Poly Olefin Handbook

90
Polyolefin Manual Copyright © Main Industries — www.mainind.com 1 Polyolefin Manual The Polyolefin Manual is a comprehensive guide to the theoretical and practical consideration of polyolefin pipe.

Transcript of Poly Olefin Handbook

Page 1: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 1

Polyolefin Manual The Polyolefin Manual is a comprehensive guide to the theoretical and practical consideration of polyolefin pipe.

Page 2: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 2

Theoretical Considerations

Terminology Plastics are organic polymers. Organic means a chemical compound of carbon, with other elements such as hydrogen, chlorine, oxygen or nitrogen. Polymer is the word to describe a large molecule made up of many similar units (monomers). This is achieved by a chemical reaction and is called polymerisation. Copolymers: When a homopolymer is copolymerised with another polymer, the result is a copolymer. With polypropylene this is achieved by copolymerisation with ethylene.

This results in an increase in impact strength and toughness, but decrease in stiffness, surface hardness and tensile strength. A thermoplastic is defined as plastic which can be softened and shaped by heating and which solidifies again on cooling, and in which the cycle can be repeated indefinitely. Examples are PE, PP, PVC, and ABS. In contrast, a thermoset can only be shaped by heat. It has a much higher temperature resistance that thermoplastics and cannot be reprocessed. An example is polyester resins. The fundamental difference is that thermosets have a crosslinked (network) structure. Polyolefins is the name for the family of polymers: HDPE, LDPE, and PP.

Definitions Impact Strength:

1. The ability of a material to withstand shock loading. 2. The work done in fracturing, under shock loading, a specified test specimen in a specified manner.

Modulus of Elasticity The ratio of stress to strain in a material that is elastically deformed. Notch Sensitivity The extent to which the sensitivity of a material to fracture is increased by the presence of a surface in homogeneity such as a notch, a sudden change in section, a crack, or a scratch. Low notch sensitivity is usually associated with ductile material, and high notch sensitivity with brittle materials. Tensile Strength The pulling stress required to break a given specimen. Area used in computing strength is usually the original, rather than the necked-down area. Thermal Conductivity Ability of a material to conduct heat; physical constant for quantity of heat that passes through unit cube of a substance in unit of time when difference in temperature of two faces is 1°. Thermal Expansion (Coefficient of) The fractional change in length of a material for a unit change in temperature. Thermoplastic (a.) Capable of being repeatedly softened by heat and hardened by cooling. (n.) A material that will repeatedly soften when heated and harden when cooled. Typical of the thermoplastics family are the styrene polymers and copolymers, acrylics, cellulosics, polyethylenes, vinyls, nylons, and the various fluorocarbons materials.

Page 3: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 3

Thermoset A material that will undergo or has undergone a chemical reaction by the action of heat, catalysts, ultra-violet light, etc., leading to a relatively infusible state. Typical of the plastics in the thermosetting family are the aminos (melamine and urea), most polyesters, alkyds, epoxies and phenolics. Viscosity Internal friction of resistance to flow of a liquid. The constant ratio of shearing stress to rate of shear. In liquids for which this ratio is a function of stress, the term ‘apparent viscosity’ is defined as this ratio.

Molecular Structure Note that through the process of polymerisation, the propylene becomes polypropylene and ends up as a long ‘chain-like’ molecule. Example: n = 2000 to 40000 in HDPE = 10000 to 20000 in PP Where n = number of monomers.

Physical Properties and their Relationship Melt Flow Index

Molecular Mass (MM) is a very important concept in plastics which describes the viscosity of a polymer and hence its flow and conditions for processing. A high MM has a more viscous melt and does not flow as easily as one with a lower MM. The Melt Flow Index (MFI) is generally used to characterise the molecular mass and is therefore a very important indicator of the type and properties of a polymer. MFI is determined as the mass of polymer extruded in a certain time through a standard die under a specific load and temperature. Low MFI indicates that a polymer is very viscous and of a high MM. Lowering the MFI has the following positive effects on polymers by increasing:

• Tensile strength • Elongation at break • Impact strength • Resistance to creep • Toughness • Environmental stress crack resistance

It should however be noted that as MFI decreases the processing characteristics of the material are negatively affected. Tensile Strength The longer a polymer chain is, the more likely it is to be entangled with other chains and the more difficult to separate. In general terms then, it means that the tensile strength is increased with longer chains (increase in MM). Stiffness Stiffness can be measured by applying tensile forces to a specimen. The result is reported as a tensile modulus or modulus of elasticity in tension.

Page 4: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 4

Hardness Hardness is measured by finding the load required to indent a specimen by a standard amount with a spherical ball. Different scales are used, i.e. Shore, Rockwell and Brinell respectively, for softer to harder materials. Impact Resistance Many plastics, which are stiff and have high tensile strength, can have low impact resistance. This failing can be overcome to some extent by including a proportion of finely dispersed rubber in the thermoplastic (Usually during the process of polymerisation, but sometimes also by blending). It is important to note, however, that the impact strength is increased at the expense of some other properties, such as stiffness, hardness and tensile strength. Chemical Resistance A General rule in organic chemicals is that ‘like dissolves like’, e.g. a liquid hydrocarbon will dissolve a solid hydrocarbon of similar structure. When a polymer is crystalline, (such as in PE, PP) this situation is somewhat different, because it then only applies at higher temperatures. At room temperature, they normally withstand the solvent with slight swelling. It is important to note then, that temperature becomes a critical factor when considering chemical resistance.

Modification of Properties Ultra Violet Light Untreated plastics get brittle very soon when exposed to sunlight. For polyethylene, best results are obtained by the addition of 2 – 3% carbon black. Polypropylene can be treated in the same way, but then needs additional head stabilisation. Normally other types of additives are used, such as hindered amine light stabilisers (HALS). Exposure to sunlight is normally measured in kilolangley (kly), which is a unit of irradiation. 1 kly = 1 k cal.cm² Flammability The addition of compounds such as antimony trioxide and halogenated organic compounds, can improve the fire resistance of a polymer, but not without the loss of other physical properties, such as impact strength. Fire retarding can be expressed by an index figure, called the limiting oxygen index (LOI). Static Electricity To remove the build-up of static of the surface of plastics, it is sometimes necessary to reduce the surface resistibility. This can be done by incorporating an antistatic additive into the polymer. Oxidation To prevent degradation of the polymer at high temperatures, certain additives are included during polymerisation or prior to conversion to pipe.

Page 5: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 5

Physical Properties

Introduction This section of the manual consists of tables which describe the following:

• Typical Values of HDPE • Typical Values of PP Co-polymer • Comparison of HDPE and uPVC Pipes • Comparison of HDPE and PP with other Plastics Pipe Material

Typical Values of HDPE Property Value Unit Test Method Test Conditions

Density at 23°C 0.958 g/cm3 ASTM D 792 DIN 53 479

Method A2 Method A

Viscosity Number 340 ml/g ISO/R 1191 0.1% Solution in decahydronaphthalene

MFI 190/5 0.35 g/10 min ASTM D 1238 DIN 53 735 Method A, Condition P

Melt Flow Index MFI 190/21,6 12.0 g/10 min ASTM D 1238

DIN 53 735 Method A, Condition F

Tensile Properties

Tensile yield strength Elongation at yield Ultimate tensile strength Elongation at break

26 16 35 >600

N/mm2 % N/mm2 %

ASTM D 638 DIN 53 455

Testing rate 100mm/min Specimen IV9, 1mm Compression moulded Specimen 4, 1mm Compression moulded

Rockwell R 51 - ASTM D 785 Procedure A, Compression moulded specimen

Ball indentation (30 sec value) 41 N/mm2 DIN 53 456 132 N

Hardness

Shore D 64 - ASTM D 2240 DIN 53 505 Loading time 1s

Notched IZOD : 23°C 160 J/m ASTM D 256 Compression moulded specimen Impact Strength

Charpy : 23°C 12 mJ/mm2 DIN 53 453 Compression moulded specimen

Crystalline Melting Range 127 –

131 °C Polarising microscope. Microtome section, 20µm

Vicat Softening Point 127 °C

ASTM D 1525 DIN 53 460

Rate A, 5mm compression moulded specimen Method A/50, compression moulded specimen

Average Linear Expansion Co-Efficient (Between 20°C and 90°C)

2.0 x 10-4 K-1 DIN 53 752 50 x 4 x 4 (mm)

Thermal Conductivity at 20°C

0.43 W m.K DIN 52 612 8mm specimen, injection

moulded

Page 6: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 6

Typical Values of PP Co-polymer Table 1

Property Value Unit Test Method Test Conditions

Density at 23°C 0.912 g/cm3 ASTM D 792 DIN 53 479

Method A2 Method A

MFI 230/2.16 0.2 g/10 min ASTM D 1238 DIN 53 735

Method A, Condition L Preform, sintered from granules Melt Flow Index

MFI 230/5 0.9 g/10 min DIN 53 735 Preform, sintered from granules

Tensile Properties

Tensile yield strength Elongation at yield Ultimate tensile strength Elongation at break

25 17 30 850

N/mm2 % N/mm2 %

ASTM D 638 DIN 53 455

Testing rate 50mm/min Specimen IV9, 1mm compression moulded Specimen 4, 1mm compression moulded

Rockwell R 86 - ASTM D 785

Procedure A, Compression moulded specimen

Ball indentation (30 sec value) 49 N/mm2 DIN 53 456 132 N

Hardness

Shore D 66 - ASTM D 2240 DIN 53 505 Loading time 1s

Impact Strength Notched IZOD: 23°C Notched IZOD: 0°C

630 45 J/m ASTM D 256

Compression moulded specimen

Mod.Charpy: 23°C Mod.Charpy: 0°C

39 15 mJ/mm2 DIN 53 453

V-Notched (R = mm) Compression moulded specimen

Crystalline Melting Range 160 -

164 °C

Polarising microscope. Microtome section, 20µm

Vicat Softening Point 149 °C

ASTM D 1525 DIN 53 460

Rate A, 4mm compression moulded specimen Method A/50, compression moulded specimen

Average Linear Expansion Co-Efficient (Between 20°C and 90°C)

1 – 2 x 10-4 K-1 DIN 53 752 50 x 4 x 4 (mm)

Thermal Conductivity at 20°C

0.22 W K DIN 52 612 8mm specimen,

injection moulded

Specific Heat at 20°C 1.68 kJ

kg.K Adiabatic calorimeter, granules

Page 7: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 7

Typical Values of PP Co-polymer Table 2

Property Value Unit Test Method Density 0.908 G/cm3 DIN 53479 A Melt Flow Index (230/5) 1.5 G/10min DIN 53735

Tensile Properties Ultimate tensile strength Elongation at break

30 400

N/mm2 % DIN 53455

Hardness Impact Strength

Ball indentation hardness Notched impact strength 0°C

53 15

N/mm2 MJ/mm2

DIN 53456 DIN 53453

Thermal Properties Average Linear Expansion Co-Efficient (Between 20°C and 90°C) Thermal Conductivity at 20°C

Crystalline melting range

160 – 164 1 – 2 x 10-4 0.22

°C K-1 W mK

Polarising Microscope DIN 53752 DIN 52612

Comparison of HDPE and uPVC Pipes

HDPE uPVC

Flexibility

High Bending radius at 20°C = 30 x diameter Unaffected by soil settlement Suitable for relining

Low Bending not possible Affected by soil settlement Limited use for relining

Joining Weldable Joints have excellent tensile strength Costly equipment required to weld

Welding not relevant Push-in joints have low tensile strength Low cost joints

Pipe Lengths Big sizes up to 24m depending on transport Small sizes in coils of 100m

Normally 6 or 12m Normally 6 or 12m

Pipe Sizes Up to 1 000mm dia. (currently in RSA) Up to 500mm dia.

Density 0.95 g/cm3 1.4 g/cm3

Wall Thickness

Hoop stress = 5 N/mm2 Ex 110mm x 6 bar pipe Wall thickness = 6.6mm Mass = 2.2kg/m

Hoop stress = 10 N/mm2 Wall thickness = 3.2mm Mass = 1.74kg/m

Thermal Expansion 0.2mm/m°C 0.08mm/m°C

Abrasion Resistance Excellent Limited

Elastic Modulus 800 N/mm2 3 000 N/mm2

Flammability

Ignites on contact with flame and continues to burn when flame is removed. No corrosive gases/residues are formed.

Chlorine atoms make PVC flame retardant – ceases to burn when flame is removed. Hydrogen Chloride is formed.

Page 8: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 8

Comparison of HDPE and PP with Other Plastic Pipe Material

Property HDPE PP PVC PVC-C PB Surface Feel Waxy Waxy Smooth Smooth Waxy Appearance (Water Pipes) Black Pale grey-

beige Blue Grey-beige Black

Sound Produced When Dropped

Medium clatter High clatter High clatter High clatter Dull thud

Combustibility and Appearance of the Flame

Bright flame drops continue to burn while falling

Bright flame; drops continue to burn while falling

Carbonises in flame; extinguishes away from flames

Carbonises in flame; extinguishes away from flames

Bright flame drops continue to burn while falling

Odour of Smoke After Flame is Extinguished

Like candles Like resin Pungent, like hydrochloric acid

Pungent, like hydrochloric acid

Like candles but more acrid than HDPE

Nail Test Impression Made by Fingernail

Impression possible

Very slight impression possible

Impression not possible

Impression not possible

Impression easily produced

Special Features Smears when sawn

Float in Water Yes Yes No No Yes Notch Sensitivity No Slight Yes Yes No Weather Resistance

Stabilised good

Stabilised good Stabilised good Stabilised good Stabilised

good Method of Permanent Joining

Fusion Fusion Solvent cement

Solvent cement Fusion

Suitable for Mechanical Joining

Yes Yes Yes Yes Yes

Stress Crack Sensitivity with Regard to Jointing for Save Media, e.g. Water

Some Slight None None None

Linear Expansion mm/m°C 0.2 0.15 0.08 0.07 0.12

Thermal Conductivity kcal/mh°C

0.40 0.19 0.14 0.14 0.20

Specific Heat kcal/kg°C 0.42 0.4 0.23 0.23 0.47

Specific Weight kg/cm3 0.955 0.905 1.42 1.5 0.92

Tensile Strength at 20°C kp/cm2 240 320 550 550 200

Modulus of Elasticity at 20°C (kp/cm2)

8 000 15 000 30 000 30 000 5 000

Page 9: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 9

Typical Values of HDPE

Property Value Unit Test Method Test Conditions Density at 23°C 0.958 g/cm3 ISO 1183 10mm x 10mm x 4mm

Viscosity Number 380 ml/g ISO 1628-3 0.1% Solution of granules in decahydronaphthalene

MR 190/5 0.23 g/10 min ISO 1133 Granules, sample weight 3g to 6g Melt Flow Index

MFI 190/21, 6 6.5 g/10 min ISO 1133 Granules, sample weight 3g to 6g

Yield stress 26 N/mm2 ISO 527 Test rate 50mm/min

Elongation at yield Stress 10 % ISO 527 Test rate 50mm/min

Tensile Modulus of Elasticity (secant between 0.05 & 0.25% strain)

900 N/mm2 ISO 527

Tensile Properties

Tensile Creep Modulus (1 hour value) (1000 hour value)

650 350

N/mm2 N/mm2

ISO 899 Test load 2N/mm2

ISO 3167, 4mm thick (test specimen No. 3, 4mm thick according to DIN 53 455

Flexural Creep modulus (1 min value) 1100 N/mm2

DIN 54 852-Z4, σb=2N/mm2

110 x 10 x 4 (mm) loaded flat Flexural

Properties Flexural Stress (3.5% deflection) 20 N/mm2 ISO 178 Test

rate 2mm/min 80 x 10 x 4 (mm)

Stiffness in Torsion 180 N/mm2 DIN 53 447 60 x 6.35 x 3 (mm)

Ball Indentation Hardness 41 N/mm2

ISO 2039, part 1 test load 132N

Sheet, 4mm

Hardness Shore Hardness D (3sec value) (15sec value)

61 59

- -

ISO 868 Sheet, 6mm

at 23°C 20 kJ/m2 Notched Impact Strength acN (test specimen from compression moulded sheet)

at -30°C 10 kJ/m2 ISO 179/1eA 80 x 10 x 4 (mm)

Vicat Softening Point VST/B/50 67 °C ISO 306 Sheet, 4mm

Oxidation Induction Time 200°C in O2 min ISO TR 10837 Granules

Page 10: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 10

Advantages of HDPE and PP The advantages of HDPE and PP are as follows:

• Non-toxic • High impact strength • High resistance against corrosion – internal and external • High chemical resistance • Toughness • Flexibility • Ease of handling and laying • Can be made in long lengths • Excellent resistance against abrasion • No build-up of minerals on inside walls, i.e. crustations • Weather resistance • Expected life of 50 years or more • Smooth surface with low friction losses, i.e. hydraulic smooth C-value (Hazen Williams) = 150-165, K-

value (Prandtl – Coalbrook) = 0.007mm • Very low water absorption • No stress cracking • Suitable for high temperature application (PP)

Even a thin walled pipe will revert to its original shape

A thick walled pipe shows enormous resistance against compression

Ease of handling

Page 11: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 11

Long Lengths

Flame Resistant

Page 12: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 12

Applications

PP and HDPE The following are typical application of Polyflow PP and HDPE pipes: Collieries and Mines Coal washing plants and reduction works, drainage, effluent and slurry pipelines. Sugar Industry Acids, ammonia, brine, carbon dioxide, sugar solutions, syrups, molasses, water and effluent pipelines, tanks, spray irrigation. Chemical Works Acids, alkalis, gases, solutions, water and effluent pipelines. Steel factories Pickling and etching lines, acids, water, effluent, slurry pipelines and vessels. Nuclear Power Plants and Power Stations Water, chemicals and safe radioactive drainage, seawater, effluent pipelines. Paper Board Mills Alum, bleach, caustic soda, pulp stock, water pipelines and vessels. Coke Oven Plants, Coal Gas Works Acids, ammonium sulphate, ammonia by-products, slurry and drainage pipelines and tanks. Aircraft and Automobile Industries, Plating Shops Plating solutions, fume removal ductwork, pickling and etching plants, water, drainage and effluent pipelines and vessels. Breweries, Distilleries, Soft Drinks Factories Alcohol, beer, brine, caustic soda, carbon dioxide, spirits, demineralised water, bottling, pipelines and tanks. Civil Engineering Drainage, dewatering, slurries, water and effluent pipelines. Oil Refineries Air pipelines, water pipelines, acids and alkali pipelines. Railways Air, water lines, carriage cleaning lines. Hospitals Laboratory drainage, storage tanks and pipelines. Sewage Works Compressed air lines for activated sludge. Water Works and Water Treatment Plants Chemicals and dosage lines, compressed air pipelines. Salt Mines Brine and water pipelines

Page 13: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 13

Textiles and Synthetic Fibres, Leather Tanning Acids, alkalis, bleach peroxide, acetic acid, dye liquors, sulphide, water, hot effluent pipelines, and storage tanks. Spray Irrigation Overhead and underground spray irrigation systems. Relining The relining or sliplining process is a method of renovation of old pipelines by way of inserting another pipe inside the old one. This is done on site, without removing the existing line. The excellent physical and chemical properties of HDPE and PP make them ideally suitable for this process. In particular the flexibility and toughness of these materials are of importance. HDPE for instance, can be bent to radii of 30 x diameter or 20 x diameter for class 4 or 6 respectively. Ultimate tensile stress is 32 N/mm² and calculations will show that pulling in continuous lengths of up to hundreds of metres does not overstress the material. Application includes sewer, gas, water and effluent lines, and wherever existing pipes are leaking, collapsing or corroding. In most cases the existing pipe is in good enough condition to act as a casing and to take up the mechanical stress due to outside loading. This leaves the liner of HDPE or PP to cater for hydraulic conditions only. If the space between the original and new pipes is filled with grout, an even higher pressure can be used in the line. HDPE and PP pipes are measured by outside diameter, and the inside diameter depends on the different wall thicknesses which in time depend on the nominal pressure rating. Plastic pipes must therefore be selected to leave as little space between the two pipes as possible, thereby giving the maximum possible, internal diameter for flow. Although the cross-sectional area of the flow is reduced, it is compensated for by the very smooth walls of the plastic liner. HDPE and PP pipes have extremely good characteristics in this respect, and furthermore retain these properties throughout their lifespan (Prandtl-Colebrook k= 0.007). In most cases the same volume can be transported through the relined pipes without additional drop in pressure. Relining is an economical way of addressing problems with old pipelines, and possible savings of up to 75% can be achieved against the cost of complete replacement. The other major advantage is of course the reduced disruption in the area of environment and traffic. More detailed information on the relining process is available from Main Industries.

LDPE LDPE (Low Density Polyethylene) pipe is primarily used in agricultural application (i.e., low pressure water supply lines, drip irrigation, etc.).

Polyflow Steel Polyflow Steel is a composite pipe which combines the best properties of steel and HDPE. In the unique patented production process the HDPE liner is considerably less stressed than in other processes. Features include a high pressure capability, rigidity, long supporting distances.

Polyflow GRP Polyflow GRP, a composite pipe comprising HDPE or PP pipe encased in glass fibre-reinforced polyester (GRP), withstands harsh conditions. Pipe rigidity is improved, thermal movement reduced and thermal insulation gives a K value less than 1% to that of steel. Pressure rating can be increased to 10Mpa.

MI Megapipe FR HDPE pipes are coated with a flame retardant compound applied by crosshead extrusion. The compound, comprising ammonium polyphosphate and a synergistic additive package, forms an integral outer skin of the piping. When exposed to heat it intumesces to form a carbonaceous char, thus preventing ignition of the piping. FR piping systems are entirely safe for underground mining application.

Page 14: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 14

Specifications

South African Production and quality control of the different pipe materials are specified and regulated by the following authorities and specification:

• HDPE – SABS 533 Part II – 1982 • HDPE Type 4 – SABS 533 Part III – 1992 • HDPE Type 5 – SABS 533 Part III – 1995 • PP – SABS 1315 – 1981 as amended 1987 • LDPE – SABS 533 Part I – 1982

In addition to these product specifications, ISO 9002 Quality Management System regulates all procedures of the manufacturing company.

International

ISO DP 4427.2 ISO 4437

Polyethylene (PE) pipes and fittings for water supply (PE 50 option B) Buried polyethylene (PE) pipes for the supply of gaseous fuels

D

DIN 8074 DIN 8075 DVGW W 320 DVGW G 477 GKR R 1.3.3

Rohre aus Polyethylen hoher (PE –HD), MaBe Rohre aus Polyethylen hoher (PE –HD), Allgemeine Güteanforderungen – Prüfung Herstellung, Gütesicherung und Prüfung von Rohren aus PVC-hart, HDPE und LDPE für Wasserversorgung und Anforderungen an Rohrverbindungen und Rohrleitungsteile. Herstellung, Gütesicherung und Prüfung von Rohren aus PVC-hart und HDPE für Gasleitungen und Anforderungen an Rohrverbindungen und Rohrleitungsteile. Druckrohre aus HDPE, Typ 2 mit Gütezeichen der GKR.

A Onorm B 5172 Rohre aus Polyethylen für Wasserleitungen.

B NBN T 42 – 008 Tubes sous pression en polyethylene.

CH SN 218 341 Rohre und Rohrleitungsteile aus Hartpolyethylen (PE II)

DK DS 2131.2 Pipes, fittings and joints of polyethylene type PEM and PEH for buried gas pipe liner (type PEM).

F

NF T 54-072 CEMP 15/5 Gaz de France

Tubes en polyéthylène 5 (classe 5-2). Règlement pour l’attribution et le fonctionnement de la marque de qualité des tubes en polyéthylè 5 (classe 5.2). Tubes en polyéthylène 5, Gaz 4 (classe 5-2).

GB

BS 6437 WRC 4-32-02 WRC 4-32-03 WRC 4-32-04 British Gas PS/PL2

Polyethylene pipes (Type 50) in metric diameter for general purposes. Specification for polyethynele pressure pipe for cold potable water (underground use). Specification for polyethynele pressure pipe for cold potable water (for nominal sizes greater than 63). Specification for polyethynele fusion joints and fittings for use with cold potable water pressure pipes. Specification for polyethylene (PE) pipes and fittings for natural gas and manufactured gas.

S SS 3362 Plastic pressure pipes of PE (Type PEM 50)

SF SFS 3422 Plastic pressure pipes of MD-PE. Dimensioning stress 5 N/mm2 quality requirements.

Page 15: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 15

Jointing

Summary Category Type Size Range (mm) HDPE PP LDPE

Permanent (Heat Fusion)

Butt weld Socket weld Electro-fusion weld Poly prop

75 – max 16 – 110 20 – 500 20 - 110

X X X

X X X

Non-Permanent * (Mechanical)

Flange Coupling & shoulder Compression -Plastic Insert coupling

75 – max 75 – 250 16 – 110 10 -80

X X X

X X X

X

Butt Fusion Welding

Page 16: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 16

Procedure

1. Set up the equipment.

2. If necessary, erect a welding tent to protect against wind and dust.

3. Mount the facing plane (trimmer).

4. Align the parts to be welded (with the aid of roller mountings or other supports).

5. Clamp the pipes or pipe, and fitting and seal the pipe ends.

6. Plane the joint faces

7. Remove the plane.

8. Remove shavings – do not touch pipe ends by hand.

9. Check parallelity of joint faces by bringing them together (maximum gap 0.5mm).

10. Check pipe alignment (maximum 0.1S = 10% of wall thickness).

11. Clean the heating area of the heating plate with non-fluff paper and methylated spirit.

12. Check the welding temperature (210 ± 10º C). With S > 12mm, aim at lower temperature range.

13. Insert the heating plate.

14. Press the pipe faces against the heating plate until a bead is formed all round the pipe circumstance in accordance with the table of guide values.

15. Reduced the pressure setting for heating up (soak period).

16. After sufficient heating up, release the joint faces from the heating place.

17. Remove the heating plate and immediately join the parts to be welded. Do not exceed the maximum changeover time specified in the table of guide value.

18. Steadily increase the jointing pressure or force from 0 to the final value; follow the jointing time specified in the table of guide values after final value (0.15 MPa).

19. Allow the weld to cool with the jointing pressure maintained; follow the table of guide values here. K must be greater the 0 at all points.

20. When the cooling time has elapsed, the welded joint can by removed from the clamps. Note: It is good practice to record all pressure, temperature and time values for each weld. Pressure Time Diagram

Page 17: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 17

Constants for Butt Welding

Pipe wall Thickness

(mm)

Height of bread

prior to heating

time (mm)

Heating time in

seconds *(at pressure =

0.01 N/mm2)

Allowable time to remove

heating element and bring pipe ends together

(seconds)

Welding time (seconds) to build up to

max. pressure *(=0,15 N/mm2)

Cooling time in minutes

*(at 0.10 – 0.15

N/mm2) 2.0 - 3.9 0.5 30 - 40 4 4 - 6 4 - 5 4.0 - 6.9 0.5 40 - 70 5 6 - 8 6 - 10 7.0 - 12.0 1.0 70 - 120 7 8 - 12 10 - 16

12.1 – 19.0 1.0 120 – 170 9 12 – 15 17 – 24 19.1 – 27.0 1.5 170 – 210 12 15 – 20 25 – 32 27.1 – 33.0 1.5 210 – 300 14 20 – 25 33 – 40 33.1 – 40.0 2.5 300 – 450 16 25 – 35 41 – 50 40.1 – 50.0 3.0 450 - 600 18 35 - 45 51 - 60

Socket Fusion Welding

In this method, fusion jointing is carried out using heated tools, with the fitting overlapping the pipe. No additional materials are used. The pipe end and fitting socket are heated to fusion temperature using a heating bush and a heating spigot respectively, and are then pushed together. Procedure

1. Set up welding shelter if required.

2. Heat heating tool to welding temperature.

3. Clean heating devices with a non-fuzzy, absorbent and non-tinted paper and spirit.

4. Check welding temperature: (260 ± 10)º C.

5. Clean inside fitting sleeve with cleaning agent and absorbent, non-fuzzy and non-tinted paper.

6. Machine the square cut pipe end which is to be welded in accordance with data provided by fitting manufacturer and – if necessary – mark depth of insertion.

7. Push fitting and pipe simultaneously onto the spigot and then, respectively, into the sleeve of the heated tool as far as the stop or the marking.

8. Observe heating time according to Table 8, Heating Column.

9. Withdraw fitting and pipe sharply from the heated tool and push them together immediately without twisting, as far as the marking or stop (maximum changeover time).

10. Allow joint to cool (see Cooling Column in the Recommended Values Table below).

Page 18: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 18

Recommended Values Recommended values for the heated tool sleeve welding of pipeline components of HDPE at an ambient temperature of 20°C and moderate air flow (time required).

Heating Outside pipe diameter

mm For class 10

sec For class 6

sec

Changeover sec

Cooling min

16 5 - 20 5 - 4 2 25 7 * 32 8 * 40 12 * 6 4 50 18 * 63 24 * 75 30 15 8 6 90 40 22 110 50 30 125 60 30 10 8

Electro-fusion Welding All electro-fusion fittings employ the same basic principal. The socket of the fitting incorporates an electrical heating coil. When energised, the coil causes the material adjacent to it to melt and form and expanding pool along the surface of the pipe, which in turn becomes molten, leading to fusion of the pipe and socket. The DuraPipe DuraFuse electro-fusion system and the full product range carry BS5750, ISO9001, and EN29001. The system operates at 39,5V and complies with all electrical safety standards. The Calder control unit may be powered by a portable generator. DuraFuse couplings in PE are available in sizes from 20mm to 315mm and electro-fusion reducer couplers from 20mm to 180mm. Couplings in PP material range in sizes from 20mm to 110mm. DuraFuse is compatible with PE pipe manufactured to SABS 533 specifications in metric sizes. Procedure

1. Cut pipe square and remove burrs.

2. Thoroughly scrape the outer surface of each pipe or spigot fitting to remove the surface layer from the areas to be welded.

3. Assemble the joint and ensure that both components to be welded are in contact with the pipe stops inside the coupling.

4. Mark the pipe (or spigot fitting) around the edge of the coupling.

5. The joint should be clamped in all cases where it is not held in a secure position during welding.

6. Attach the leads from the control unit and enter the number of seconds required for jointing.

7. Press the start button.

Page 19: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 19

8. On completion of the cycle leave the joint undisturbed for the full cooling period indicated.

9. Tapping tees and branch saddles designed for top loading must be assembled onto the pipe-using tool. In the case of a tapping tee, the treaded cap must be removed and the cutter raised until one complete thread is visible.

10. Branching saddles require a hole cut into the pipe before welding.

11. Tapping tees contain an integral cutter. When cutting through large diameter pipes, the cutting torque will be high. Thread followers are available and recommended for pipes larger than 180mm.

Flanging (HDPE & PP) Stub Flanges

Class 4 & 6 Class 4 - 10 Class 12 - 20

OD D B C B C B C 20 46 - - 40 15 40 15 25 56 - - 40 15 40 15 32 65 - - 40 15 40 15 40 73 - - 50 20 60 27 50 83 - - 50 20 60 27 63 98 - - 50 20 60 27 75 110 - - 50 20 60 27 90 129 - - 50 20 60 27

110 158 - - 60 27 75 27 125 160 - - 70 27 75 35 140 188 - - 60 27 75 35 160 217 - - 70 35 100 35 180 217 - - 80 35 100 55 200 270 - - 70 35 100 55 225 270 - - 90 45 100 55 250 325 - - 80 45 120 55 280 325 - - 90 45 120 75 315 375 - - 100 55 130 75 355 430 - - 100 55 120 75 400 486 - - 110 65 120 75 450 540 - - 110 65 120 75 500 585 - - 103 67 - - 560 645 - - 108 70 - - 630 725 105 64 120 77 - - 710 805 120 70 - - - - 800 905 122 77 - - - - 900 1005 135 85 - - - -

1000 1110 145 96 - - - -

Page 20: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 20

Bolt dimensions for flanged connection Flange drilled to SABS 1193 of 1977 (Rating 1000 and 1600 kPa)

Bolts Length of bolts Plastic to plastic Plastic to steel OD

No Size Class 4&6

Class 4-10

Class 12-20

Class 4&6

Class 4-10

Class 12-20

20 4 M12 - 75 75 - 65 65 25 4 M12 - 75 75 - 65 65 32 4 M12 - 75 75 - 65 65 40 4 M16 - 90 100 - 75 75 50 4 M16 - 90 100 - 75 75 63 4 M16 - 90 100 - 75 75 75 4 M16 - 90 100 - 75 75 90 8 M16 - 90 100 - 75 75

110 8 M16 - 115 125 - 90 90 125 8 M16 - 115 125 - 90 90 140 8 M16 - 115 125 - 90 90 160 8 M20 - 140 180 - 115 125 180 8 M20 - 140 180 - 115 125 200 8 M20 - 140 180 - 125 125 225 8 M20 - 165 180 - 125 125 250 12 M20 - 180 230 - 125 165 280 12 M20 - 180 230 - 140 165 315 12 M20 - 200 230 - 140 165 355 16 M20 - 200 230 - 140 165 400 16 M24 - 230 255 - 165 165 450 20 M24 - 230 255 - 165 180 500 20 M24 - 230 - - 165 - 560 20 M24 - 230 - - 165 - 630 24 M24 - 300 - - 200 - 710 24 M24 255 - - 200 - - 800 24 M30 300 - - 230 - - 900 28 M30 325 - - 230 - -

1000 28 M30 350 - - 255 - - NOTE: The bolt diameters and length refer to flanges drilled to the above standard only. The lengths of bolts allow for gaskets and washers.

Page 21: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 21

Specifications - Galvanised Steel Backing Rings

BS 10 Table D ASA 150

Dimensions Bolts Dimensions Bolts O/D D DI B PCD No. Size D DI B PCD No. Size

20 95.5 30 8 66.7 4 M12 88.9 30 10 60.3 4 M12 25 101.6 38 8 73.0 4 M12 98.4 38 10 69.8 4 M12 32 114.3 45 8 82.6 4 M12 107.9 45 10 79.4 4 M12 40 120.6 52 10 87.3 4 M12 117.5 52 12 88.9 4 M12 50 133.3 63 10 98.4 4 M12 127.0 63 12 98.4 4 M12 63 152.4 74 10 114.3 4 M16 152.4 74 12 120.6 4 M16 75 165.1 86 10 127.0 4 M16 177.8 86 12 139.7 4 M16 90 184.1 103 12 146.0 4 M16 190.5 103 12 152.4 4 M16

110 215.9 136 15 177.8 4 M16 228.6 136 15 190.5 8 M16 125 215.9 136 15 177.8 8 M16 228.6 136 15 190.5 8 M16 140 254.0 158 15 209.6 8 M16 254.0 158 15 215.9 8 M16 160 285.0 190 15 235.0 8 M16 279.4 190 20 241.3 8 M20 180 285.0 190 15 235.0 8 M16 279.4 190 20 241.3 8 M20 200 336.3 237 16 292.1 8 M16 342.9 237 20 298.4 8 M20 225 336.3 237 16 292.1 8 M16 342.9 237 20 298.4 8 M20 250 406.4 279 16 355.6 8 M20 406.4 279 25 361.9 12 M24 280 406.4 292 20 355.6 8 M20 406.4 292 25 361.9 12 M24 315 457.2 330 20 406.4 12 M20 482.6 330 30 431.8 12 M24 355 527.1 376 23 469.9 12 M20 533.4 376 30 476.2 12 M24 400 577.9 430 23 520.7 12 M24 596.9 430 30 539.7 16 M24 450 641.4 476 25 584.2 12 M24 635.0 476 30 577.8 16 M32 500 704.9 533 25 641.4 16 M24 698.0 533 30 635.0 20 M32 560 825.5 592 30 755.7 16 M24 812.8 592 35 749.3 20 M32 630 825.5 662 30 755.7 16 M24 - - - - - - 710 908.1 737 30 844.6 20 M24 - - - - - - 800 - - - - - - - - - - - - 900 1174.7 942 30 1092.2 24 M32 - - - - - -

1000 1257.3 1045 30 1174.7 24 M32 - - - - - -

Page 22: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 22

BS 4504 10/3 SABS 1123 1000/3 BS 4504 16/3 SABS 1123 1600/3

Dimensions Bolts Dimensions Bolts O/D D DI B PCD No. Size D DI B PCD No. Size

20 95 30 10 65 4 M12 95 30 10 65 4 M12 25 105 38 10 75 4 M12 105 38 10 75 4 M12 32 115 45 10 85 4 M12 115 45 10 85 4 M12 40 140 52 12 100 4 M16 140 52 12 100 4 M16 50 150 63 12 110 4 M16 150 63 12 110 4 M16 63 165 74 12 125 4 M16 165 74 12 125 4 M16 75 185 86 12 145 4 M16 185 86 12 145 4 M16 90 200 103 12 160 8 M16 200 103 12 160 8 M16

110 220 136 15 180 8 M16 220 136 15 180 8 M16 125 220 136 15 180 8 M16 220 136 15 180 8 M16 140 250 158 15 210 8 M16 260 168 16 210 8 M16 160 285 190 20 240 8 M20 285 190 20 240 8 M20 180 285 190 20 240 8 M20 285 190 20 240 8 M20 200 340 237 20 295 8 M20 340 237 20 295 12 M20 225 340 237 20 295 8 M20 340 237 20 295 12 M20 250 395 279 25 350 12 M20 405 279 25 355 12 M24 280 395 292 25 350 12 M20 405 292 25 355 12 M24 315 445 330 25 400 12 M20 460 330 25 410 12 M24 355 505 376 25 460 16 M20 520 376 25 470 16 M24 400 565 430 27 515 16 M24 580 430 27 525 16 M24 450 615 476 30 565 20 M24 640 476 30 585 20 M24 500 670 533 30 620 20 M24 - - - - - - 560 730 592 36 675 20 M24 - - - - - - 630 835 662 36 780 20 M24 - - - - - - 710 895 737 40 840 24 M24 - - - - - - 800 1,015 840 45 950 24 M30 - - - - - - 900 1,115 942 50 1,050 28 M30 - - - - - -

1000 1,230 1,045 55 1,160 28 M30 - - - - - -

Victaulic Jointing System The system uses standard steel clamps, requires only two fastening bolts and is easily and quickly installed.

It is robust, with exceptional mechanical strength, economical and available in all standard popular sizes. Polyclamp is used in pipelines for the transportation of water, slurries, chemicals and air in mining, construction, manufacturing, processing and agricultural industries.

Pipe OD mm 50 63 75 90 110 125 140 160 180 200 225 250 280 315 Steel clamp mm 50 80 80 100 100 150 150 150 200 200 250 250 300 300

Compression Type Couplings Compression fittings are designed to operate up to 1600 kPa constant working pressure and are suitable for fitting to High Density Polypropylene, uPVC and Polyethylene piping to metric ISO sizes. The fittings are suitable for potable water as well as most common fluids in pipelines. The fittings have approval for use by South African Government departments and municipalities.

Page 23: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 23

Plastics – in standard sizes from 16mm to 110mm in diameter. Brass – in sizes of 15, 22, 28, 35, 42, and 54mm in diameter.

Taklamp Jointing Clamp

Pipe OD A B C 110 165 212 86 125 186 237 80 140 198 245 95 160 215 272 104 180 246 300 105 200 278 322 111 225 293 348 108 250 322 373 118 280 354 402 122

Page 24: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 24

Takstubs Type L <=400

kPa

Type H <=1600

kPa Pipe OD D

W W 110 142 - 53 125 167 - 55 140 175 - 60 160 196 52.5 65 180 224 65 65 220 246 - 68 225 272 - 74 250 297 78 75 280 326 - 78

Taklamp Taklamp, patented by Mega Pipe, was originally designed to fill a particular need in the gold mining industry.

Page 25: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 25

Clamps and shoulders have been developed for all pipe sizes from 110mm to 280mm OD. Two types of Taklamp system are available: high pressure (up to 1600kPa operating pressure) and low pressure (up to 600 kPa). The Taklamp’s versatility is evidenced by its ability to handle vacuum conditions as well as pressure. Large HDPE shoulders (2) calculated to withstand pressure and end loading.

Tapered shoulders (2) compress when Taklamp (1) is tightened.

Rubber seal-ring (3) improves sealing with increased pressure.

Rubber seal-ring (3) improves sealing with increased vacuum.

Page 26: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 26

Fabricated Fittings (HDPE & PP) Pipe fittings can be manufactured from pipe in a wide variety of sizes and pressure classes but mostly from 75mm OD upwards and Class 6 or higher. Permissible working pressure is 60% of class of pipe used to fabricate fitting. E.g. 1000 kPa produces a 600kPa fabricated fitting.

Tees Plain-ended

OD H L

50 150 300 63 150 300 75 400 800 90 400 800

110 400 800 125 400 800 140 400 800 160 400 800 180 450 900 200 450 900 225 450 900 250 450 900 280 650 1300 315 650 1300 355 650 1300 400 650 1300 450 850 1700 500 850 1700 560 900 1800 630 900 1800 710 1150 2300 800 1150 2300 900 1150 2300

1000 1150 2300

Page 27: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 27

Tees Flanged

OD H L

50 200 400 63 200 400 75 450 900 90 450 900

110 450 900 125 450 900 140 450 900 160 450 900 180 500 1000 200 500 1000 225 500 1000 250 500 1000 280 700 1400 315 700 1400 355 700 1400 400 700 1400 450 900 1800 500 900 1800 560 950 1900 630 950 1900 710 1200 2400 800 1200 2400 900 1600 3200

1000 1600 3200

Page 28: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 28

Tees with Takstubs

OD H L

90 450 900 110 450 900 125 450 900 140 450 900 160 450 900 180 500 1000 200 500 1000 225 500 1000 250 500 1000 280 700 1400

Moulded Tees (Agru) Plain-ended

Class 6 & 10 Class 16

OD H L H L 20 40 80 - - 25 42 84 - - 32 44 87 - - 40 46 93 - - 50 49 100 - - 63 67 121 - - 75 77 150 - - 90 105 204 139 276

110 117 233 156 315 125 138 279 166 344 140 147 289 N/A N/A 160 164 318 207 405 180 178 357 262 505 200 193 386 248 492 225 216 444 269 540 250 219 437 - - 280 247 496 - - 315 277 549 - - 355 327 668 - - 400 346 690 - -

Class 6 Diam 50-400 Class 10 Diam 20-400

Page 29: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 29

Moulded Tees (Agru) Flanged

Class 6 & 10 Class 16

OD H L H L 20 75 150 - - 25 77 154 - - 32 79 157 - - 40 91 183 - - 50 94 190 - - 63 112 210 - - 75 122 240 - - 90 150 291 90 386

110 172 342 110 458 125 198 400 125 486 140 205 400 N/A - 160 228 450 160 598 180 253 507 180 697 200 258 515 200 684 225 300 615 225 730 250 294 587 - - 280 332 665 - - 315 370 740 - - 355 422 858 - - 400 450 900 - -

Class 6 Diam 50-400 Class 10 Diam 20-400

Moulded Tees (Agru) with Takstubs

Class 6 & 10 Class 16

OD H L H L 90 150 305 184 377

110 165 330 204 410 125 186 370 214 440 140 202 400 N/A N/A 160 224 440 267 525 180 238 477 340 660 200 256 505 307 610 225 285 585 338 677 250 289 640 - - 280 320 648 - -

Page 30: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 30

Lateral Plain-ended

OD A B L

50 200 150 400 63 200 150 400 75 475 370 950 90 475 370 950

110 475 370 950 125 475 370 950 140 475 370 950 160 475 370 950 180 875 530 1350 200 875 530 1350 225 875 530 1350 250 875 530 1350 280 900 700 1800 315 900 700 1800 355 900 700 1800 400 900 700 1800 450 1100 870 2200 500 1100 870 2200 560 1200 950 2400 630 1200 950 2400 710 1500 1200 3000 800 1500 1200 3000 900 2000 1600 4000

1000 2000 1600 4000

Page 31: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 31

Lateral Flanged

OD A B L

50 250 200 500 63 250 200 500 75 525 420 1050 90 525 420 1050

110 525 420 1050 125 525 420 1050 140 525 420 1050 160 725 420 1050 180 725 580 1450 200 725 580 1450 225 725 580 1450 250 725 580 1450 280 900 700 1800 315 900 700 1800 355 900 700 1800 400 900 700 1800 450 1100 870 2200 500 1100 870 2200 560 1200 950 2400 630 1200 950 2400 710 1500 1200 3000 800 1500 1200 3000 900 2000 1600 4000

1000 2000 1600 4000

Lateral with Takstub

OD A B L

90 525 420 1050 110 525 420 1050 125 525 420 1050 140 525 420 1050 160 725 420 1050 180 725 580 1450 200 725 580 1450 225 725 580 1450 250 725 580 1450 280 900 700 1800

Page 32: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 32

Segmented Bends Plain-ended

OD R (min) 45° A 45° L 90° A 90° L

50 75 30 220 40 220 63 95 38 280 51 280 75 113 45 330 61 330 90 135 54 400 72 400

110 165 66 370 88 370 125 188 75 400 101 400 140 210 84 430 113 430 160 240 95 470 130 470 180 270 107 510 145 510 200 300 119 550 161 550 225 338 134 600 181 600 250 375 149 650 201 650 280 420 167 710 225 710 315 472 188 620 253 620 355 532 212 680 285 680 400 600 239 760 322 760 450 675 269 900 362 1300 500 750 298 900 402 1400 560 840 334 950 450 1150 630 945 376 1100 506 1300 710 1065 424 1250 571 1450 800 1200 477 1300 643 1500 900 1350 537 1500 723 1700

1000 1500 597 1600 804 1800

Page 33: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 33

Bends Flanged

OD R (min) 45° A 45° L 90° A 90° L

50 75 30 265 40 265 63 95 38 325 51 325 75 113 45 375 61 375 90 135 54 445 72 445

110 165 66 415 88 415 125 188 75 455 101 455 140 210 84 475 113 475 160 240 95 525 130 525 180 270 107 575 145 575 200 300 119 615 161 615 225 338 134 675 181 675 250 375 149 715 201 715 280 420 167 795 225 795 315 472 188 695 253 695 355 532 212 755 285 755 400 600 239 845 322 845 450 675 269 985 362 1385 500 750 298 985 402 1485 560 840 334 1040 450 1240 630 945 376 1200 506 1400 710 1065 424 1355 571 1555 800 1200 477 1415 643 1615 900 1350 537 1630 723 1830

1000 1500 597 1740 804 1940

Page 34: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 34

Segmented Bends with Takstubs

OD R (min) 45° A 45° L 90° A 90° L

90 135 54 445 72 445 110 165 66 415 88 415 125 188 75 455 101 455 140 210 84 475 113 475 160 240 95 525 130 525 180 270 107 575 145 575 200 300 119 615 161 615 225 338 134 675 181 675 250 375 149 715 201 715 280 420 167 795 225 795

Moulded Bends (Agru) Plain-ended

Class 6 & 10

OD R L 20 20 32 25 25 38 32 32 34 40 40 44 50 50 58 63 63 73 75 73 85 90 88 98

110 108 124 125 125 141 140 140 151 160 155 180 180 175 201 200 195 220 225 225 242 250 240 265 280 280 292 315 300 312 355 300 342 400 300 352 Class 6 Diam 50-400 Class 10 Diam 20-400

Page 35: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 35

Moulded Bends (Agru) Flanged

Class 6 & 10

OD R L 20 17 67 25 20 73 32 30 69 40 40 89 50 50 103 63 63 118 75 73 130 90 88 143

110 108 178 125 125 205 140 140 206 160 155 245 180 175 276 200 195 285 225 225 327 250 240 340 280 280 377 315 255 407 355 300 435 400 300 455 Class 6 Diam 50-400 Class 10 Diam 20-400

Moulded Bends (Agru) with Takstubs

Class 6 & 10

OD R L 90 88 145

110 108 178 125 125 205 140 140 207 160 155 245 180 175 276 200 194 285 225 225 327 250 240 340 280 280 377

Page 36: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 36

Seamless Long Radius Bends Plain-ended

OD R L Radius

50 150 220 63 189 280 75 225 330 90 270 400

3 x OD pipe

110 220 370 125 250 400 140 280 430 160 320 470 180 360 510 200 400 550 225 450 600 250 500 650 280 560 710

2 x OD pipe

315 427.5 620 355 532.5 680

1.5 x OD pipe

Seamless Long Radius Bends Flanged

OD R L Radius

50 150 265 63 189 325 75 225 375 90 270 445

3 x OD pipe

110 220 415 125 250 455 140 280 475 160 320 525 180 360 575 200 400 615 225 450 675 250 500 715 280 560 795

2 x OD pipe

315 427.5 695 355 532.5 755

1.5 x OD pipe

Page 37: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 37

Seamless Long Radius Bends with Takstubs

OD R L Radius

90 270 445 3 x OD pipe 110 220 415 125 250 455 140 280 475 160 320 525 180 360 575 200 400 615 225 450 675 250 500 715 280 560 795

2 x OD pipe

Seamless Long Radius Bends Plain-ended (Radius: 3 x OD of pipe)

OD Radius 45°L 90°L

110 330 345 535 125 375 360 580 140 420 380 625 160 480 405 685 180 540 430 745 200 600 455 805 225 675 485 880 250 750 515 955 280 840 555 1045 315 945 585 1150 355 1065 645 1270 400 1200 705 1405 450 1350 765 1555 500 1500 830 1705

Page 38: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 38

Seamless Long Radius Bends Flanged (Radius: 3 x OD of pipe)

OD Radius 45°L 90°L

110 330 400 590 125 375 425 645 140 420 435 680 160 480 470 750 180 540 505 820 200 600 520 870 225 675 570 965 250 750 590 1030 280 840 640 1130 315 945 680 1235 355 1065 740 1365 400 1200 810 1510 450 1350 870 1660 500 1500 925 1800

Seamless Long Radius Bends Takstubbed (Radius: 3 x OD of pipe)

OD Radius 45°L 90°L

110 330 400 590 125 375 425 645 140 420 435 680 160 480 470 750 180 540 505 820 200 600 520 870 225 675 570 965 250 750 590 1030 280 840 640 1130

Page 39: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 39

Machined Concentric Reducers Plain-ended

OD1 OD2 B

25 20 60 32 25/20 60 40 32/25/20 60 50 40/32/25 60 63 50/40/25 60 75 63/50/40 60 90 75/63/50 60

110 90/75/63 60 125 110/90/75 100 140 125/110/90 100 160 140/125/110 100 180 160/140 100 200 180/160 100 225 200/180/160 100 250 225/200 100 280 250/225 100 315 280/250 120 355 315/280 120 400 355/315 120 450 400/355 120 500 450/400 120 560 500 120

Larger sizes available on request

Page 40: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 40

Machined Eccentric Reducers Plain-ended (HDPE only)

OD1 OD2 B

63 50/40 70 75 63/50 70 90 75/63 80

110 90/75 80 125 110/90 120 140 110 120 140 125 100 160 140/125 100 180 160/140 100 200 180/160 100 225 200/180 100 250 200 120 250 225 100 280 250 100 315 280 100 355 315 100 400 355 120 450 400 120 500 450 120 560 500 120

Larger sizes available on request

Page 41: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 41

Victaulic Stub-ends (HDPE)

OD Victaulic Size OD1 OD2 OD3 A B H Clamp

Size 50 50 68.5 60 50.5 16 10 48 2” 63 50 97 90 61 16 15 51 2” 75 80 97 90 76 16 15 51 3” 90 100 124.5 115 91 16.5 15 56 4”

110 100 124.5 115 111 16.5 15 56 4” 125 150 178.5 161 126 17 15 46 6” 140 150 178.5 161 141 17 15 46 6” 160 150 178.5 161 161 17 15 46 6” 180 200 231.5 218 181 21 21 85 8” 200 200 231.5 218 201.5 21 21 85 8” 225 250 286 273 226.5 21 21 85 10” 250 250 286 273 251.5 21 21 85 10” 280 300 12” 315 300 12”

Page 42: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 42

Moulded Fittings

For Butt Welding

Tees Elongated and Reinforced

63 - 225mm 20 - 225mm

Class 6 Class 10

Tees 110 - 400mm 50 - 400mm 20 - 400mm

Class 3, 2 Class 6

Class 10

Bends 90° 110 - 400mm 50 - 400mm 20 - 400mm

Class 3, 2 Class 6

Class 10

For Socket Welding

Elbows 90° 16 - 110mm Class 10

Elbows 45° 16 - 110mm Class 10

Tees 16 - 110mm Class 10

Sockets 16 - 125mm Class 10

Page 43: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 43

Electro-fusion Fittings All popular sizes available from 20mm - 500mm (pressure)

Elbow 90°

Elbow 45°

Tees 90°

Reducing Bushes

Electro-fusion Tapping Saddles

Electro-fusion Sockets

Electro-fusion Spigot Saddles

Caps

Page 44: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 44

Electro-fusion Unit

All popular sizes available from 16mm - 110mm.

Tee

Elbow 90°

Elbow 45°

Pe/Brass Trans Coupler

Pe/Brass Trans Coupler

Pe/Brass Trans Elbow 90°

Pe/Brass Trans Elbow 90°

Pe/Brass Trans Elbow 45°

Page 45: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 45

Manual Electro-fusion Control Unit

Automatic Electro-fusion Control Unit

Magnum Compression Fittings All popular sizes available from 16mm - 110mm (pressure)

Coupling

Male Treaded Branch Tee Piece

End Cap

Tee Piece

90° Elbow

Female Adaptor

Saddle

Flange Adaptor

Male Threaded 90° Elbow

Threaded Male Adaptor

Tee Piece Reduced

Female Threaded Branch Tee

Piece

Female Threaded 90° Elbow

Reducing Coupling

Page 46: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 46

Pipeline Design Considerations There are some important factors to consider when designing a pipe system. These factors include:

• Operating Pressure • Operating Temperature • Flow • Life • Terrain • Coefficient of Linear Expansion • Water Hammer

Resistance Factors for HDPE

Medium Concen- tration

%

Temp °C

Stress MPa

Time Factor fcRt

Stress Factor fcRd

80 4 - 2 0.4 0.8 60 4.5 - 3 0.2 0.7 60 40 5 - 3.5 0.1 0.58 80 4 - 2 0.14 -

4 0.1 - 60 2 0.2 - 5 0.5 -

Acetic acid

98

40 3 0.02 -

Air 100 80 4 - 2 >1(10) 1 Alkaline Solution* 100 80 4 - 2 0.1 0.5

Antistatic Agent Katax 3019 100 80 4 - 2 0.33 0.75 Antistatic Agent Recondit(?) CH 100 80 4 - 2 0.2 0.66

4 0.6 0.75 80 2 >1(2.2) 1

4.5 0.07 0.73 Benzene 100

60 2.5 >1(1.4) 1

4 0.08 0.7 80 2 0.85 0.95

4.5 0.06 0.62 Carbon Tetrachloride 100

60 2 0.3 0.8

Caustic Soda Solution 50 80 4 - 2 >1(15) 1 4.5 0.02 0.44 Chloroform 100 60 2.5 0.04 0.52

80 4 - 2 >1(10) 1 Common Salt Solution 25 60 4.5 - 3 >1(5) 1

Copper Electrolysis Solution 20/5 80 4 - 2 >1(6) 1 80 4 – 2 0.25 0.7

60 4.5 - 2.5 0.15 0.62 10

40 5 - 3 0.07 0.53 4 0.25 0.58 80 2 0.1 0.38 5 0.07 0.35

Chromic Acid

20 40

3 0.03 0.25 Chromosulfuric Acid 100 40 5 - 3 0.0001 -

Detergents, Miscellaneous 80 4 - 3 0.1 - 1 0.6 - 1 Dichloroethylene 100 60 5 - 3 0.003 - Diethylsulphate 100 80 4 0.2 0.42

Dimethylsulphate 100 80 4 – 2 0.6 0.87 Disinfectant Tego 103 F 100 80 4 - 2 0.2 0.65

4 0.2 0.8 Ethyl Acetoacetate 100 80 2 7.5 1

Ethylene Chloride 100 80 4 - 2 0.75 0.9 Ethylene glycol 100 80 4 - 2 >1(2.3) 1

80 4 - 2 0.1 0.55 Fluorinated Hydrocarbon 100

60 4.5 - 2.5 0.25 0.7

Formaldehyde 40 40 5 0.1 0.6 4.5 0.6 0.66 Fuel oil 100 60

2 0.65 0.94

Page 47: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 47

Medium Concen- tration

%

Temp °C

Stress MPa

Time Factor fcRt

Stress Factor fcRd

Grisiron 8302 100 80 4 - 2 0.025 0.32 Grisiron 8402 100 80 4 - 2 0.08 0.46

4 0.4 0.9 Hexanol 100 80 3 >1(5) 1

Hydrochloric Acid 33 80 4 - 2 0.35 0.75 Mersol H 100 80 4 - 2 0.2 0.6 Methanol 100 60 5 - 3 1 1

Methylacetoacetate 100 80 4 - 2 0.55 0.85 4 0.05 0.67 80 2 0.8 0.95

4.5 0.04 0.65 Methylene Chloride 100

60 2.5 0.3 0.85

4 0.02 0.65 Mixture 1, 3, 5 Trimethylbenzene / Decane 1 : 1 80

2 0.7 0.95 Mowilith DM4 100 80 4 - 2 0.45 0.8

Mowilith D222H 100 80 4 - 2 1 1 4 0.2 0.78 80 2 >1(1.5) 1

6 Expected Life >4500h

Natural Gas Condensate (Mixture of Aromatic and Aliphatic) 100

20 5 Expected

Life >30000h

Natural Gas (Main Constituent CH2) 100 80 4 - 2 1(5) 1

80 4 - 2 0.01 0.3 53 40 5 0.005 0.5 Nitric Acid

65 80 4 - 2 0.01 0.3 80 4 1 1

2 >1(10) 1 4.5 0.2 0.82 60

3 >1(1.4) 1 6 0.005 -

Octanol 100

40 5 1 1

Oxygen 100 80 4 - 2 1 1 4 0.08 0.68 80 2 0.7 0.94 4 0.03 0.63

Petrol 100 60

2 0.55 0.93 Polysulphide 100 80 4 - 2 0.35 0.75

4 0.2 0.5 80 2 0.07 0.62

Sodium Hypochlorite with 12% Chlorine

40 5 0.035 0.25 40 80 4 - 3 >1(40) 1

80 4 - 1.5 >1(4) 1 78

60 4.5 - 2.5 >1(1.5) 1

3 >1(1.4) - 85 80 1 0.5 - 3 0.5 - 90 - 91 80 1 0.02 - 3 0.25 - 95 - 97 80 1 0.007 - 3 0.2 - 80 1 0.005 - 4 0.3 - 60 2 0.04 -

Sulphuric Acid

98

40 5 0.1 - 4 0.016 0.65 Toluene 100 80 2 0.8 0.95 4 0.24 0.78 80 2 1 1

4.5 0.3 0.84 Transformer Oil 100

60 3 1 1

Triacetin 100 80 4 - 2 >1(2.8) 1 4 0.05 0.65 1, 3, 5 Trimethyl Benzene 100 80 2 0.45 0.9

Unfractioned Crude Oil 100 60 5 0.08 0.7

Page 48: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 48

Medium Concen- tration

%

Temp °C

Stress MPa

Time Factor fcRt

Stress Factor fcRd

3 0.7 0.95

4.5 Expected Life

>23 Years

20 2.8 Expected

Life >23

Years Waste Paper from a Pulp Mill 100 80 4 - 2 0.85 0.95

Waste Water from a Man-made Fibres Plant 100 80 4 - 2 0.32 0.73

Waste Water from a Whey Processing Plant 100 80 4 - 2 0.32 0.73

Water 100 80 4 – 2 1 1 Water with Wetting Agent 2 80 4 - 2 0.24 0.6

Chemical Resistance Tables The following symbols are used in this table:

• + Specimen is resistant • / Specimen has limited resistance only • - Specimen is not resistant • D Discoloration • * Or at the boil • ** Does not hold for welded joints

Behaviour

HDPE Behaviour PP Substance Concentration 20°C 60°C 20°C 60°C 100°C

Acetaldehyde Tech. grade + / / Acetaldehyde, aqueous Any + / + +

Acetaldehyde + Acetic acid 90 : 10 + Acetamide + + + + Acetic acid 100% + /D + /D -

Acetic acid, aqueous 70% + + + + + Acetic acid anhyride Tech. grade + /D + /D - Acetic acid anhyride Tech. grade + / + / -

Acetoacetic acid + +* Acetone Tech. grade + +* + /

Acetophenone Tech. grade + + Acetylene + +

Acids, aromatic + + +

Acronal dispersions As supplied commercially

Acrylonitrile Tech. grade + + + Adipic acid, aqueous Saturated + + + + +

Adipic ester + / Air Tech. grade + + + + +

Aktivin (chloramines, aqueous 1%) + +

Allyn acetate + +to/ Allyn alcohol(2-propenol-1) 96% + + + +

Allyn chloride / - Aluminium chloride, aqueous Any + + + + +

Aluminium chloride, solid + + + + Aluminium fluoride Conc. + +

Aluminium hydroxide + + + + Aluminium metaphosphate + + + +

Aluminium sulphate, aqueous Saturated + + + + + Aluminium sulphate, solid + + + +

Alum, aqueous Any + + + + Amino acids 2-aminoethanol

(ethanolamine) Tech. grade + + ++ +

Ammonia, aqueous Any + + + Ammonia, gaseous + + + +

Ammonia, liquid + + + Ammonia water Any + + + + Ammonia water + + + +

Page 49: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 49

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Ammonium acetate, aqueous Any + + + + +

Ammonium carbonate, aqueous Any + + + + + Ammonium chloride aqueous Any + + + + + Ammonium fluoride, aqueous Saturated + + + +

Ammonium hydrogen Carbonate, aqueous Saturated + + +

Ammonium hydrosulphide, aqueous Any + + + +

Ammonium metaphosphate + + + + Ammonium nitrate, aqueous Any + + + + +

Ammonium phosphate, aqueous Any + + + + +

Ammonium sulphate, aqueous Any + + + + + Ammonium sulphide, aqueous Any + + + +

Ammonium thiocyanate + + / - Amyl acetate Tech. grade + + / -

Amyl alcohol (C5 alcohols) Tech. grade + + + + + Amyl chloride 100% / -

Amyl phthalate + / Aniline Any + + + +

Aniline hydrochloride, aqueous Any + + + + Animal oils + / + /

Aniseed / /to- / / Aniseed oil / -

Anon (cyclohexanone) / / + / Anthraquinone sulphonic acid,

aqueous (susp.) / + +

Antifreeze (automotive) As supplied commercially + + + + +

Antimony chloride, Anhydrous + + + + Antimony pentachloride + + + +

Antimony trichloride + + + + Anyl acetate Tech. grade + + / -

Aqua regia (HCl + HNO3) - - - Aromatic oils / - / /to-

Arsenic acid, aqueous Any + + + + Arsenic acid, anhydride + + + +

Ascorbic acid + + + + Asphalt + /D + /D Aspirin + +

Barium hydroxide, aqueous Any + + + + Barium salts, aqueous Any + + + + +

Battery acid + + + + Beater glue (animal glue) As supplied + + + +

Beef tallow + +to/l + + Beer + + + +

Beer sugar colouring As supplied commercially + + + +

Beeswax + /to- + /to- Benzaldehyde, aqueous Any + +to/ +

Benzaldehyde in isopropyl alcohol 1% + +

Benzene Tech. grade / - / - Benzene sulphonic acid + + + + Benzoic acid, aqueous Any + + + + + (sp?)Benzoyl chloride / / /

Benzyl alcohol + + + + Benzyl chloride / - / -

Bichromate–Sulphuric acid Conc. - - Bismuth salts + + +

Bisulphite liquor + + + + Bitumen + /D + /D

Bleaching solution containing 12.5%

Active chlorine** / - / / - Bone oil + + + +

Borax (sodium Tetraborate), Saturated + + + + +

Page 50: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 50

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C aqueous

Boric acid, aqueous Any + + + + + Boron triflouride + +to/

Brake fluid + + + + Brandy + + Brandy + + + +

Bromic acid Conc. - - Bromine, liquid 100% - -

Bromine, vapours - - Bromine, water Cold saturated + /

1.3-butadiene, gaseous Tech. grade / - / - Butanediol, aqueous Any + + + + Butanediol, aqueous Any + + + +

Butane, gaseous + + + Butanol, aqueous Any + + +

Butanone + /to- + 2-butenediol-1.4 Tech. grade + + + 2-Butynediol-1.4 Tech. grade + +

Butoxyl (methoxybutylacetate) +/ / + Butter + + +

Butylene glycol Tech. grade + + + Butylene (butene), liquid Tech. grade /

Butyl acetate + / / - Butyl acetate Tech. grade + / / - Butyl acrylate + / + Butyl alcohol + + +

Butyl benzyl phthalate + + Butyl phenol Tech. grade + + +

Butyl phenone Tech. grade - - Butyl phthalate (dibutyl

phthalate) Tech. grade + / + /

Butyric acid, aqueous a + / + Calcium carbide + + + +

Calcium carbonate + + + + + Calcium chlorate, aqueous Saturated + + + + Calcium chloride, aqueous Saturated + + + + +

Calcium hydroxide + + + + Calcium hypochlorite, aqueous

(suspension) Any + + + +

Calcium nitrate, aqueous 50% + + + + Calcium oxide (powder) + + + +

Calcium phosphate + + + + Calcium sulphate + + + +

Calcium sulphide, aqueous < 10% / / Camphor + / + Camphor + / +

Camphor oil - - Cane sugar, aqueous Any + + + +

Carbazole + + + + Carbolic acid (phenol) + +D + +D

Cabolineum As supplied commercially + +

Carbolineum, aqueous (for fruit trees) +D /D +D /D

Carbonic acid, aqueous Any + + + + Carbonic acid, dry 100% + + + +

Carbon dioxide 100% + + + + Carbon disulphide / / /

Carbon monoxide, Gaseous Tech. grade + + Caster oil + + + +

Caustic soda solution + + + + + Cetyl alcohol (hexadecanol) + + +

Chloral hydrate, aqueous Any + +D / - Chloral(trichloroacetaldehyde) Tech. grade + + + +

Chloramines, aqueous Saturated + + Chloric acid, aqueous 10% + + + / - Chloric acid, aqueous 1% + + + / -

Page 51: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 51

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Chloric acid, aqueous 20% + -

Chlorinated lime + + + + Chlorine, aqueous solution

(chlorine water) Saturated + / / -

Chlorine, gaseous, dry / - - Chlorine, gaseous, moist / - -

Chlorine, liquid - - Chlorine bleaching Solution

with 12.5% Active chlorine** / - / / -

Chloroacetic acid, aqueous < 85% + + + + Chloroacetic acid (mono),

aqueous Any + + + +

Chlorobenzene / - / - Chloroformic acid ester + /

Chloroform Tech. grade /to - / - Chlomethyl bromide - -

Chloropicrin +to/ - Chlorosulphonic acid Tech. grade - -

Chrome alum (potassium Chromic sulphate), aqueous Saturated + + + +

Chrome anode slime + + + Chrome salts, aqueous Any + + + +

Chromic acid, aqueous** 50% / -D /D /D Chromilium trioxide, aqueous** 50% / -D /D /D

Chromosulphuric acid - - Cider + + + +

Citric acid, aqueous Saturated + + + + + Citrus fruit juices + + + +

Citrus juices + + + + Clophen A50 and A60 + /to- + / -

Coal tar oil +D / +D Coconut oil + +

Coconut oil, alcohol Tech. grade + / + / Cod liver oil + / +

Coffee extract + + + + Cognac + +

Cola concentrates + + + + Common salts, aqueous Any + + + +

Coolants and lubricants for metalworking Hoechst / / / /

Copper chloride, aqueous saturated Saturated + + +

Copper cyanide, aqueous saturated Saturated + + +

Copper fluoride, aqueous saturated Saturated + + +

Copper nitrate, aqueous 30% + + + + Copper salts, aqueous Cold saturated + + + +

Copper sulphate, aqueous Any + + + + Corn oil + / + /

Cottonseed oil Tech. grade + + + + Coumarone resin + + +

Creosote + +D + +D Cresol 100% + /D + /D

Cresol, aqueous Dilute + +D + +D Crotonaldehyde Tech. grade + / +

Crude oil + / / Cyclanone (fatty alcohol

sulphonate) As supplied

commercially + + + +

Cyclohexane + + + Cyclohexanol + + + +

Cyclohexanol (Anon) + / + / Decahydronaphtalene (Dekalin) Tech. grade + / / /

Defoamers + +to/ + Detergents + + + +

Detergents, synthetic End use Conc. + + + + Developer solution +D +D +D +D

Page 52: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 52

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C (photographic)

Dextrin (starch gum), Aqueous 18% + + + + Dextrose + + + +

Dextrose, aqueous Any + + + + 1.2-Diaminoethane (ethylenediamine) Tech. grade + + + +

1.2-Dibromoethane / - / - Dibutyl ether +to/ - / -

Dibutyl phthalate (butyl phthalate) Tech. grade + / + /

Dibutyl sebacate + / + Dichloroacetic acid Tech. grade + /D + Dichloroacetic acid 50% + + +

Dichloroacetic acid Methyl ester + + + + Dichlorobenzene / - /

Dichlorodiphenyltrichloroethane (DDT, powder) + + + +

Dichlorothane / / + 1.1-Dichloroethylene (vinylidene chloride) Tech. grade - -

Dichloropropane / - Dichloropropane / -

Diesel fuel + / + / Diethanolamine Tech. grade + +

Diethylene glycol + + + + 2-Diethylhexylphthalate (DOP) + /

Diethylketone + / Diethyl ether +to/ /* /

Diglycolic acid, aqueous 30% + + + + Dihexyl phthalate Tech. grade + / Disobutylketone Tech. grade + /to- + -

Diisoctyl phthalate Tech. grade + / + / Diisopropyl ether +to/ -

Dimethylamine + / + Dimethyl formamide Tech. grade + +to/ + + Dimethyl sulphoxide + +

Dinonyl phthalate (DNP) Tech. grade + / + / Dioctyl phthalate + / + /

Dioxane + + / / - Diphenylamine + / Diphenyl oxide + /

Disodium phosphate + + + + Disodium sulphate + + + +

Dodecylbenzenesulphonic Acid + / + Drinking water, also chlorinated + + + + +

Dyes +D +D Eau de Javelle (potassium

Hypochloride bleaching solution)

+to/ - *to/ /

Eau de Labarraque(sodium Hypochlorite bleaching

solution) +to/ *to/ /

Electrolytic baths for Electroplanting +to///

Emulsifiers + + + + Emulsions (photographic) + + + +

Ephetin, aqueous 10% + + + + + Epichlorohydrin + + + Esters, aliphatic Tech. grade + +to/

Ethane + + Ethanolamine (2-aminoethanol) Tech. grade + +

Ethanol 96% + + + + + Ethanol, denatured with

toluene 96% (v/v) +

Ethereal oils / - / - Ether +to/ /* /

Ethylenediamine Tetra-acetic + + + +

Page 53: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 53

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C acid

Ethylene + + Ethylene chlorohydrin + +D + +D Ethylene chlorohydrin

(chloroethanol) Tech. grade + + + +

Ethylene diamine (1.2-diaminoethane) Tech. grade + + + +

Ethylene dibromide Tech. grade / - Ethylene dichloride

(dichloroethane) / - /

Ethylene glycol + + + + + Ethylene glycol Monobutyl ether Tech. Grade + +

Ethylene glycol monobutyl ether (butyl glycol) Tech. Grade + +

Ethylene oxide, gaseous + + + Ethyl acetate + / + / Ethyl alcohol + + + +* Ethyl alcohol 96% + + + + +

Ethyl alcohol + acetic acid (fermentation mixture) As used in production + + + +

Ethyl benzene Tech. grade / / - Ethyl chloride Tech. grade / -

Ethyl chloride (chloroethane) Tech. grade /* - Ethyl ether Tech. grade +to/ /* /

Ethyl ether (diethyl ether) +to/ /* / Euron B / / Euron G + +

Fatty acid (C6) + +to/ + + Fatty acid amides + / +

Fatty alcohols + / + Ferric alum (terric Ammonium

sulphate), Aqueous Saturated + + + +

Ferric ammonium Sulphate, aqueous Saturated + + + +

Ferric chloride, aqueous Any + + + + Ferric chloride, aqueous Saturated + + + + + Ferric nitrate, aqueous Saturated + + + +

Ferric sulphate, aqueous Saturated + + + + Ferrous chloride, aqueous Saturated + + + + Ferrous sulphate, aqueous Saturated + + + +

Fertilizer salts, aqueous Any + + + + Fixing salt, aqueous Any + + + +

Fixing salt, solid + + + + Fluorine, gaseous - -

Fluoroboric acid, aqueous + / Fluorosilicic acid Any + +

Fluorosilicic acid, aqueous Any + + Formaldehyde, aqueous Up to 40% + + + +

Formamide + + + + Formic acid, aqueous 10% + + + + Formic acid, aqueous 85% + + + /

Frigen 12 (Freon 12) Fructose (fruit sugar), aqueous 100%any /+ -+ /+ + +

Fruit juices Any + + + + + Fruit juices, fermented + + + +

Fruit juices, unfermented Any + + + + + Fruit pulp + + + +

Fuel oil + / + / Fuming sulphuric acid (H2SO4

= SO3) Any - -

Furfurol + / Furfuryl alcohol + +D + /D

Gas manufactured As supplied commercially + +

Gas natural Tech. grade + + Gelatin + + + +

Genantin + + + + +

Page 54: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 54

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Gin + +

Glacial acetic acid Tech. grade + /D + /D + (100% acetic acid)

Glauber’s salt, aqueous Any + + + + + Glucose, aqueous Any + + + + +

Glue + + + Glycerin, aqueous Any + + + + +

Glycerin, chlorohydrin + + + Glycerine (aminoacetic acid) + + + +

Glycolic acid, aqueous Up to 70% + + + Glycolic acid butyl ester + +

Glycol, aqueous As supplied commercially + + + + +

Glysantin + + + + + Grisiron 8302 / / Grisiron 8702 + +

Halothan / /to- Heptane + / / /

Hexafluorosilicic acid, aqueous 40% + + Hexane + / + /

Hexanetriol + + + + + Honey + + + +

Hydraulic fluid + / Hydrazine hydrate + + +

Hydrobromic acid, aqueous 50% + + + + Hydrochloric acid, aqueous Any + + +D +D +D

Hydrocyanic acid + + + + Hydrofluoric acid, aqueous 40-85% + / +

Hydrogen + + + + Hydrogen bromide, gaseous Tech. grade + +

Hydrogen chloride gas, dry and moist + + + +D

Hydrogen peroxide, aqueous 10% / - + + Hydrogen peroxide, aqueous 30% / - + / Hydrogen sulphide, aqueous Saturated + + + + Hydrogen sulphide, gaseous + + + +

Hydroquinone +D +D +D Hydroxylamine sulphate, 12%

aqueous 12% + + + +

Hypochlorous acid + / +to/ / Hyposulphite, aqueous Up to 10% + + + +

Iodine in potassium Iodide solution 3% iodine + + + +

Iodine tincture, DAB 6 As supplied commercially + /D +

Isoamyl alcohol Tech. grade + / Isobutyl alcohol (isobutanol) + + +

Isobutyric acid Tech. grade + / Isooctane + / + /

Isopropanol Tech. grade + + + + + Isopropyl acetate 100% + /

Isopropyl ether Tech. grade +to/ - / - i-Propanol (i-propylalcohol) + + + +

Kerosene + / + / Kerosine + / / / - Ketones +to/ /to- +to/

Lactic acid, aqueous Any + + + + + Lactose (milk sugar) + + + +

Lanolin (wool fat) + + + / Latex + + + +

Lead acetate, aqueous Any + + + + Lead tetraethyl + +

Lime + + + + + Lime water + + + + Linseed oil Tech. grade + + + + +

Liqueur + + Liquid manure + + + +

Page 55: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 55

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Liquid soap + + + +

Lithium bromide + + + + Lubricating oils Tech. grade + +to/ +

Lysol + / + / Machine oil + / + / -

Magnesium carbonate + + + + Magnesium chloride, aqueous Any + + + +

Magnesium fluorosilicate + + Magnesium hydroxide + + + +

Magnesium iodide Any + + + + Magnesium salts, aqueous Any + + + + +

Magnesium sulphate, aqueous Any + + + + Magnesium sulphate (Epsom

salts), aqueous Up to 100% + + + + +

Maleic acid, aqueous + + + + + Malic acid, aqueous 50% + + + +

Manganese sulphate + + + Margarine + + + +

Mash As supplied + + + + Mayonnaise + +

Menthol + / + Mercury + + + +

Mercury chloride + + Mercury salts + + + + Metal soaps + + +

Methacrylic acid + + + + Methanol Tech. grade + + + +

Methoxybutanol + / + Methoxybutyl acetate (Butoxyl) + / +

Methylamine, aqueous 32% + + 2-Methylbutanol-2 Tech. grade + /

Methylene chloride** (dichloromethane) / /* / -*

Methylisobutyl ketone + /to + Methyl acetate Tech. grade + + /

Methyl acetate (acetic acid methyl ester) Tech. grade + + +

Methyl acrylate + + Methyl alcohol + + + +

Methyl benzene / - / - Methyl benzoic acid (toluyl (?

Sp)acid) Saturated /

Methyl bromide, gaseous Tech. grade - - Methyl bromide (bromo-

methane), gaseous Tech. grade - -

Methyl chloride, gaseous Tech. grade / - Methyl chloride

(chloromethane), gaseous Tech. grade / -

Methyl cyclohexane / /to / Methyl ethyl ketone Tech. grade + / + /

Methol Methyl? glycol + + + + Methyl methacrylate + + 4-methyl pentanol-2 + +to/D +

Methyl propyl ketone + / + n-Methyl pyrrolidone + +

Methyl salicylate (salicylic Acid methyl ester) + / +

Methyl sulphuric acid 50% + + + + Milk + + + + +

Mineral oil Without + +to/ + / - Mineral water + + + + +

Molasses + + + + Molasses Wort + + + +

Monochloroacetic acid + + + + Monochloroacetic acid Ethyl

ester + + + +

Monochloroacetic acid Methyl + + + +

Page 56: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 56

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C ester

Monochlorobenzene / - + (sp?)Mordants, methallic +

Morpholine + + + + Motor oil (heavy duty oil) + +to/l + /

Mowilith(?) emulsions + + + Must + + + +

Nail varnish remover + / + / Naphthalene + / +

Naphtha + / + / Naphtha Tech. grade + / / -

Naphthabenzene mixture 80/20 80/20 + / / - Nickel chloride + + + + Nickel nitrate + + + +

Nickel salts, aqueous Any + + + + Nickel sulphate, aqueous + + + +

Nicotine <10% + + Nicotinic acid Any + + Nitric acid** 25% + + + - Nitric acid** 50% / - / -

2,2’,2”-Nitrilotriethanol (triethanolamine), aqueous +/ +

Nitrobenzene + / + + Nitrocellulose + + o-Nitroluene + / + -

Nonyl alcohol (nonanol) + + + Nut oil + +

Octyl cresol Tech. grade / - / - Oils, ethereal / - / -

Oils, vegetables and animal + / + / - Oleic acid + / + / -

Olive oil + + + + + Optical brighteners + + + +

Orange juice + + + + Oxalic acid, aqueous Any + + + + +

Oxygen + + + + Ozone 50 pphm / - + /

Palmitic acid + + + + Palityl alcohol + + + +

Palm nut oil + + Paraffin, liquid + + + / -

Paraffin emulsions As supplied commercially + / + +

Paraformaldehyde + + + Peanut oil Tech. grade + + + Pentanol + +

Peppermint oil + + Perchloric acid, aqueous 20% + + + + Perchloric acid, aqueous 50% + / Perchloric acid, aqueous 70% + -

Perchloroethylene / - / - Petroleum ether + / + /

Petrol, regular-grade (D/N 5 1635) + / / -

Phenolic resin moulding compounds + + + +

Phenol + +D + +D Phenol (carbolic acid) + +D + +D

Phenyl ethyl alcohol + + + Phenyl hydrazine Tech. grade / /to- /

Phenyl hydrazine Hydrochloride + - + Phenyl sulphonate (sodium

dodecylbenzene sulphonate) + + + +

Phosgene, gaseous / / / Phosgene, liquid 100% - -

Phosphates, aqueous Any + + + + Phosphoric acid, aqueous 50% + + + + +

Page 57: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 57

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Phosphoric acid, aqueous 80%…95% + /D + +D +D

Phosphoric oxychloride + / + / Phosphoric pentoxide 100% + + + Phosphoric trichloride + / +

Photographic developers +D +D +D +D

Photographic emulsions As supplied commercially + + +

Photographic fixing baths As supplied commercially + + +

Phthalic acid, aqueous 50% + + + + Phthalic acid dibutyl ester

(dibutyl phthalate) Tech. grade + / + /

Phthalic acid ester + +to/ + / Picric acid, aqueous 1% + +

Pineapple juice + + + + Pine needle oil + + +

Plant protection agents, aqueous

As supplied commercially + + +

Plasticizers + / + / Polyacrylic acid emulsions + +

Polyester plasticizers + +to/ + Polyester resins / - /

Polyglycols + + + + Polysolvan O (glycolicAcid butyl

ester) + +

Potassium aluminium sulphate, aqueous Any + + + + +

Potassium bicarbonate, aqueous Saturated + + + +

Potassium bichromate, aqueous Any + + + + Potassium bisulphate, aqueous Saturated + + + + + Potassium bisulphite, aqueous Saturated + +

Potassium borate, aqueous 1% + + + + Potassium bromate, aqueous Up to 10% + + + + + Potassium bromide, aqueous Any + + + + +

Potassium carbonate, aqueous Any + + + + Potassium chlorate, aqueous Any + + + + + Potassium chloride, aqueous Any + + + + +

Potassium chromate, aqueous 40% + + + + + Potassium chromic sulphate

(chrome alum), aqueous Saturated + + + +

Potassium cyanide, aqueous Any + + + + Potassium dichromate, aqueous Saturated + + + +

Potassium ferricyanide, aqueous Any + + + +

Potassium ferricyanide And ferrocyanide Any + + + +

Potassium fluoride, aqueous Any + + + + Potassium hexacyano-ferrate,

aqueous Any + + + +

Potassium hydrogen Carbonate, aqueous Saturated + + + + +

Potassium hydrogen sulphate, aqueous Saturated + +

Potassium hydrogen sulphite, aqueous Saturated + + + +

Potassium hydroxide + + + + Potassium hydroxide, aqueous Any + + + + Potassium hydroxide solution 50% + + + + +

Potassium hypochlorite, aqueous Saturated + +

Potassium iodide, aqueous Any + + + + Potassium nitrate, aqueous Any + + + +

Potassium perborate + + Potassium perchlorate,

Aqueous Up to 10% + /

Potassium perchlorate, aqueous 1% + + + Potassiumpermanganate + + +

Page 58: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 58

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Potassiumpermanganate,

aqueous Up to 6% + +D + +D

Potassium persulphate, aqueous Any + + + +

Potassium phosphate, aqueous Saturated + + Potassium sulphate, aqueous Any + + + + Potassium sulphide, Aqueous Saturated + + + + Potassium sulphite, aqueous Saturated + + + +

Potassium tetracyanocuprate, aqueous Saturated + +

Potassium thriosulphate, aqueous Saturated + +

Propane, gaseous Tech. grade + + Propanol (propyl alcohol) + + + +

i-Propanol (i-propyl alcohol) + + + + n-Propanol (n-propyl alcohol) + + + +

Propargyl alcohol, aqueous 7% + + + + Propionic acid, aqueous Any + + + +

Propylene dichloride 100% - - Propylene glycol + + + + Propylene oxide + + Pseudocumene / /

Pyridine + / / / Release agents + + + +

Roasting gases, dry Any + + + + Rubber dispensions (latex) + + + +

Sagrotan + / + / Salicylic acid + + + +

Salt brines Saturated + + + + Saturated steam Condensate + + + + Sauerkraut (pickled cabbage) + + + + +

Sea water + + + + + Silicic acid, aqueous Any + + + +

Silicone emulsion As supplied commercially + + + +

Silicone oil Technical + + + + + Silver nitrate + + + +

Silver nitrate, aqueous Any + + + + + Silver salts, aqueous Cold saturated + + + +

Soap solution, aqueous Any + + + + Soda (sodium carbonate),

aqueous Any + + + + +

Sodium acetate, aqueous Any + + + + + Sodium aluminium sulphate + + + + Sodium benzoate, aqueous Saturated + + + +

Sodium bicarbonate, aqueous Saturated + + + + + Sodium bisulphate, aqueous Saturated + + + + Sodium bisulphate, aqueous + + + +

Sodium borate + + + + Sodium bromide + + + +

Sodium carbonate, aqueous Any + + + + + Sodium chlorate, aqueous Saturated + + + + Sodium chloride, aqueous Any + + + + + Sodium chlorite, aqueous 50% + + /

Sodium chromate + + + + Sodium cyanide + + + +

Sodium dichromate + + + + Sodium dodecylbenzene-

Sulphonate + + + +

Sodium ferricyanide + + + + Sodium fluoride + + + +

Sodium hexacyanoferrate(iii)(sodium

ferricyamide), aqueous + + + +

Sodium hexacyanoferrate(ii) + + + + Sodium hexametaphosphate,

aqueous Saturated + + +

Page 59: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 59

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Sodium hydrogen carbonate,

aqueous + + + + +

Sodium hydrogen sulphate, aqueous Saturated + + + +

Sodium hydrogen sulphite, aqueous Saturated + + + +

Sodium hydroxide + + + + Sodium hydroxide, aqueous Any + + + +

Sodium hydroxide, solid + + + + Sodium hypchlorite, aqueous

with 12.5% active chlorine / - / / -

Sodium nitrate, aqueous Any + + + + Sodium nitrite, aqueous Any + + +

Sodium perborate, aqueous Any + / + + + Sodium perchlorate, aqueous Any + +

Sodium peroxide, aqueous Saturated / Sodium peroxide, aqueous 10% + +

Sodium phosphate, aqueous Saturated + + + + + Sodium silicate + + + +

Sodium silicate, aqueous Any + + + + Sodium sulphate, aqueous Cold saturated + + + + +

Sodium sulphide Saturated + + + + Sodium sulphite, aqueous 40% + + +

Sodium tetraborate (borax), aqueous Saturated + + + + +

Sodium thriosulphate, aqueous Saturated + + + + Soft soap + + + +

Soya bean oil + + + / Spermaceti + / + Spindle oil +to/ / + -

Spirits + + Stain remover +to/ /

Stannic chloride, aqueous Saturated + + + + Stannous chloride, aqueous Any + + + +

Starch, aqueous Any + + + + Starch gum (dextrin), aqueous 18% + + + +

Starch syrup + + + + Stearic acid + / + /

Styrene / - / - Succinic acid, aqueous 50% + + + +

Sugar beet juice + + + + + Sugar syrup + + + + +

Sulphates, aqueous solutions Any + + + + Sulphuric acid, aqueous Up to 50% + + + + Sulphuric acid, aqueous 70% + + + / Sulphuric acid, aqueous 80% + + + / Sulphuric acid, aqueous 98% /1) - / -

Sulphur + + + + + Sulphurous acid + + + +

Sulphuryl chloride (sulphonyl chloride) Tech. grade - -

Sulphur dioxide, aqueous Any + + + + Sulphur dioxide, gaseous + + + +

Sulphur trioxide - - Tallow Tech. grade + + + +

Tannic acid (tannin), aqueous 10% + + + + Tanning extract, vegetables As supplied + + /

Tannin (tannic acid), aqueous 10% + + + + Tartaric acid, aqueous Any + + + +

Tetrabromomethane /to- - /to- Tetrachloroethane /to- - / -

Tetrachloroethylene Tetrachloromethane (carbon

tetrachloride) Tech. grade /to- - / -

Tetrahydrofuran Tech. grade /to- - / - Tetrahydronaptalene (tetralin) Tech. grade + - -

Thioglycolic acid + + + +

Page 60: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 60

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C Thionyl chloride - -

Thiophene / - / - Toluene Tech. grade / - / -

Toluic acids (methyl Benzoic acids) Saturated / /

Tomato juice + + + + Transformer oil Tech. grade + / + /

Tributyl phosphate + + + + Trichloroacetaldehyde (chloral) Tech. grade + + + +

Trichloroacetic acid Tech. grade + /to- + Trichloroacetic acid, aqueous 50% - -

Trichlorobenzene - - Trichloroethylene Tech. grade +to/ -

Tricresyl phosphate + + + / Triethanolamine + +D + +D

Triethanolamine(2,2’2”-nitrilotiethanol), aqueous s + / +

Triethylene glycol + + + + Trilon + +

Trimethylol propane, aqueous + + + + Trimethyl borate + /to-

Trioctyl phosphate + / + Trisodium phosphate + + + +

Tri–chloroethylphosphate + + + Turpentine oil Tech. grade +to/ / -

Tutogen U + + + + Tween 20 and 80 + - + +

Two-stroke oil + / + Urea, aqueous Up to 33% + + + +

Uric acid + + + Urine + + + +

Vaseline Tech. grade +to/ / + / Vaseline oil Tech. grade +to/ / + / -

Vinegar (wine vinegar) As supplied commercially + + + +

Vinylidene chloride (1.1-dichloroethylene) Tech. grade - -

Vinyl acetate + + + / Viscose spinning solutions + + + +

Vitamin C + + Vitamin preparations, dry

(powder) + +

Walnut oil + / + Washing up liquids Usual + + + +

Waste gases containing carbonic acid derivatives Any + + + +

Waste gases containing carbon dioxide Any + + + +

Waste gases containing carbon monoxide Any + + + +

Waste gases containing hydrochloric acid Any + + + +

Waste gases containing hydrogen fluoride Trace + +

Waste gases containing nitrose Trace + + Waste gases containing SO2 Low + + + +

Waste gases containing sulphuric acid (moist) Any + + + +

Waste gases containing Sulphur trioxide (fuming sulphuric acid) Trace - -

Water, distilled + + + + Waxes + +to/ + +to/

Wax alcohols Tech. Grade / / / - Whey + + + +

Whiskey + + White spirits Tech. Grade + / / -

Wine + + +

Page 61: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 61

Behaviour HDPE Behaviour PP Substance Concentration

20°C 60°C 20°C 60°C 100°C

Wine vinegar (table vinegar) As supplied commercially + + + +

Wood stains End use concentration + +to/

Xylene / - - Yeast + + +

Zinc carbonate + + + + Zinc chloride, aqueous Any + + + +

Zinc oxide + + + + + Zinc salts, aqueous Any + + + +

Zinc sludge + + + + Zinc stearate + + + + +

Zinc sulphate, aqueous Any + + + + + *88,25 parts water,10 parts sodium perchlorate, 1 part sodium hydroxide, 0,25 parts

aniline, 0,25 parts manochlorobenzene, 0,25parts toluenediamine.

Operating Pressure The most important factor to be recognised is that there is interdependence between operating pressure, operating temperature and expected life of the pipe. Increase in one normally results in losses in the others and it becomes an exercise in determining the optimum values of these different parameters. It should be remembered that the relevant SABS specifications are structured around the basic assumption of water at 20 °C as fluid for an expected life of 50 years, at the given pressure rating. Whenever there is a significant deviation from this standard, the requirements should be discussed with a knowledgeable design engineer. Hydrostatic strength curves give the relationship between pressure, temperature and life. GM 5010/12 exceeds the minimum Din 8075 curves by a factor of 10 on average. Continual material development necessitates periodical revision of the hydrostatic regression curves. Following are copies of these curves for HDPE and PP, together with an example how to use them.

Page 62: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 62

Hydrostatic Strength (Creep Rupture Curve) for HDPE

Page 63: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 63

Hydrostatic Strength (Creep Rupture Curve) for PP

Hydrostatic Regression Curves (Their Use and Application) Under mechanical stress, plastics have a tendency to creep (cold flow) in the same way as metals do at high temperatures. To establish permissible stresses under continuous loading, it is therefore necessary to examine the mechanical behaviour of the plastics in question, when subjected to stress over long periods. This generally requires plotting the regression curve (also curves) as well as the time yield limits for the plastics material in question. From a design aspect, the hydrostatic strength of a pipe under internal pressure is one of its most important properties. The strength of plastics pipe under internal pressure depends on the temperature and time under stress. From test work commenced in 1955, measuring the hydrostatic strength of pipe at various temperatures and pressures, the resultant regression curves (according to DIN8075/SABS 533) have been derived and indicate the decreased stress and temperature. These curves indicate minimum permissible values. The curves initially comprise a flat slope which bends into a steep gradient with increasing time under stress; the flat section of the slope representing ductile crack failure, and the steep section brittle crack failure (with almost no deformation). The relationship of time versus stress and/or temperature is shown in the double regression curves in Graph 1. From the curves it can be seen that, at 20°C, a life expectancy of 50 years at a reference stress of 8 MPa, is obtained. Allowing a safety factor of 1.6 as stipulated by DIN 8075, gives a design stress of 5Mpa. This design stress value is used to calculate the pipe wall thickness (according to DIN8074 or SABS 533 Part II). Hydrostatic strength measurements carried out at Hoechst AG on GM 5010 T2 produces substantially higher values than the minimum values called for by DIN8075. For example, at 20°C and a lifespan of 50 years, a reference stress of 10 MPa is obtained. A design stress of 5 MPa gives a safety factor of two, which far exceeds pipe quality requirements. From Graph 1, at 80ºC and 4 MPa reference stress, a life expectancy of 170 hours is obtained. This is one of the minimum requirements of SABS 533 Part II. Example: Given is an HPDE pipe with OD of 450mm and pressure class 10. The pipe is being used to convey water under internal pressure (pi) of 850 kPa, at 40°C. What is the expected lifespan? According to SABS 533 II, a Class 10 pipe has a wall thickness of 41mm. This calculation is based on a design stress of 5 MPa, which has been set by the Standardisation Committee. From the standard formula:

Page 64: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 64

Where: • t = wall thickness • d = outside diameter • p = internal pressure

it follows that

and since

where safety factor = 1.6 therefore

Based on the regression curves for Hostalen GM 5010 T2, it follows that the expected life is 3 x 104 hours, or about four years. Resistance to Vacuum of HDPE

Operating Temperature Again, with reference to the SABS standard, it should be remembered that with elevated operating temperatures, the pressure rating of the pipe should be adapted to suit, and still leave a satisfactory safety factor at the end of its design life. Creep rupture curves again determine the relationship between temperature, pressure and expected life. Following, are tables and graphs indicating the reduction in operating pressure with increase in operating temperature.

Page 65: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 65

Working Pressure against Temperature - Comparison between PP and HDPE

Pressure Derating Factors – PP

Maximum Working Pressure, kPa Temperature °C Period

Year(s) Class 6,3

Class 10

Class 16

Class 20

1 885 1 400 2 400 2 800 5 785 1 240 1 980 2 480

10 760 1 200 1 920 2 400 20

50 630 1 000 1 600 2 000 1 570 900 1 440 1 800 5 505 800 1 280 1 600

10 480 760 1 215 1 520 40

50 380 600 960 1 200 1 380 600 960 1 200 5 330 520 830 1 040 60

10 315 500 800 1 000 1 255 400 640 800 5 190 300 480 600 80

10 155 240 380 480 1 155 240 380 100 5 80 120 190

Pressure Derating Factors – HDPE

Water Temperature

°C

Factor Applied to Maximum Working Pressure at 20°C

(I.e. Pressure Rating)

0-20 1 > 20 – 25 0,8

> 25-30 0,63 > 30-35 0,5 > 35-40 0,4 > 40-45 0,32 > 45-50 0,25

Flow Because of friction between the fluid and the pipe wall, there are pressure losses along the pipeline, hence the importance of this parameter in the design of the system. Most plastic pipes normally have a very smooth surface and consequently have a lower drop in pressure over a certain distance. This can result in a higher volume, increased velocity or decreased pumping costs or a combination of these.

Page 66: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 66

HDPE 100X

Steel 100X

HDPE 100X

Steel 100X

The flow Nomogram gives an easy way to determine the pressure loss in a pipeline at different diameters and velocities. Hazen Williams Coefficient for Different Pipe Materials One method of expressing the roughness and flow in a pipeline, is Hazen Williams equation, i.e. V = 0.849 C x R0.63 x S0.54 Where

• C is the Hazen Williams coefficient • V is the velocity of flow • R is the hydraulic radius • S is the head (of pressure) loss

Below are the values for C for different pipe materials.

Pipe New 25 years old

50 years old

Badly corroded

HDPE & PP 150 140 140 130 Smooth concrete and FRC 150 130 120 100

Steel – Bitumen lined or galvanised 150 130 100 60

Cast Iron 130 110 90 50 Vitrified clay 120 80 45

For diameters smaller than 1000mm, reduce by:

Ref: Pipeline design for water engineers By D L Stephenson

Page 67: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 67

Flow Nomogram

Inside Diameter Quantity of Water Loss of

Pressure m/100. Pipeline

HDPE/PP Pipe

Steel Pipe 1mm

Restcoat

l/sec l/min

Velocity m/sec

HDPE/PP Pipe

Steel Pipe

The nomogram is based on the Prandtl-Coalbrook formula using a k factor of : k = 0.007mm.

Page 68: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 68

factors applicable to other flow formulae are: • Hazen Williams - c = 150 • Manning - n = 0.010 • Darcy roughness factor - = 0.007mm

Pressure Loss in HDPE Pipe (According to DIN 8074 Series 4) (Class 6)

Pressure Loss in HDPE Pipes (According to DIN 8074 Series 5) (Class 10)

Valid for water at 10°C Pressure Loss ∆p (bar/100m)

Life Although the design standard is 50 years, it might be necessary, in some cases of design, for a shorter expected life of the pipeline. This is done only for economical reasons and it should be remembered that it disqualifies the pipe for a SABS mark of approval. Factors other than pressure and temperature also have an influence on the expected life of the pipeline, such as abrasion or chemical reaction by the fluid being transported. Abrasion resistance of HPDE and PP is excellent, as can be seen from the curves in Graph 7. HPDE in particular, is increasingly being used in high abrasion applications, such as coal washing plants and slurry lines. Chemical Resistance Both HPDE and PP have excellent resistance to most chemicals under ambient temperature conditions.

Page 69: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 69

Again, the other factors such as temperature and life are interrelated to the chemical resistance of the pipe materials. Resistance to various chemicals is given in the following table, as determined by the manufacturers of the raw materials. Abrasion Resistance - HDPE TEST DATA:

• Flow medium - Sand/water mixture • Velocity - 7m/s • Pressure - 140 MPa • Temperature - 30 - 35°C

Resistance Factors for HDPE The Resistance Factors for HDPE table is intended as a preliminary guide to the chemical resistance of HPDE; it does not provide sufficient information for specific applications or operating conditions. Thus effluent pipes, for example, have satisfactory resistance to all the wastes normally occurring in the chemical industry. To obtain a better assessment of the resistance of pressure pipes to particular media, it is necessary to carry out creep rupture tests under internal pressure on pipe specimens. Instead of water, the pipe is filled with the chemicals to be tested, such as acids, alkalis or solvents. The service life, measured in this way, is compared with that for pipes, tested with water. The time quotient fcRt (= service life with the test medium/service life with water) is a measure of the chemicals resistance of the pipe under stress. Instead of the time factor, the decrease (or increase) of the stress for the same service life can be used. Resistance to Chemicals and Other Media The Chemical Resistance table shows the resistance of pipe to different chemicals. Because of their non-polar nature as high-molecular paraffinic hydrocarbons, ®Hostalen, ®Hostalen PP and ®Hostalen LD, the polyolefins of Hoechst, have exceptionally high resistance to chemicals and other media. They are not attacked by aqueous solutions of salts, acids and alkalis. Fatty oils and waxes cause only slight swelling. Hostalen, Hostalen PP and Hostalen LD are resistant to many solvents, up to 60°C; at higher temperatures they are attracted by aromatic and halogenated hydrocarbons. Hostalen, Hostalen PP and Hostalen LD are not resistant to strong oxidizing agents such as nitric acid, oleum and halogens. Generally speaking, higher temperatures can considerably impair resistance, depending on the chemical environment. Owing to its density and higher degree of branching, Hostalen LD is not quite as resistant as Hostalen. But the difference is merely one of degree; its EVA copolymers containing a large proportion of vinyl acetate have much poorer resistance. The results of numerous chemical resistance tests are shown in the following table. This summarises the changes that were observed when Hostalen, Hostalen PP and Hostalen LD were exposed to the substances listed. These results cannot, however, replace chemical resistance tests that are conducted as part of studies to determine general suitability of design; nor do these results hold for all application situations.

Page 70: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 70

A special assessment must always be made if the substrate is exposed to mechanical, chemical and possibly thermal stresses at the same time, as is the case with pressure pipes or large tanks. The so-called resistance factor (fCR)* is a valuable guide in such cases. It characterises the long-term resistance of pipes exposed to a certain substance, relative to the long-term resistance in water. In the case of pipes made from Hostalen and Hostalen PP, resistance factors were determined for a number of substances. Plastics specimens were placed in the relevant substance for 60 days (30 days in the case of LDPE) but were not subjected to mechanical stress. They were then tested for swelling or weight loss and subjected to the test for tensile strength. Specimens: 50mm x 25mm x 1mm and specimen 3 according to DIN 53455, with dimensions in the ratio 1:4, both taken from press-moulded sheets. Determining of Time (fcRt) and Stress (fcRσσσσ) Factors

Terrain The first question is always whether the pipe will be above or below the ground. In both cases, there are a number of considerations, such as:

• Environment • Ambient temperature range • Weathering ability • Security • Soil conditions

Generally, these have to do with aesthetics, ultraviolet resistance, expansion and contraction, toughness, resilience and economics. Two factors in particular are of importance, i.e. supporting distances for pipes suspended above ground, and critical loads on pipes buried below ground. Data to calculate these values is given below.

Page 71: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 71

Supporting Distances of HPDE and PP

Calculation of Static Loads on Pipes

Deformation calculationsDeformation calculationsDeformation calculationsDeformation calculations

For buried gravity flow sewers, the required wall thickness must be determined according to the external stresses imposed by earth pressure and traffic. In order to understand the effect of such stresses on high density polyethylene pipe, the special characteristics of a visco-elastic material have to be considered, since the methods for calculating static loading of rigid pipes (stoneware, concrete, asbestos, cement) or of elastic pipes (steel) are not directly applicable. In the crushing test, Hostalen GM 5010 T2 pipe does not fracture. Under an increasing crushing load, it deforms to such an extent that the inwardly arched pipe bottom bulges up, but no stress cracks form. In considering the strength properties of buried high-density polyethylene pipe, this behaviour must therefore be taken into account. Some deformation occurring under load is elastic (reversible) and some is plastic (irreversible). In fact, the crushing test indicates only the degree of deformability of the material, but in no way corresponds to the stress conditions to which the pipe in the backfilled trench is actually subjected. Deformation in such cases will be substantially less than in the crushing test under similar load, because the buried pipe is laterally supported. Measurements of earth pressure and pipe deformation have been carried out over the last eight years, in order to determine the load bearing capacity of a flexible pipe bedded below ground. These measurements showed that the reduction in earth load, due to frictional forces being set up in the trench wall, would cease during the course of time. The maximum possible earth load γ. H is assumed in calculations. The superimposed loads, due to wheeled traffic, can be converted into area traffic loads pv by the usual methods (e.g. Boussinesq). For the impact tractor Ψ, the following values are recommended: SLW 60: 1.2; SLW 30:1.4; trucks 12: 1.5 The total load on the pipe thus: qv = γ x H + Y x Pv Where:

• γ = backfill density • H = cover depth • Ψ = impact factor • Pv = area traffic load

The minimum cover depth for road traffic loads should be 0.8m; for pipes with a diameter of D > 0,8m, it should equal the pipe diameter D. For rail and air traffic, minimum cover depths of > 1.5D >= 1.2m should equal the pipe diameter D. If, in individual cases, no more precise data is available, the soil deformation moduli shown in Table 26 may be used. These are valid for a compressive stress range of up to about 0,1 N/mm2. For higher stresses, the soil moduli increase and thus higher values may be used for greater cover depths, provided they can be confirmed by measurements. The deformation (crown indentation ∆y) of Hostalen GM 5010 T2 pipes under earth load is determined by the RS value on the x-axis of the Watkins graph, Graph 10. The RS value is the quotient of soil rigidity by pipe rigidity.

Page 72: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 72

Where:

• EB = soil rigidity (soil modulus) • ER = elastic modulus of the pipe wall • D = mean pipe diameter • s = pipe wall thickness

On the y-axis of the Watkins graph, the relative pipe deformation for a given RS value can be calculated. By multiplying this value with the soil compression value ΕB ΕB = qv/EB pipe deformation ∆y/D is obtained: ∆y/D = δv = ( δv/ΕB) x ΕB Since plastics have a tendency to creep, deformation increases with time, and a distinction has to be made between short and long term deformation (indicated in the following by the indices K and L). Both are obtained from the Watkins graph by calculating the Rs value with the short-term and long-term modulus (50 years). Pipe should be dimensioned so that the long-term deformation after 50 years does not exceed 6%. The pipe rigidity values for short and long term deformation, required to calculate the Rs value, are given in Table 27 for standardised HDPE pipes. These values were calculated with elastic moduli ERK = 900 N/mm2 and ERL = 200 N/mm2. NOTE: Class 4 Hostalen GM 5010 T2 pipes, normally used for sewers, do not require any special static load testing, provided that the specifications regarding backfill soil and compaction are followed and that the cover depth does not exceed 6 m. Extended Watkins Graph

Deformation Moduli of Various Soils

Degree Of Compaction DPr [%] for Particular

Case (2)

Deformation Modulus EB [N/mm2] for Particular

Case

Type of Soil Group

(1) 1 2 3 4 1 2 3 4

1 95 90 85 97 16 6 2.5 23 2 95 90 85 97 8 3 1.2 11 3 92 90 85 95 3 2 0.8 5 4 92 90 85 95 2 1.5 0.6 4

Page 73: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 73

Key to the above table: Key to the above table: Key to the above table: Key to the above table:

1. Soil group 1: non-cohesive soils, gravel Soil group 2: non-cohesive soils, sand Soil group 3: cohesive mixed soils (sand and gravel) Soil group 4: cohesive soils (silt, clay, loam)

2. Case 1: trench backfill compacted in layers against the undisturbed soil or embankment fill (without compaction test) Case 2: vertical bracing of pipe trench with planks or lightweight sheet piling or non-compacted backfill or hydraulic fill Case 3: vertical bracing of pipe trench with sheet piling or wooden piles Case 4: backfill compacted in layers or embankment fill (with compaction test)

Pipe Rigidity Values for Short-Term and Long-Term Deformation

Pipe rigidity [N/mm2] Material Series Pressure Rating

[bar] D/s Short-term

Long-term

2 3.2 31.3 2.5 · 10-3 0,55 ·10-3 3 4 25 4.8 · 10-3 1.06 ·10-3 4 6 16.6 16.4 · 10-3 3.64 ·10-3

HDPE

5 10 10 75.0 · 10-3 16.70 ·10-3 With regard to the use of soil moduli in deformation calculations, when laying pipes in groundwater or a river bed, the following distinctions must be made. For non-cohesive soils:

• If the groundwater can be pumped or drained off and the backfill soil on both sides of the pipe can be compacted whilst it is dry, then the soil modulus of the compacted soil shown in Table 26 can be used.

• If it is not possible to remove the groundwater and therefore carry out compaction, then as for flushing a pipe into a river bed, the soil modulus for non-compacted soils should be used (lowest values in Table 26).

For cohesive soils: • In this case, despite removal of groundwater and compaction of the non-cohesive cover, settlement or

soil mixing can take place in the course of time. • It is therefore necessary, as for case 1b, to use the lowest EB values in the calculations. Greater wall

thickness will then be obtained. Buckling calculations By buckling, we mean kidney-shaped deformation of the pipe cross-section. Pipes laid under water or in soil below the water table, and subjected to a hydrostatic pressure greater than the internal pressure, should be designed to withstand buckling. The same applies to pipes in a vacuum. The following formula is applied, when calculating the buckling resistance (PKO) of and undeformed pipe (not embedded in soil) to external water or gas pressure, or a vacuum:

where • µ = 0.4 = Poisson's ratio of the pipe material • ro = mean pipe radius

The long-term buckling resistance values calculated with formula (5) for Hostalen pipe, are plotted on a graph in Graph 11. These have largely been confirmed by test results. The maximum buckling resistance value incorporates a safety factor of 2. In the case of pipes laid below the water table or in a river bed, the soil surrounding the pipe acts as a support in certain cases, i.e. it increases buckling resistance compared with a pipe not embedded in soil (as calculated by formula (5)). This buckling resistance is greater, the more soil rigidity exceeds pipe rigidity, which can be taken into account by using the support factors fs shown in Table 28. PKl = fS PK0

Page 74: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 74

Support Factors fSupport Factors fSupport Factors fSupport Factors fSSSS for PE and PVC Pipe for PE and PVC Pipe for PE and PVC Pipe for PE and PVC Pipe

Support Factors fs Pressure Rating (Bar) With Soil

Compaction Without Soil Compaction

Concrete In

3.2 3 1.5 4 4 2.8 1.2 4 5 2.4 1 4 6 2.3 1 4

10 1.2 1 4 Taking into account the reduction factor fa for a pipe deformed under a superimposed load, as found in Graph 12, we finally obtain: PK2 = fs • fa • PKO The safety factor for buckling is thus: S = PK2/PW where

• PW = γW HW = external pressure of the groundwater • γW = 1 t/m3 (density of water) • HW = depth of groundwater or river water above pipe

The buckling safety factor S should be >= 2.The buckling safety factor S should be >= 2.The buckling safety factor S should be >= 2.The buckling safety factor S should be >= 2. Soils which assume the properties of a viscous liquid under the action of water (e.g. bog soils, mud) have no supporting action on the pipe, i.e. fs = 1. The external pressure PW should, in this case, be calculated in the same way as for pipe laid in groundwater. Pipelines laid in groundwater areas, i.e. in marshy soil, if not properly weighted down by the soil cover, should be secured against lifting. This can be done, for example, with collars installed at intervals that vary according to the permissible deflection of the pipe. The above discussion may be explained by a final example:

Given Pipe Class 3.2

Cover Depth H = 4m Sandy Soil γ = 2000kg/m3

Compaction In Accordance with DIN 4003

Proctor Density DP = 95% Traffic Loads None

qV = γ • H = 8000kg/m2 Vertical Pressure ˜ 0.08N/mm2

Soil Modulus EB = 8N/mm2 (from Table 26)

Soil Compression EB = qV/EB = 1%

Pipe Rigidity ER I/D3 = 2.5 x 10-3 N/mm2 (short-term)

= 0.55 x 10-3 N/mm2 (long-term)

RSK = 3200 According to Formula (2) RSL = 14500

(dV/?B)K = 1.55 From Graph 10 (Mean Curve of Scatter Range): (dV/?B)L = 1.95

δVK = 1.55% According to Formula (4) δVL = 1.95% EB = 1.2N/mm2

RSK = 480 RSL = 2180 δVK = 7.0%

If the soil is not compacted, the following values are obtained (DP =

85%): δVL = 8.2%

Page 75: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 75

When a pipeline is laid under the water table –by the procedure of pumping out the groundwater, laying the pipe in the trench, backfilling, compacting and top filling (DP = 95%), and where the water table is 1.5m above the pipe bottom — an additional calculation is carried out to determine the buckling strength necessary to resist groundwater pressure. The superimposed groundwater pressure PGW equals 0.15bar. The buckling resistance of the undeformed pipe (Class 3.2) necessary to give a service life of 50 years before commencement of buckling without support from the surrounding soil, can be ascertained from Graph 11. PKO = 0.15 bar gauge. The reduction factor for the deformed pipe (from Graph 12): For δVL = 1.95 • fa = 0.85 The buckling resistance of the deformed pipe without support effect: PKI = PKO • fa = 0.128 The support factor from Table 28: fs =3 The buckling resistance with support effect: PK2 = PKl • fs = 0.382 The buckling safety factor: S = 0.382/0.15 = 2.55 (> 2) From: Hoechst Plastics Buckling Resistance of Pipes Buckling resistance of pipes of Hostalen under external water pressure at 20 °C is seen below. The curve shows the beginning and end of buckling.

Reduction Factor fReduction Factor fReduction Factor fReduction Factor faaaa as a Function of Pipe Deformation as a Function of Pipe Deformation as a Function of Pipe Deformation as a Function of Pipe Deformation

Page 76: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 76

Coefficient of Linear Expansion The coefficient of linear expansion of HDPE and PP pipes is about 0.17 rnm/°K. When a plastic pipe is fixed between two points, it undergoes compressive stress on heating, and tensile stress on cooling, because of inhibited thermal expansion. In the temperature range of -40°C to -20°C, (-40 to +20°C) a maximum tensile stress of 9.3 MPa on cooling and maximum compressive stress of 5.8 MPa on heating, was measured on HDPE pipe. These stresses, which relax during the course of time, are far below the permissible stress values. The two fixed points must be able to withstand the tensile or compressive forces resulting from the stresses:

where

• d stress (MPa) • A = pipe cross-section (mm2)

These forces place an unacceptable shear stress on branches in the pipeline, therefore branches should always be set in concrete. When there are temperature differences in a pipe section fixed between two spacers, compression (due to inhibited thermal expansion) can cause the pipe to kink if the critical kinking length is exceeded. Lateral movement of the pipe will then occur. The critical kinking length is calculated as follows:

Where

• da pipe outside diameter (mm) • dl pipe inside diameter (mm) • α mean coefficient of linear expansion (K-1)

(1.7 x 10-4 for HDPE and PP) • ∆T temperature difference (K)

To prevent lateral deflection, the pipe must be fixed at intervals of L<=lK. Determining the Length Change In order to determine the length of flexible section required, the extent of the length change must be ascertained first, by means of the following formula: ∆L = L • ∆T • α (mm/m°C) Where

• ∆L = length change in mm • L = length in m of the pipe or pipe section where the length change is to be determined • ∆T = difference between installation temperature and maximum or minimum working temperature,

respectively, in °C • a = coefficient of linear expansion of the pipe material in mm/m °C (see table below).

Values for d PVC 0.08mm/m°C

PP 0.15mm/m°C PE 0.20mm/m°C

Important: If the working temperature is higher than the installation temperature the pipe becomes longer. If, on the other hand, the working temperature is lower than the installation temperature, the pipe becomes shorter. Therefore, the installation temperature as well as the maximum and minimum working temperatures must be taken into account.

The procedure is explained using a coolant pipe as an example: • Length of the pipe from the fixed point to the branch where the length change is to be taken up: L =

8m • Installation temperature: TV = 15°C

Page 77: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 77

• Temperature of the coolant: T1 = -12°C • Temperature when defrosting and cleaning: T2 = +35°C • Material: HDPE

Difference in temperature: • ∆T1 = TV - T1 = 27°C • ∆T2 = T2 - TV = 20°C

Contraction during service coolant: • -∆L1 = L • ∆T1 • δ • = 8 • 27 • 0.20 • = 43.2mm

Expansion during defrosting and cleaning: • +∆2 = L • ∆T2 • δ • = 8 • 20 • 0.20 • = 32.0mm

Important: • It is wise to indicate pipe expansion with + and contraction with —. • The greater length change is applicable for determining the length of the flexible section.

Accommodation of Thermal Expansion / Contraction For practical purposes, the coefficient of thermal expansion for HDPE pipe is 0.2mm/m°C and the coefficient for PP pipe is 0.18mm/m°C. In buried pipelines, the temperature changes are normally relatively small and seasonal. The resultant linear expansion is likewise small. The friction between the pipe and the surrounding soil is generally sufficient to hold the pipe in position. Structures such as manhole walls may not be designed to take the thrust from the pipeline. If, during installation, the outside temperature is higher than that of the soil, the pipe will contract after backfilling. Therefore, to avoid excessive tension:

1. Snake the pipe in the trench.

2. Connect in the early morning when the pipe is still cool. Expansion/contraction of outside pipelines laid on the ground: Where pipes cannot be protected from direct sunlight, it is advisable to paint the pipes white to reduce heat absorption. A gloss enamel paint is suitable. Anchorage of pipes at intervals will transfer linear expansion into lateral deflection as shown in figure16. Maximum lateral deflection D = 0.0078 x L x v∆T where ∆T = difference between installation temperature and max/min temperature in °C. Expansion/contraction of pipelines following defined routes: Where lateral movement is not acceptable, expansion can be accommodated via expansion elbows at changes of direction. Pipes are kept in position with anchors and guides as shown below.

The length of the expansion arm LA >= 10 x v∆L x D

Page 78: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 78

where • ∆L = thermal expansion • D = pipe outside diameter

In exceptional cases, expansion loops (comprising a double expansion elbow system) may have to be used. Such loops may be installed in any plane. Where none of the above methods of accommodation is acceptable, compensators can be used. Due to the high coefficient of expansion, only sliding type compensators take up enough movement. Sliding type compensators tend to wear and develop leaks, especially if solids are handled. NOTE: Contact Main Industries:

• if doubt exists as to the correct method of accommodating thermal expansion or contraction • for information regarding bedding, backfilling and encasement of fitting in concrete (the latter is

sometimes necessary) Change of Length of HDPE Pipe 1 - 10 m Length Warmed Up or Cooled Down (Starting 10°C)

Example: • Pipe length 10m • Maximum temperature 80°C • Minimum temperature 20°C • Temperature Difference ∆T = 60°C • Change of Length ∆L = 120mm

Water Hammer Condition Through Pressure Surge During actuation of stop valves on pumps, pressure surges may occur in the pipeline. The maximum theoretical surge can be calculated, according to Joukowsky. It is: Ps = 10-5 C VO ρ Where

• VO = velocity of the flow medium (m/s) • ρ = the density (kg/m3) of the medium

The velocity of the pressure wave is Where

• EM is the elastic modulus of the flow medium (for water 2100 N/mm2) • d the pipe diameter • t the pipe wall thickness (mm)

For the elastic modulus of the pipe ER under surge stress the following values apply.

Temperature HDPE PP 20°C 1680 1470 40°C 1230 950 60°C 760 560 80°C

Page 79: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 79

Values for wave propagation rate at 20°C in water are shown in the following table.

Wave Propagation C (m/s) Pressure Class (Bar) HDPE PP

3.2 230 215 4 255 240 6 310 290

10 395 370 12 430 405

Because HDPE has a low elastic modulus, the wave propagation rate and surge intensity are considerably lower than in more rigid pipes (steel, concrete). In tests with HDPE pipes under dynamic inner pressure loading, it has been shown that the pressure surges can, with good approximation, be calculated according to Jouskowsky’s Pressure Surge theory. Furthermore, it may be concluded, from tests carried out by Lörtsch, that surges do not damage HDPE pipes, provided that the mean stress is not higher than the stress at nominal pressure; e.g. With a Class 6 pipe at an operating pressure of 6 bar at 20°C, the mean stress does not exceed 6 bar, nor does it exceed a relative stress of 5 MPa. The surge amplitude in this case should be: ± 6 bar.

Page 80: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 80

Dimensions of Pipes

Dimensions of Type 4 HDPE • SDR 26 (Class 4); SDR 17 (Class 6) • SDR 11 (Class 10); SDR 9 (Class 12); SDR 7.4 (Class 16)

OD SDR 26 - Class 4 SDR 17 - Class 6 SDR 11 - Class 4 SDR 9 - Class 12 SDR 7.4 - Class 16

Nomi-nal

(mm)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m

(kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m

(kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

16 - - - - - - - - - 12 2.0 0.09 11 2.2 0.10 20 - - - - 16 2.0 0.12 15 2.3 0.13 14 2.8 0.16 25 - - - - 20 2.3 0.17 19 2.8 0.20 18 3.5 0.24 32 - - - 28 2.0 0.20 26 2.9 0.28 24 3.6 0.33 22 4.5 0.40 40 - - - 35 2.4 0.29 32 3.7 0.44 31 4.5 0.52 28 5.6 0.62 50 46 2.0 0.32 44 3.0 0.46 40 4.6 0.68 38 5.6 080 36 6.9 0.95 63 58 2.5 0.50 55 3.8 0.73 51 5.8 1.07 48 7.0 1.25 43 8.7 1.51 75 69 2.9 0.69 66 4.5 1.03 61 6.9 1.51 57 8.4 1.78 53 10.4 2.13 90 83 3.5 0.99 79 5.4 1.47 73 8.2 2.15 69 10.0 2.55 64 12.5 3.08

110 103 4.3 1.47 96 6.6 2.20 89 10.0 3.19 84 12.3 3.82 78 15.2 4.57 125 115 4.8 1.87 110 7.4 2.79 101 11.4 4.13 96 13.9 4.92 82 17.3 6.03 140 129 5.4 2.34 123 8.3 3.50 114 12.8 5.19 108 15.6 6.18 100 19.4 7.56 160 147 6.2 3.07 141 9.5 4.59 130 14.6 6.77 123 17.8 8.22 114 22.1 9.84 180 166 7.0 3.90 158 10.7 5.80 146 16.4 8.73 139 20.0 10.4 127 24.8 12.4 200 184 7.7 4.77 176 11.9 7.16 162 18.2 10.74 154 22.3 12.8 143 27.6 15.4 225 208 8.7 6.05 198 13.4 9.04 183 20.5 13.6 173 25.0 16.2 160 31.1 19.5 250 231 9.7 7.48 218 14.9 11.20 203 22.8 16.8 193 27.8 20.0 178 34.5 24.0 280 258 10.8 9.32 246 16.6 14.2 228 25.5 21.0 216 31.2 25.1 200 38.7 30.1 315 292 12.2 11.81 277 18.7 18.0 256 28.7 26.6 243 35.0 31.7 225 43.5 38.1 355 328 13.7 14.96 312 21.1 23.0 289 32.3 33.8 273 39.5 40.3 253 49.0 48.4 400 368 15.4 18.9 351 23.7 29.0 323 36.4 42.9 306 44.5 51.2 - - - 450 415 17.3 24.4 394 26.7 36.8 364 40.9 54.2 344 50.0 64.7 - - - 500 461 19.3 30.3 438 29.7 45.5 404 45.5 67.0 - - - - - 560 516 21.6 37.9 491 33.2 56.9 453 50.9 83.9 - - - - - - 630 580 24.3 47.9 552 37.4 72.0 - - - - - - - - - 710 654 27.3 60.7 622 42.1 91.3 - - - - - - - - - 800 737 30.8 77.1 701 47.5 116.1 - - - - - - - - - 900 829 34.7 97.8 789 53.4 146.8 - - - - - - - - -

1000 922 38.5 120.5 - - - - - - - - - - -

chris.smythe
Typo - SDR11 is Class 10
Page 81: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 81

Tolerances of Type 4 HDPE According to SABS 533: Part II - 1982. Note: Tolerances are based on ISO 3607.

• Class 4 to Class 6 • Class 10 to class 20

Wall thickness e, mm Outside

Diameter demm Class 4 Class 5 Class 6 Class 10 Class 12 Class 16 Class 20

Nomi-nal

(mm) min max min max min max min max min max min max min max min max

12 12.0 12.3 - 2.0 2.4 2.1 2.6 16 16.0 16.3 - 2.0 2.4 2.2 2.7 2.7 3.2 20 20.0 20.3 - 2.0 2.4 2.3 2.8 2.8 3.3 3.4 4.0 25 25.0 25.3 - 2.3 2.8 2.8 3.3 3.5 4.1 4.2 4.9 32 32.0 32.3 - 2.0 2.4 2.9 3.4. 3.6 4.2 4.5 5.2 5.4 6.2 40 40.0 40.4 - 2.4 2.9 3.7 4.3 4.5 5.2 5.6 6.4 6.7 7.6 50 50.0 50.5 2.0 2.4 3.0 3.5 4.6 5.3 5.6 6.4 6.9 7.8 8.4 9.5 63 63.0 63.6 2.5 3.0 3.8 4.4 5.8 6.6 7.0 7.9 8.7 9.8 10.5 11.8 75 75.0 75.7 2.9 3.4 4.5 5.2 6.9 7.8 8.4 9.5 10.4 11.7 12.5 14.0 90 90.0 90.9 3.5 4.1 5.4 6.2 8.2 9.3 10.0 11.2 12.5 14.0 15.0 16.7

110 110.0 111.0 4.3 5.0 5.3 6.1 6.6 7.5 10.0 11.2 12.3 13.8 15.2 17.0 18.4 20.5 125 125.0 126.2 4.8 5.5 6.0 6.8 7.4 8.4 11.4 12.8 13.9 15.5 17.3 19.3 20.9 23.2 140 140.0 141.3 5.4 6.2 6.7 7.6 8.3 9.4 12.8 14.3 15.6 17.4 19.4 21.6 23.4 26.0 160 160.0 161.5 6.2 7.1 7.7 8.7 9.5 10.7 14.6 16.3 17.8 19.8 22.1 24.6 26.7 29.6 180 180.0 181.7 7.0 7.9 8.6 9.7 10.7 12.0 16.4 18.3 20.0 22.2 24.8 27.5 60.0 33.2 200 200.0 201.8 7.7 8.7 9.6 10.8 11.9 13.3 18.2 20.3 22.3 24.8 27.6 30.6 33.4 37.0 225 225.0 227.1 8.7 9.8 10.8 12.1 13.4 15.0 20.5 22.8 25.0 27.7 31.1 34.5 37.5 41.5 250 250.0 252.3 9.7 10.9 11.9 13.3 14.9 16.6 22.8 25.3 27.8 30.8 34.5 38.2 41.7 46.1 280 280.0 282.6 10.8 12.1 13.4 15.0 16.6 18.5 25.5 28.3 31.2 34.6 38.7 42.8 46.7 51.6 315 315.0 317.9 12.2 13.7 14.0 16.7 18.7 20.8 28.7 31.8 35.0 38.8 43.5 48.1 - - 355 355.0 358.2 13.7 15.3 16.9 18.8 21.1 23.5 32.3 35.8 39.5 43.7 49.0 46.7 - - 400 400.0 403.6 15.4 18.0 19.1 22.2 23.7 27.5 36.4 42.1 44.5 51.4 - - - - 450 450.0 454.1 17.3 20.1 21.5 25.0 26.7 30.9 40.9 47.3 50.0 57.8 - - - 500 500.0 504.5 19.3 22.4 23.8 27.6 29.7 34.4 45.5 52.6 - - - - - 560 560.0 565.1 21.6 25.1 26.7 30.9 33.2 38.7 50.9 58.8 - - - - - 630 630.0 635.7 24.3 28.2 30.0 34.7 37.4 43.3 - - - - - - - 710 710.0 716.4 27.3 31.6 33.8 39.1 42.1 48.7 - - - - - - - 800 800.0 807.2 30.8 35.7 38.1 44.1 47.5 54.9 - - - - - - - 900 900.0 908.1 34.7 40.1 42.9 49.6 53.4 61.7 - - - - - - -

1000 1000.0 1009.0 38.5 44.5 47.7 55.1 - - - - - - - - -

Page 82: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 82

Dimensions of Type 5 HDPE According to SABS 533 Part III 1995. Density = 0.958 g/cm.

• Class 4 to Class 10

• Class 12 to Class 20

OD Class 4 Class 6 Class 10

Nominal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nominal ID (mm)

Min Wall Thick-

ness(mm)

Mass/m (kg)

Nominal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

25 - - - - - - 20.9 1.9 0.14 32 - - - - - - 26.8 2.4 0.23 40 - - - - - - 33.6 3.0 0.36 50 - - - - - - 42.1 3.7 0.55 63 - - - - - - 53.0 4.7 0.87 75 - - - - - - 63.3 5.5 1.22 90 - - - - - - 76.0 6.6 1.76

110 - - - - - - 92.8 8.1 2.63 125 116.7 3.9 1.51 112.3 6.0 2.27 105.5 9.2 3.40 140 130.8 4.3 1.88 125.8 6.7 2.85 118.2 10.3 4.25 160 149.6 4.9 2.44 143.7 7.7 3.73 135.1 11.8 5.55 180 168.2 5.6 3.10 161.8 8.6 4.69 151.9 13.3 7.05 200 186.8 6.2 3.84 179.7 9.6 5.81 169.0 14.7 8.64 225 210.4 6.9 4.81 202.2 10.8 7.35 190.0 16.6 10.96 250 233.7 7.7 5.94 224.9 11.9 9.01 211.2 18.4 13.52 280 261.8 8.6 7.45 251.7 13.4 11.37 236.6 20.6 16.94 315 294.5 9.7 9.42 283.4 15.0 14.29 266.1 23.2 21.46 355 332.0 10.9 11.96 319.4 16.9 18.14 300.0 26.1 27.22 400 374.0 12.3 15.21 359.7 19.1 23.13 338.1 29.4 34.51 450 420.8 13.8 19.20 404.8 21.5 29.22 380.3 33.1 43.73 500 467.7 15.5 23.62 449.7 23.9 36.09 422.6 36.8 53.94 560 523.7 17.2 29.71 503.8 26.7 45.15 473.3 41.2 67.68 630 589.3 19.3 37.49 566.9 30.0 57.06 532.3 46.3 85.81 710 664.0 21.8 47.76 638.7 33.8 72.68 - - - 800 748.1 24.6 60.73 719.6 38.1 92.35 - - - 900 841.6 27.7 76.88 809.6 42.8 116.83 - - -

1000 935.2 30.7 94.79 899.6 47.6 144.18 - - -

Page 83: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 83

OD Class 12 Class 16

Nominal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nominal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nominal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

25 20.1 2.2 0.17 19.0 2.8 0.20 17.8 3.4 0.23 32 25.8 2.9 0.27 24.3 3.6 0.33 22.7 4.4 0.38 40 32.1 3.7 0.43 30.4 4.5 0.51 28.4 5.5 0.60 50 40.2 4.6 0.67 38.1 5.6 0.79 35.5 6.8 0.94 63 50.7 5.8 1.06 47.9 7.1 1.27 44.8 8.6 1.48 75 60.6 6.8 1.48 57.2 8.4 1.78 53.2 10.3 2.11 90 72.6 8.2 2.14 68.6 10.1 2.56 64.0 12.3 3.03

110 88.9 10.0 3.17 84.0 12.3 3.81 78.2 15.1 4.52 125 100.9 11.4 4.11 95.5 14.0 4.92 88.9 17.1 5.84 140 113.2 12.7 5.12 106.9 15.7 6.17 99.5 19.2 7.33 160 129.2 14.6 6.72 122.3 17.9 8.04 113.8 21.9 9.57 180 145.4 16.4 8.51 137.6 20.1 10.18 128.0 24.6 12.11 200 161.6 18.2 10.49 152.8 22.4 12.59 142.2 27.4 14.95 225 181.9 20.5 13.27 172.1 25.1 15.88 160.0 30.8 18.92 250 202.2 22.7 16.33 191.3 27.9 19.58 177.8 34.2 23.36 280 226.5 25.4 20.48 214.1 31.3 24.61 199.1 38.3 29.30 315 254.8 28.6 25.91 240.9 35.2 31.13 224.0 43.1 37.08 355 287.2 32.2 32.91 271.7 39.6 39.44 252.4 48.6 47.12 400 323.6 36.3 41.78 304.9 45.1 50.67 - - - 450 364.0 40.9 52.90 343.0 50.7 64.13 - - - 500 404.5 45.5 65.28 - - - - - - 560 453.2 50.8 81.76 - - - - - - 630 - - - - - - - - - 710 - - - - - - - - - 800 - - - - - - - - - 900 - - - - - - - - -

1000 - - - - - - - - -

Page 84: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 84

Tolerance of Type 5 HDPE According to SABS 533 Part III. Density = 0.958 g/cm

• Class 4 to Class 10 • Class 12 to Class 20

Wall Thickness Outside

Diameter Class 4 Class 6 Class 10 Nomi-

nal mm Min Max Min Max Avg Min Max Avg Min Max Avg

25.0 25.0 25.5 - - - - - - 1.9 2.2 2.0 32.0 32.0 32.3 - - - - - - 2.4 2.8 2.6 40.0 40.0 40.3 - - - - - - 3.0 3.4 3.2 50.0 50.0 50.4 - - - - - - 3.7 4.2 4.0 63.0 63.0 63.5 - - - - - - 4.7 5.3 5.0 75.0 75.0 75.6 - - - - - - 5.5 6.2 5.9 90.0 90.0 90.7 - - - - - - 6.6 7.4 7.0

110.0 110.0 110.9 - - - - - - 8.1 9.1 8.6 125.0 125.0 126.0 3.9 4.4 4.2 6.0 6.7 6.4 9.2 10.3 9.8 140.0 140.0 141.1 4.3 4.9 4.6 6.7 7.5 7.1 10.3 11.5 10.9 160.0 160.0 161.3 4.9 5.5 5.2 7.7 8.6 8.2 11.8 13.1 12.5 180.0 180.0 181.4 5.6 6.2 5.9 8.6 9.9 9.1 13.3 14.8 14.0 200.0 200.0 201.6 6.2 7.0 6.6 9.6 10.7 10.2 14.7 16.3 15.5 225.0 225.0 226.8 6.9 7.7 7.3 10.8 12.0 11.4 16.6 18.4 17.5 250.0 250.0 252.0 7.7 8.6 8.2 11.9 13.2 12.6 18.4 20.4 19.4 280.0 280.0 282.2 8.6 9.6 9.1 13.4 14.9 14.2 20.6 22.8 21.7 315.0 315.0 317.5 9.7 10.8 10.3 15.0 16.6 15.8 23.2 25.7 24.5 355.0 355.0 357.8 10.9 12.1 11.5 16.9 18.7 17.8 26.1 28.9 27.5 400.0 400.0 403.2 12.3 13.7 13.0 19.1 21.2 20.2 29.4 32.5 31.0 450.0 450.0 453.6 13.8 15.3 14.6 21.5 23.8 22.7 33.1 36.6 34.9 500.0 500.0 504.0 15.3 17.0 16.2 23.9 26.4 25.2 36.8 40.6 38.7 560.0 560.0 564.5 17.2 19.1 18.2 26.7 29.5 28.1 41.2 45.5 43.4 630.0 630.0 635.0 19.3 21.4 20.4 30.0 33.1 31.6 46.3 51.4 48.9 710.0 710.0 716.0 21.8 24.2 23.0 33.8 37.5 35.7 - - - 800.0 800.0 807.0 24.6 27.3 26.0 38.1 42.3 10.2 - - - 900.0 900.0 908.0 27.7 30.7 29.2 42.8 47.6 45.2 - - -

1000.0 1000.0 1009.0 30.7 34.1 32.4 47.6 52.8 50.2 - - -

Wall Thickness Outside Diameter Class 12 Class 16 Class 20

Nomi-nal mm Min Max Min Max Avg Min Max Avg Min Max Avg

25.0 25.0 25.5 2.3 2.7 2.5 2.8 3.2 3.0 3.4 3.8 3.6 32.0 32.0 32.3 2.9 3.3 3.2 3.6 4.1 3.9 4.4 4.9 4.7 40.0 40.0 40.3 3.7 4.2 4.0 4.5 5.1 4.8 5.5 6.1 5.8 50.0 50.0 50.4 4.6 5.2 4.9 5.6 6.3 5.6 6.8 7.6 7.3 63.0 63.0 63.5 5.8 6.5 6.2 7.1 8.0 7.6 8.6 9.6 9.1 75.0 75.0 75.6 6.8 7.6 7.2 8.4 9.4 8.9 10.3 11.5 10.9 90.0 90.0 90.7 8.2 9.2 8.7 10.1 11.3 10.7 12.3 13.7 13.0

110.0 110.0 110.9 10.0 11.1 10.6 12.3 13.7 13.0 15.1 16.7 15.9 125.0 125.0 126.0 11.4 12.7 12.0 14.0 15.5 14.8 17.1 19.0 18.0 140.0 140.0 141.1 12.7 14.1 13.4 15.7 17.4 16.6 19.2 21.3 20.3 160.0 160.0 161.3 14.6 16.2 15.4 17.9 19.8 18.9 21.9 24.3 23.1 180.0 180.0 181.4 16.4 18.2 17.3 20.1 22.3 21.2 24.6 27.4 26.0 200.0 200.0 201.6 18.2 20.2 19.2 22.4 24.8 23.6 27.4 30.4 28.9 225.0 225.0 226.8 20.5 22.7 21.6 25.1 27.8 26.5 30.8 34.2 32.5 250.0 250.0 252.0 22.7 25.1 23.9 27.9 30.8 29.4 34.2 38.0 36.1 280.0 280.0 282.2 254.0 28.1 26.8 31.3 34.6 32.5 38.3 42.6 40.5 315.0 315.0 317.5 28.6 31.6 30.1 35.2 38.9 37.0 43.1 47.9 45.5 355.0 355.0 357.8 32.2 35.6 33.9 39.6 43.7 41.7 48.6 54.0 51.3 400.0 400.0 403.2 36.3 40.1 38.2 45.1 50.0 47.6 - - - 450.0 450.0 453.6 40.9 45.1 43.0 50.7 56.3 53.5 - - - 500.0 500.0 504.0 45.4 50.1 47.8 - - - - - - 560.0 560.0 564.5 50.8 56.0 53.4 - - - - - - 630.0 630.0 635.0 - - - - - - - - - 710.0 710.0 716.0 - - - - - - - - - 800.0 800.0 807.0 - - - - - - - - - 900.0 900.0 908.0 - - - - - - - - -

1000.0 1000.0 1009.0 - - - - - - - - -

Page 85: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 85

Tolerances of PE 100 HDPE According to ISO 3327 1996.

PE 100-ISO 4427 :1996 Class 10 Class 12 Class 16 OD

Wall Thick Wall Thick Wall Thick SIZE MIN mm

MAX mm

MIN mm

MAX mm

NOM ID

Mass P/m MIN

mm MAX mm

NOM ID

Mass P/m MIN

mm MAX mm

NOM ID

Mass P/m

16.0 16.0 16.3 20.0 20.0 20.3 25.0 25.0 25.3 32.0 32.0 32.3 3.0 3.6 25.4 0.29 40.0 40.0 40.3 3.7 4.3 32.0 0.44 50.0 50.0 50.3 4.6 5.4 40.0 0.68 63.0 63.0 63.4 4.7 5.5 52.8 0.89 5.8 6.7 50.5 1.07 75.0 75.0 75.5 4.5 5.2 65.0 1.03 5.6 6.5 62.9 1.26 6.8 7.9 60.3 1.50 90.0 90.0 90.6 5.4 6.3 78.0 1.49 6.7 7.8 75.5 1.81 8.2 9.5 72.3 2.17

110.0 110.0 110.7 6.6 7.6 95.0 2.21 8.1 9.4 92.5 2.68 10.0 11.6 88.4 324 125.0 125.0 125.8 7.4 8.6 109.0 2.83 9.2 10.6 105.2 3.44 114 13.2 100.4 4.19 140.0 140.0 140.9 8.3 9.6 122.0 3.54 10.3 11.9 117.8 4.32 12.7 14.7 112.6 5.23 160.0 160.0 160.0 9.5 11.0 139.0 4.64 11.8 13.6 134.6 5.65 14.6 16.9 128.5 6.86 180.0 180.0 181.1 10.7 12.4 156.0 5.87 13.3 15.3 151.4 7.16 16.4 19.7 143.9 8.83 200.0 200.0 201.2 11.9 13.7 174.0 7.23 14.7 17.0 168.3 8.81 18.2 21.8 160.0 10.87 225.0 225.0 226.4 13.4 15.5 196.0 9.19 16.6 19.9 188.5 11.39 20.5 24.6 179.9 13.79 250.0 250.0 251.5 14.8 17.1 218.0 11.27 18.4 22.0 209.6 14.02 227 272 200.1 16.96 280.0 280.0 281.7 16.6 19.9 243.0 14.42 20.6 24.7 234.7 17.62 25.4 30.4 224.2 21.24 315.0 315.0 316.9 18.7 22.4 273.0 18.27 23.2 27.8 264.0 22.29 28.6 34.3 252.1 26.93 355.0 355.0 357.2 21.1 25.3 308.0 23.24 26.1 31.3 297.6 28.28 32.2 38.6 284.2 34.17 400.0 400.0 402.4 23.7 28.4 347.0 29.41 29.4 35.2 335.4 35.86 36.3 43.5 320.2 43.39 450.0 450.0 452.7 26.7 32.0 391.0 37.28 33.1 39.7 377.2 45.46 40.9 49.0 360.1 54.98 500.0 500.0 503.0 29.7 35.6 434.0 46.07 36.8 44.1 419.1 56.13 454 54.4 400.2 67.82 560.0 560.0 563.4 33.2 39.8 487.0 57.69 41.2 49.4 469.4 70.40 50.8 60.9 448.3 85.03 630.0 630.0 633.8 37.4 44.8 547.0 73.08 46.2 55.4 528.4 88.84 57.2 68.6 504.2 107.72 710.0 710.0 714.0 42.1 50.5 617.0 92.76 52.2 62.6 595.2 113.08 800.0 800.0 804.0 47.4 56.8 695.0 117.59 58.8 70.5 670.7 143.47 900.0 900.0 904.0 53.3 63.8 782.0 148.63

1000.0 1000.0 1004.0 59.3 71.1 869.0 183.83 PE 100 Materials PE 100 is a high performance third generation polyethylene, which allows the use of a higher design stress of 8N/mm2, whilst still maintaining a safety factor of 1.25 at 50 years. It is recommended for applications other than heavy slurry transportation. It has a welding compatibility with both Type 4 and Type 5 pipes and fittings, which are manufactured from PE 80 material.

Tolerances of Econothene High Design Stress HDPE According to AS 4130 (Int.) - 1993 for PE 80 material. Density = 0.958 g/cm. Design 6.3 MPa - Mass is based on average wall thickness.

Pressure Class (bar) Class 6 Class 12 Class 16

OD Nominal

Nominal Wall Mass Nominal Wall Mass Nominal Wall Mass 16 - - - - - - - - - 20 - - - 15.9 1.9 0.12 15.9 1.9 0.14 25 - - - - - - - - - 32 28.5 1.6 0.17 - - - - - - 40 35.9 1.9 0.25 - - - - - - 50 44.8 2.4 0.40 - - - - - - 63 56.6 3.0 0.62 - - - - - - 75 67.3 3.6 0.88 - - - - - - 90 80.8 4.3 1.27 - - - - - -

110 98.7 5.3 1.89 - - - - - -

Page 86: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 86

Dimensions of PP According to SABS 1315 - 1981.

• Class 6 to Class 12 • Class 6 to Class 12

OD Class 6 Class 10 Class 12

Nomi-nal

(mm)

Nomi-nal ID (mm)

Min Wall Thick-

ness(mm)

Mass/m (kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

12 - - - - - - - - - 16 - - - - - - - - - 20 - - - - - - - - - 25 - - - - - - 19.9 2.3 0.17 32 - - - 27 2.4 0.22 25.7 2.9 0.26 40 - - - 34 2.9 0.33 32.0 3.7 0.41 50 45.0 2.4 0.35 42 3.7 0.53 40.1 4.6 0.64 63 57.0 3.0 0.56 53 4.6 0.83 50.6 5.8 1.01 75 68.0 3.6 0.80 64 5.5 1.17 60.3 6.9 1.43 90 81.0 4.3 1.13 76 6.6 1.68 72.5 8.2 2.05

110 99.0 5.2 1.67 93 8.1 2.50 88.8 10.0 3.03 125 113.0 6.0 2.18 106 9.2 3.23 100.8 11.4 3.93 140 126.0 6.7 2.73 119 10.3 4.04 112.9 12.8 4.93 160 145.0 7.6 3.53 136 11.8 5.30 129.1 14.6 6.43 180 163.0 8.6 4.49 153 13.2 6.66 145.3 16.4 8.13 200 181.0 9.5 5.51 170 14.7 8.24 161.5 18.2 10.02 225 203.0 10.7 6.97 190 16.5 10.6 181.7 20.5 12.68 250 226.0 11.9 8.59 211 18.4 13.2 201.9 22.8 15.65 280 253.0 13.3 10.7 237 20.6 16.5 226.2 25.5 19.61 315 285.0 15.0 13.6 266 23.2 20.9 254.5 28.7 24.81 355 320.0 16.9 17.7 300 26.1 26.4 286.9 32.3 31.52 400 361.0 19.0 22.4 338 29.4 33.5 321.5 36.4 40.77 450 406.0 21.4 28.3 381 33.1 42.5 361.8 40.9 51.55 500 451.0 23.8 35.0 423 36.8 52.4 401.9 45.5 63.69 560 505.0 26.7 43.9 474 41.2 65.8 - - - 630 568.0 30.0 55.5 533 46.3 83.1 - - - 710 640.0 33.8 70.5 - - - - - - 800 721.0 38.1 89.5 - - - - - - 900 812.0 42.9 113.3 - - - - - -

1000 902.0 47.6 140.0 - - - - - -

Page 87: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 87

OD Class 16 Class 20

Nomi-nal

(mm)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

Nomi-nal ID (mm)

Min Wall

Thick-ness (mm)

Mass/m (kg)

12 - - - 8 2.0 0.06 16 - - - 11 2.2 0.09 20 15 2.3 0.13 14.0 2.7 0.15 25 19.0 2.8 0.19 18.0 3.4 0.22 32 24.0 3.6 0.31 23.0 4.4 0.37 40 31.0 4.5 0.49 28.0 5.5 0.58 50 38.0 5.6 0.76 36.0 6.8 0.89 63 48.0 7.1 1.20 45.0 8.6 1.42 75 57.0 8.5 1.71 53.0 10.3 2.01 90 69.0 10.1 2.44 64.0 12.3 2.88

110 84 12.4 3.65 79 15.1 4.31 125 96 14.1 4.72 89 17.1 5.6 140 107 15.8 5.92 99 19.2 7.11 160 122 18.0 7.86 113 21.9 9.27 180 137 20.3 9.95 128 24.7 11.75 200 152 22.5 12.3 142 27.4 14.5 225 171 25.4 15.6 160 30.8 18.3 250 190 28.2 19.2 177 34.2 22.6 280 213 31.5 24.0 199 38.4 28.4 315 240 35.5 30.4 223 43.2 35.9 355 270 40.0 38.6 252 48.6 45.5 400 305 45.1 49.1 - - - 450 343 50.7 62.0 - - - 500 - - - - - - 560 - - - - - - 630 - - - - - - 710 - - - - - - 800 - - - - - - 900 - - - - - -

1000 - - - - - -

Page 88: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 88

Tolerances of PP According to SABS 1315 - 1981.

• Class 6 to Class 12 • Class 16 to Class 20

Wall thickness e, mm Outside

diameter de mm Class 6 Class 10 Class 12

Nomi-nal mm

min max min max min max min max 8 8.0 8.3 - - - - - -

10 10.0 10.3 - - - - - - 12 12.0 12.3 - - - - - - 16 16.0 16.3 - - - - - - 20 20.0 20.3 - - - - - - 25 25.0 25.3 - - - - 2.3 2.8 32 32.0 32.0 - - 2.4 2.9 2.9 3.4 40 40.0 40.4 - - 2.9 3.4 3.7 4.3 50 50.0 50.5 2.4 2.9 3.7 4.3 4.6 5.3 63 63.0 63.6 3.0 3.5 4.6 5.3 5.8 6.6 75 75.0 75.7 3.6 4.2 5.5 6.3 6.9 7.8 90 90.0 90.9 4.3 5.0 6.6 7.5 8.2 9.3

110 110.0 111.0 5.2 6.0 8.1 9.2 10.0 11.2 125 125.0 126.2 6.0 6.8 9.2 10.4 11.4 12.8 140 140.0 141.3 6.7 7.6 10.3 11.6 12.8 14.3 160 160.0 161.5 7.6 8.6 11.8 13.2 14.6 16.3 180 180.0 181.7 8.6 9.7 13.2 14.8 16.4 18.3 200 200.0 201.8 9.5 10.7 14.7 16.4 18.2 20.3 225 225.0 227.1 10.7 12.0 16.5 19.22 20.5 22.8 250 250.0 252.3 11.9 13.3 18.4 21.4 22.8 25.3 280 280.0 282.6 13.3 14.9 20.6 23.9 25.5 28.3 315 315.0 317.9 15.0 16.7 23.2 26.9 28.7 31.8 355 355.0 358.2 16.9 19.7 26.1 30.2 32.3 35.8 400 400.0 403.6 19.0 22.1 29.4 34.1 36.4 42.1 450 450.0 454.1 21.4 24.9 33.1 38.3 40.9 47.3 500 500.0 504.5 23.8 27.6 36.8 42.6 45.5 52.6 560 560.0 565.1 26.7 30.9 41.2 47.6 - - 630 630.0 635.7 30.0 34.7 46.3 53.5 - - 710 710.0 716.4 33.8 39.1 - - - - 800 800.0 807.2 38.1 44.1 - - - - 900 900.0 908.1 42.9 49.6 - - - -

1000 1000.0 1009.0 47.6 55.0 - - -

Page 89: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 89

Wall thickness e, mm Outside

diameter de mm Class 6 Class 10 Class 12 Class 16 Class 20

Nomi-nal mm

min max min max min max min max min max min max 8 8.0 8.3 - - - - - - - - 2.0 2.4

10 10.0 10.3 - - - - - - - - 2.0 2.4 12 12.0 12.3 - - - - - - - - 2.0 2.4 16 16.0 16.3 - - - - - - - - 2.2 2.7 20 20.0 20.3 - - - - - - 2.3 2.8 2.7 3.2 25 25.0 25.3 - - - - 2.3 2.8 2.9 3.3 3.4 4.0 32 32.0 32.0 - - 2.4 2.9 2.9 3.4 3.7 4.2 4.4 5.1 40 40.0 40.4 - - 2.9 3.4 3.7 4.3 4.6 5.2 5.5 6.3 50 50.0 50.5 2.4 2.9 3.7 4.3 4.6 5.3 5.8 6.4 6.8 7.7 63 63.0 63.6 3.0 3.5 4.6 5.3 5.8 6.6 7.9 8.1 8.6 9.7 75 75.0 75.7 3.6 4.2 5.5 6.3 6.9 7.8 8.2 9.6 10.3 11.6 90 90.0 90.9 4.3 5.0 6.6 7.5 8.2 9.3 10.0 11.8 12.3 13.8

110 110.0 111.0 5.2 6.0 8.1 9.2 10.0 11.2 12.4 13.9 15.1 16.9 125 125.0 126.2 6.0 6.8 9.2 10.4 11.4 12.8 14.8 15.8 17.1 19.9 140 140.0 141.3 6.7 7.6 10.3 11.6 12.8 14.3 15.6 17.6 19.2 22.3 160 160.0 161.5 7.6 8.6 11.8 13.2 14.6 16.3 18.4 20.9 21.9 25.4 180 180.0 181.7 8.6 9.7 13.2 14.8 16.4 18.3 20.2 23.6 24.7 28.6 200 200.0 201.8 9.5 10.7 14.7 16.4 18.2 20.3 22.5 26.1 27.4 31.8 225 225.0 227.1 10.7 12.0 16.5 19.22 20.5 22.8 25.8 29.5 30.8 35.7 250 250.0 252.3 11.9 13.3 18.4 21.4 22.8 25.3 28.5 32.7 34.2 39.6 280 280.0 282.6 13.3 14.9 20.6 23.9 25.5 28.3 31.7 36.5 38.4 44.4 315 315.0 317.9 15.0 16.7 23.2 26.9 28.7 31.8 35.3 41.1 43.2 49.9 355 355.0 358.2 16.9 19.7 26.1 30.2 32.3 35.8 40.4 46.2 48.6 56.1 400 400.0 403.6 19.0 22.1 29.4 34.1 36.4 42.1 45.9 52.1 - - 450 450.0 454.1 21.4 24.9 33.1 38.3 40.9 47.3 50.5 58.1 - - 500 500.0 504.5 23.8 27.6 36.8 42.6 45.5 52.6 - - - - 560 560.0 565.1 26.7 30.9 41.2 47.6 - - - - - - 630 630.0 635.7 30.0 34.7 46.3 53.5 - - - - - - 710 710.0 716.4 33.8 39.1 - - - - - - - - 800 800.0 807.2 38.1 44.1 - - - - - - - - 900 900.0 908.1 42.9 49.6 - - - - - - - -

1000 1000.0 1009.0 47.6 55.0 - - - - - - -

Dimensions and Tolerance of Gas Pipe Note: Measurement of ovality shall be made at the point of manufacture (before being coiled).

OD Wall thickness Ovality SDR 11 (S=5)7

bar (gas) Min Max Min Max Mass

M/kg

After coiling

Prior to

coiling

16 16.3 3.0 3.4 0.12 1.9 1.2 20 20.3 3.0 3.4 0.16 1.9 1.2 25 25.3 3.0 3.4 0.21 1.9 1.2 32 32.3 3.0 3.4 0.28 1.9 1.3 40 40.4 3.7 4.2 0.43 2.4 1.4 50 50.4 4.6 5.2 0.67 3.0 1.4 63 63.4 5.8 6.5 1.06 3.8 1.5 75 75.5 6.8 7.6 1.47 4.5 1.6 90 90.6 8.2 9.12 2.14 5.4 1.8

110 110.7 10.0 11.1 3.17 6.6 2.2 125 125.8 11.4 12.7 4.11 - 2.5 140 140.9 12.7 14.1 5.12 - 2.8 160 161.0 14.6 16.2 6.73 - 3.2 180 181.1 16.4 18.2 8.50 - 3.6 200 201.2 18.2 20.2 10.48 - 4.0 225 226.4 20.5 22.7 13.27 - 4.5 250 251.5 22.7 25.1 16.32 - 5.0 280 281.7 25.4 28.1 20.46 - 9.8 315 316.9 28.6 31.6 25.90 - 11.1 355 357.2 32.3 35.7 32.96 - 12.5

Page 90: Poly Olefin Handbook

Polyolefin Manual

Copyright © Main Industries — www.mainind.com 90

Dimensions and Tolerances of HDPE Coils

Coil size Pipe size Diameter OD

(mm) ID

(mm) Width (mm)

Length (mm)

20 850 700 300 100 25 950 700 300 100 32 1 100 750 300 100 40 1 250 1 000 320 100 50 1 950 1 350 320 100 63 2 300 1 850 320 100 75 2 300 1 850 350 50

902 2 700 2 000 400 50 110 2 900 2 200 400 50

Permissible Bending Radii for PP and HDPE Pipes At a temperature of 20°C the bending radii below are to be applied as minimum values:

• Permissible bending radius R Pressure Rating PP HDPE

Class 4 45 x d 30 x d Class 6 30 x d 20 x d

Class 10 30 x d 20 x d • d = outside diameter of pipe • at a temperature of 0°C these values are to be increased by a factor 2.5.

NOTE: Class 4 Pipe is NOT Recommended for Coiling