � 1

    (zm+n � 1)(zm�1 � 1)(z2 � 1)

    =

    m+n 2 �1X

    k=0

    zk(m�1) + z

    ✓n�32X

    k=0

    z2k ◆✓m�32X

    k=0

    zk(m+n) ◆ .

    • m, n both odd:

  • Theorem (H. & M.): If α > −τ is a negative Salem number arising from Salem’s construction on the minimal polynomial of a negative Pisot number β > −τ, then there exists a Newman polynomial F(z) with F(α) = 0.

    Theorem (Hare & M., 2014): If β is a negative Pisot number with β > −τ, and β has no positive real conjugates, then there exists a Newman polynomial F(z) with F(β) = 0.

    Results

  • omplex Pisot

  • 3. Opening New Avenues

  • |⇡(x)� Li(x)| = O �p

    x log x � .

    ⇡(x) ⇠ Li(x) = Z

    x

    2

    dt

    log t

    ⇠ x log x

    .

    ⇣(s) = X

    n�1

    1

    ns =

    Y

    p

    � 1� p�s

    ��1 .

    • Prime Number Theorem:

    • Riemann Hypothesis:

    • Riemann zeta function:

    A Bit of Number Theory

  • • Zeros of ζ(s) ↔ Distribution of primes.

    • Nontrivial zeros of ζ(s) lie in “critical strip,” 0 < Re(s) < 1.

    • PNT ↔ No zeros on Re(s) = 1.

    • RH ↔ All nontrivial zeros on Re(s) = 1/2.

    • Zero-free region in critical strip ↔ Information on distribution of primes.

  • • Best known zero-free region (Vinogradov): ζ(σ + it) ≠ 0 if

    • Explicit version (Ford 2002): R1 = 57.54.

    • Other bounds:

    • Explicit versions: Better for small |t|.

    • Crossover around exp(10000).

    � > 1� 1 R1(log |t|)2/3(log log |t|)1/3

    .

    � > 1� 1 R0 log |t|

    .

  • de la Vallee Poussin 1899 30.468

    Westphal 1938 17.537

    Rosser & Schoenfeld 197