Polycrystal theory and simulation Small scale crystal plasticity

27
Multiscale modeling of metal forming considering microstructure and texture: micro to macro F. Roters, M. Friák, J. Neugebauer, D. Raabe Department of Microstructure Physics and Metal Forming 06. April 2009

description

Motivation Overview Products Boundary conditions Complex engineering materials Performance in service Consider microstructure and texture Multiscale models

Transcript of Polycrystal theory and simulation Small scale crystal plasticity

Page 1: Polycrystal theory and simulation Small scale crystal plasticity

Multiscale modeling of metal forming considering microstructure and texture: micro to macro

F. Roters, M. Friák, J. Neugebauer, D. Raabe

Department of Microstructure Physics and Metal Forming

06. April 2009

Page 2: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Overview

Motivation Polycrystal theory and simulation Small scale crystal plasticity Large scale polycrystal mechanics Quantum mechanics and crystal mechanics

Page 3: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Motivation

Overview

Products Boundary conditions Complex engineering materials Performance in service

Consider microstructure and texture

Multiscale models

Page 4: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Overview

Motivation Polycrystal theory and simulation Small scale crystal plasticity Large scale polycrystal mechanics Quantum mechanics and crystal mechanics

Page 5: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Al Bicrystals, low angle g.b. [112] 7.4°, v Mises strain

SSD

10% 20% 30% 40% 50%

experiment

viscoplasticphenomen.model

dislocation-based model;g.b. model

von Misesstrain [1]

Page 6: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Polycrystal mechanics: homogenization

?

stress / strain in grain1 grain2 grain3 grain4…. ?

Page 7: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

activecrit

33

11.

T

T

T

T

differentstresses

same strain

Single crystal yield surface, Taylor Bishop-Hill

critijljlkik bana

1 crystal, 1 slip system:33

11

active)(1crits

...

.

slip system 2

slip system 1

active)(2crits

imposed stress

internal stress

tota

l stre

sscrit

ijsljl

skik bana

1 crystal, 2 slip systems:

Page 8: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

....

..

.

.11

33

imposed strain

grain 1

grain 2

grain 3

grain 4

stre

ss in

gra

in 1

stres

s in

grain

2

stress

in grain 3

stress in grain 4

Single crystal yield surface, Taylor Bishop-Hill

Many crystals, many slip systems:

Page 9: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

3% 8%

15%

Homogeneity and boundary conditions – meso-scale

M. Sachtleber, Z. Zhao, D. Raabe: Mater. Sc. Engin. A 336 (2002) 81

Page 10: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Crystal Mechanics FEM (General): full field; direct CPFEM

D. Raabe: Adv. Mater. 14 (2002) 639; Acta Mater. 49 (2001) 3433

Page 11: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.deD. Raabe: Adv. Mater. 14 (2002) 639; Acta Mater. 49 (2001) 3433

Crystal mechanics FEM (General): CPFEM & homogenization

Page 12: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Overview

Motivation Polycrystal theory and simulation Small scale crystal plasticity Large scale polycrystal mechanics Quantum mechanics and crystal mechanics

Page 13: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de* GND: geometrically necessary dislocations (accomodate curvature)

[-110][111

]

[11-2]

Misorientation angle

20°

Zaafarani, Raabe, Singh, Roters, Zaefferer: Acta Mater. 54 (2006) 1707; Zaafarani, Raabe, Roters, Zaefferer: Acta Mater. 56 (2008) 31

[11-2] rotations experimentexperiment3D EBSD3D EBSD

dislocation-baseddislocation-basedCPFEMCPFEM

expe

rimen

t

sim

ulat

ion

[-110][111

]

[11-2]

-+ -

+-+-+ -

+-+

Nanoindentation (smaller is stronger)Cu, 60° conical, tip radius 1μm, loading rate 1.82mN/s, loads: 4000μN, 6000μN, 8000μN, 10000μN

Hardness and GND* in one experiment

Higher GND density at smaller scales responsible ?

[-110]

[11-

2]

[111]

Page 14: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Example: Micro-bending

Page 15: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Crystal Mechanics FEM, grain scale mechanics (2D)

Experiment (DIC, EBSD)v Mises strain

Simulation (CP-FEM)v Mises strain

Page 16: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

1mm

21mm

8mm

5mm

5mm

Crystal plasticity FEM, grain scale mechanics (3D)

Zhao, Rameshwaran, Radovitzky, Cuitino, Roters, Raabe (IJP, 2008)

FE mesh

exp., grain orientation, side A exp., grain orientation, side B

equivalent strain

equivalent strain

Page 17: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Crystal plasticity FEM, grain scale mechanics (3D)

D. Kumar, T.R. Bieler, P. Eisenlohr, D.E. Mason, M.A. Crimp, F. Roters, D. Raabe: Journal of Engineering and Materials Technology (Transactions of ASME) 130 (2008) 021012-1 - 021012-12andIJP 2009 in press

Page 18: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Overview

Motivation Polycrystal theory and simulation Small scale crystal plasticity Large scale polycrystal mechanics Quantum mechanics and crystal mechanics

Page 19: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

10 billion grains in an auto part

too manycrystals

Page 20: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Homogenization and cluster models in CPFEM

Raabe, Roters: Intern. J. Plast. 20 (2004) 339; Raabe et al.: Adv. Eng. Mater. 4 (2002) 169; Zhao, Mao, Roters, Raabe: Acta Mater. 52 (2004) 1003

Page 21: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Crystal Plasticity FEM: large scale

Page 22: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Example: crystal plasticity FEM for automotiveNumerical Laboratory

Page 23: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Overview

Motivation Polycrystal theory and simulation Small scale crystal plasticity Large scale polycrystal mechanics Quantum mechanics and crystal mechanics

Page 24: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Ab initio alloy design: Ti alloys for medical application

Approach: DFT*: design elastically soft BCC Ti; understand ground state;

obtain single crystal elastic constants Polycrystal coarse graining including texture and anisotropy

Hershey homogenization

discrete FFT

crystal elasticity FEM

plane wave pseudopotential (VASP)

cutoff energy: 170 eV

8×8×8 Monkhorst

supercells of 2×2×2 cubic unit cells

total of 16 atoms

48 bcc and 28 hcp configurations

* DFT: density functional theory

Page 25: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Elastic properties: Ti-Nb system

Ti-18.75at.%Nb Ti-25at.%Nb Ti-31.25at.%Nb

Az=3.210 Az=2.418 Az=1.058

[001]

[100] [010]

Young‘s modulus surface plots

Pure Nb

Az=0.5027

Az= 2 C44/(C11 − C12)

D. Ma, M. Friák, J. Neugebauer, D. Raabe, F. Roters: phys. stat. sol. B 245 (2008) 2642

HersheyFFTFEM

Page 26: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Discrete FFTs, stress and strain; different anisotropy

stress

strain

Hershey, FEM, FFT similar for random texture

Ti-35wt.%Nb-7wt.%Zr-5wt.%Ta: 59.9 GPa (elastic isotropic)

Page 27: Polycrystal theory and simulation Small scale crystal plasticity

Dierk Raabe, lecture MFPT 2009, Dortmund, www.mpie.de

Simulation of complex materials, products, and processes (boundary condtions) requires

a) Advanced characteriation of microstructureb) Multiscale modelsc) Advanced mechanical testingd) Quantum mechanics for engineering

applications

Summary