Polarization Terahertz Spectroscopy Application to ... · Experiment Polarization Terahertz...

7
Experiment Polarization Terahertz Spectroscopy Application to Theophylline Anhydrous Single Crystal for Vibrational Mode Assignment Purpose Summary A single crystal of theophylline anhydrite, large and thin enough for wide range THz transmittance spectroscopy could be successfully fabricated by Temperature Difference Method (TDM) in aqueous solution. Wide range polarization spectroscopy at low temperature was shown to be useful to assign vibration modes with the aid of DFT calculation. Sample preparation Results and discussion 0 10 20 30 40 Theophylline anhydrous Intensity (a.u.) (deg) grown crystal XRD - 2 measurement Pna21 P21/c Theophylline monohydrate P21/n 5.0 mm 1.0 Grown single crystal Orthorhombic Pna2 1 a = 24.612 , b = 3.8302 , c = 8.5010 <010> <001> <100> (110) reflection <100> <001> <010> <100> <010> 0 1 2 3 4 5 0 1 2 3 parallel to <001> Frequency (THz) Absorbance Theophylline anhydrous single crystal 1.060 0 30 60 90 1.797 2.084 2.788 4.070 5.112 <010> 1.212 1.761 2.853 3.913 4.390 single crystal 70 K Smoothing 50GHz 1 2 3 4 5 1 2 0 Frequency (THz) Absorbance Theophylline 0.85 1.06 1.23 1.47 1.79 2.09 2.79 10 wt% PE pellet 2.87 3.96 powder 70 K Pole Figure measurement to (110) reflection Powder XRD measurement of crushed crystal 1/ T ln c hydrate anhydrou s 0.002 9 71 @1013 hPa Temperature Difference Crystal growth from aqueous solution low temperature hydrous high temperature anhydrous Single crystal growth of Theophylline anhydrous for THz transmittance spectroscopy 82 78 cooler crystal cel l heat sink peltier cooler stirre r pum p saturated aqueous solution 8278heater Air flow air flow CW GaP THz Spectrometer Dry air purged Nb TES bolometer Motorized Linear Stage Chopper Lockin Amp Motorized Rotary Stage Collimater DFB : Distributed Feedback laser ECLD: mode hop free External Cavity Laser Diode YbFA: Yb doped Fiber Amplifier Collimater Cryostat YbFA DFB 2 channel Frequency Meter YbFA ECLD Power feedback Power feedback Frequency feedback Frequency feedback Nb TES: Nb Superconducting Transition Edge Sensor Calculation DFT (Density Functional Theory) calculation with periodic boundary condition Software package CRYSTAL09 B3LYP/6-31G(d,p) level Fixed cell parameter Y. Ebisuzaki, P. Boyle and J. Smith, Acta Cryst. (1997). C53, 777-779. Geometry optimization start from crystal structure defined by X-ray diffraction at room temperature GaP Frequency Absorption Direction (THz) (a.u.) 0.85 <100> 1.06 0.348 <010> 1.21 0.026 <001> 1.47 <100> 1.761 0.179 <001> 1.797 <010> 2.084 0.056 <010> 2.788 0.099 <010> 2.853 0.042 <001> 3.913 0.496 <001> 4.070 0.971 <010> 4.390 <001> 5.112 0.162 <010> 0 1 2 3 4 5 0 1 Frequency (THz) Absorbance <010> <001> 10 20 30 40 50 60 Intensity (km/mol) B3LYP / 6-31G(d,p) Fixcell DFT Calculation Frequency Intensity Direction (THz) (km/mol) 0.696 0.80 <010> 0.737 0.99 <001> 0.796 1.18 <100> 1.212 4.74 <010> 1.235 3.65 <001> 1.344 1.80 <100> 1.723 2.84 <100> 1.726 0.14 <010> 1.955 19.64 <001> 2.160 0.04 <010> 2.190 0.14 <001> 2.663 2.50 <010> 3.477 0.10 <001> 3.562 1.34 <100> 3.616 0.68 <010> 3.993 18.13 <001> 4.049 20.46 <100> 4.170 58.02 <010> 4.419 4.83 <100> 4.604 3.23 <010> 4.777 1.02 <001> 4.793 5.71 <100> 4.958 3.04 <010> 5.058 5.55 <001> 5.063 10.55 <100> 5.462 17.39 <100> 5.466 9.37 <010> 5.469 0.59 <001> <100> <010> <001> Measurement 0.796 THz Theophylline anhydrous C 7 H 8 N 4 O 2 drug for respiratory diseases C 7 H 8 N 4 O 2 H 2 O Theophylline monohydrate DFT calculation Polarization dependent spectra for anhydrous single crystal at low temperature Direct comparison Single crystal growth of Theophylline anhydrous Polarization THz spectroscopy of Theophylline anhydrous crystal at low temperature Comparison absorption frequencies and intensities between measurements and calculations for THz vibrational mode assignment to obtain basic data to apply THz spectra to pharmaceutical Product Quality Control H 2 O Supply a system (hardware and software) Please find each vibration mode in PC (animation file) Frequency range Frequency accuracy &resolution Power stability <10MHz < 0.3% Advantage Easy operation maintenance free Small size, Mobile 0.5 6.0 THz NIHS

Transcript of Polarization Terahertz Spectroscopy Application to ... · Experiment Polarization Terahertz...

  • Experiment

    Polarization Terahertz Spectroscopy Application to Theophylline Anhydrous Single Crystal for Vibrational Mode Assignment

    7

    Purpose Summary A single crystal of theophylline anhydrite, large and thin enough

    for wide range THz transmittance spectroscopy could be successfully fabricatedby Temperature Difference Method (TDM) in aqueous solution.

    Wide range polarization spectroscopy at low temperature was shown to be useful to assign vibration modes with the aid of DFT calculation.

    Sample preparation Results and discussion

    0 10 20 30 40

    Theophylline anhydrous

    Inte

    nsity

    (a.u

    .)

    (deg)

    grown crystal

    XRD - 2 measurement

    Pna21

    P21/c

    Theophylline monohydrate

    P21/n

    5.0 mm

    1.0 Grown single crystal

    Orthorhombic Pna21a=24.612,b=3.8302,c=8.5010

    (110) reflection

    0 1 2 3 4 5

    0

    1

    2

    3

    parallel to

    Frequency (THz)

    Abs

    orba

    nce

    Theophylline anhydrous single crystal70 K

    1.060

    0

    30

    60

    90

    1.797

    2.0842.788

    4.070

    5.112

    1.212 1.761 2.853 3.9134.390

    single crystal

    70 KSmoothing 50GHz

    1 2 3 4 5

    1

    2

    0Frequency (THz)

    Abs

    orba

    nce

    Theophylline

    0.85

    1.06

    1.231.47

    1.79

    2.092.79

    10 wt% PE pellet

    2.87

    3.96

    powder

    70 K

    Pole Figure measurementto (110) reflection

    Powder XRD measurement of crushed crystal

    1/T

    lnc

    hydrate

    anhydrous

    0.0029

    71

    @1013 hPa

    Temperature Difference

    Crystal growth from aqueous solution

    low temperature hydrous

    high temperature anhydrous

    Single crystal growth of Theophylline anhydrous for THz transmittance spectroscopy

    8278

    cooler

    crystalcell

    heat sinkpeltiercooler stirre

    r

    pump

    saturated aqueous solution

    82

    78

    heater

    Air flow

    air flow

    CW GaP THz Spectrometer

    Dryairpurged

    Nb TES bolometer

    MotorizedLinearStage

    Chopper

    LockinAmp

    MotorizedRotaryStage

    Collimater

    DFB:Distributed FeedbacklaserECLD:modehopfree

    ExternalCavityLaserDiodeYbFA:YbdopedFiberAmplifier

    Collimater

    Cryostat

    YbFA

    DFB

    2channelFrequencyMeter

    YbFA

    ECLD

    Powerfeedback

    Powerfeedback

    Frequencyfeedback

    Frequencyfeedback

    Nb TES: Nb SuperconductingTransitionEdgeSensor

    CalculationDFT (Density Functional Theory) calculation with periodic boundary condition

    Software package CRYSTAL09

    B3LYP/6-31G(d,p) level

    Fixed cell parameter

    Y. Ebisuzaki, P. Boyle and J. Smith, Acta Cryst. (1997). C53, 777-779.

    Geometry optimization start from crystal structure

    defined by X-ray diffraction at room temperature

    GaP

    Frequency Absorption Direction(THz) (a.u.)

    0.85

    1.06 0.348

    1.21 0.026

    1.47

    1.761 0.179

    1.797

    2.084 0.056

    2.788 0.099

    2.853 0.042

    3.913 0.496

    4.070 0.971

    4.390

    5.112 0.162

    0 1 2 3 4 5

    0

    1

    Frequency (THz)

    Abso

    rban

    ce

    102030405060

    Inte

    nsity

    (km

    /mol

    )

    B3LYP / 6-31G(d,p)Fixcell

    DFT Calculation

    Frequency Intensity Direction(THz) (km/mol)

    0.696 0.80 0.737 0.99 0.796 1.18 1.212 4.74 1.235 3.65 1.344 1.80 1.723 2.84 1.726 0.14 1.955 19.64 2.160 0.04 2.190 0.14 2.663 2.50 3.477 0.10 3.562 1.34 3.616 0.68 3.993 18.13 4.049 20.46 4.170 58.02 4.419 4.83 4.604 3.23 4.777 1.02 4.793 5.71 4.958 3.04 5.058 5.55 5.063 10.55 5.462 17.39 5.466 9.37 5.469 0.59

    Measurement

    0.796 THz Theophyllineanhydrous

    C7H8N4O2

    drug for respiratory diseases

    C7H8N4O2H2O

    Theophylline monohydrate

    DFT calculation

    Polarization dependent spectra for anhydrous single crystalat low temperature

    Direct comparison

    Single crystal growth of Theophylline anhydrous Polarization THz spectroscopy of Theophylline anhydrous crystal

    at low temperature Comparison absorption frequencies and intensities

    between measurements and calculations

    for THz vibrational mode assignment to obtain basic data to apply THz spectra

    to pharmaceutical Product Quality Control

    H2O

    Supply a system (hardware and software)

    Please find each vibration mode in PC (animation file)

    Frequency range

    Frequency accuracy &resolution

    Power stability

  • Improvement of CW GaP THz Spectrometer

    Wide range and high resolution CW THz spectrometer combined with GaP THz signal generator and mechanically cooled bolometer

    Motivation

    CW GaP THz Spectrometer

    Dry airpurged

    Nb TES bolometer

    MotorizedLinearStage

    Chopper

    Lock-inAmp.

    MotorizedRotary Stage

    Collimator

    DFB : Distributed - Feedback laser

    ECLD: mode-hop free External Cavity Laser Diode

    YbFA: Yb doped Fiber Amplifier Cryostat

    DFB

    2 channelFrequency Meter

    YbFAECLD

    Powerfeedback

    Powerfeedback

    Frequency feedback

    Nb TES: Nb SuperconductingTransition Edge Sensor

    GaP

    Next Step

    Lens

    Collimator

    Frequency feedback

    YbFA

    THz wave

    Nb TES bolometer

    0 1 2 3 4 5 6

    4K Silicon bolometer QMC Nb TES bolometer

    Frequency (THz)

    Out

    put p

    ower

    (re

    lativ

    e va

    lue)

    T.Sasaki

    Frequency range

    Signal generator

    Spectrometer

    Frequency resolution

    Feedback control of pump beams

    at seed laser

    Power stability

    Feedback control of pump beams

    at fiber amplifier

    Easy operation, Maintenancefree

    Parts for optical communication

    Small size, Portable

    Optical fiber coupling

    1000

    1

    GaP crystal

    THzwave3 = 1 - 2

    2

    IRlaserbeams

    DifferenceFrequencyGeneration(DFG)

    Ga

    P

    1.95 THz

    GaPFiber Amp.Powerfeedback

    Fiber Laser

    Modehop-free ECDL

    IR lens

    25W

    5W

    0 2 4 610-4

    10-3

    10-2

    10-1

    1

    10

    Frequency (THz)

    THz

    outp

    ut (a

    .u.)

    IR laser beam power: 5 W x 25W (not purged)

    noise floor

    > 4.5 orders

    3W x 3W (purged by dry air)

    ~ 3 order

    CW GaP THz Signal Generator

    GaP

    THz

    DFB : Distributed FeedBack laser

    ECLD: External CavityLaser Diode

    FA : Fiber Amplifier

    DFB

    ECLD

    FA

    FA

    Mirror

    Polarizer

    - Global helium shortage - Price rise

    Using a cryostat with a tank storing liquid helium

    - Refill Liq. He every 30 hours

    Problem

    2.7738 2.774 2.7742

    3.4 Pa 70 600 1.8k

    Frequency (THz)

    THz

    pow

    er (a

    .u.)

    100MHz

    2.773985 THz2.773977 THzNASA JPL

    measurement

    Summary

    combining with a CW THz SG as a light source and a bolometer detector cooled by a mechanical cooler

    1 2 3 4 5 6

    1

    2

    0

    Theophylline anhydrous plate (thickness ~ 100 m)

    Frequency (THz)

    Abs

    orba

    nce

    300 K

    70 K

    An example ofTHz absorption measurement

    Theophyllineanhydrous

    Pharmaceutical drugfor respiratory diseases

    System optical responsivity

    System RMS output noise at 80 Hz

    System optical NEP at 80 Hz

    QMC instruments QNbB/PTC

    THz power spectraof CW GaP THz SG

    measured byQMC Nb TES bolometerand4 K silicon bolometer

    168 kV/W

    430 /

    2.6 /

    CW GaP THz Spectrometer

    High accuracyHigh resolutionWide dynamic rangeHigh stability Long lifetime (durability)Easy maintenanceLow equipment costLow running cost

    The spectrometer is now working as non-stop system

    Next targetdevelop practical industrial applications

    Applying high power fiber laserin order to power up THz output

    Observation of THz wave output by an oscilloscope

    Chopper

    THz wave

    THz wave output with high power fiber laser

  • (HPC)

    (TPAH)

    +H2O,

    TPAH+HPC(10:3)

    +H2O,

    or

    50/70

    or

    50/70

    (TPMH)

    (TPMH)

    1 2 3 4 5

    1

    2

    3

    4

    0Frequency (THz)

    Abso

    rban

    ce

    In situ

    XRD(RINT Ultima , Rigaku)CuK: 1050: 0.02

    MIR (FT/IR-6300, JASCO)

    : 4000-400 cm-1Scan number: 256: 2 cm-1: ATR

    NIR (MPA FT-NIR, Bruker)

    : 12500-4000 cm-1

    Scan number: 32: 2 cm-1:

    NIR

    Nd:YAGLaser

    Cr: Forsterite(signal)

    Cr: Forsterite(pump)

    GaP e

    e

    WP CP

    RT-DTGS

    1064nm

    1240-1280nm

    1240nm

    HM

    WP: /2 CP : HM:

    (GaP THz Spectrometer, ): Cr:Forsterite : DTGS :0.6 6.1 THz :15GHz:

    H2O

    HPC

    HPC

    NIHS

    60min

    +

    120min

    TPTPMH0min15min60min120min240min1200min

    2.0THz

    TPAHTPMH0min15min60min120min240min1200min

    NIR7050

    4270 cm-1C-Hv(CH) + (CH)

    C-H-CH3

    C-H-CH3

    [N-CH3]

    1383cm12887cm1

    CH3C-H

    C-N

    in situ

    HPC

    HPC

    Theophylline monohydrate

    X

    CH3

    2

    H2O

    ex. 100 m

    THz

  • 2211

    VLSIULSI

    PHCAP

    1ppt(10-12)

    ()()()

    C=/W (C: pn: W: )

  • 411

    (PHCAP) Deep Level Transient Spectroscopy (DLTS) Isothermal Capacitance Transient Spectroscopy (ICTS)

    (PL)

    PHCAP

  • QMC Instruments Ltd.

    QNbB/Dry

    THz

    CW GaP THz Spectrometer

    Dry airpurged

    Nb TES bolometer

    MotorizedLinearStage

    Chopper

    Lock-inAmp.

    MotorizedRotary Stage

    Collimator

    DFB : Distributed - Feedback laser

    ECLD: mode-hop free External Cavity Laser Diode

    YbFA: Yb doped Fiber Amplifier Cryostat

    DFB

    2 channelFrequency Meter

    YbFA

    ECLD

    Powerfeedback

    Powerfeedback

    Frequency feedback

    Nb TES: Nb SuperconductingTransition Edge Sensor

    GaPLens

    Collimator

    Frequency feedback

    YbFA

    THz wave

    Nb TES bolometer

    System optical responsivity

    System RMS output noise at 80 Hz

    System optical NEP at 80 Hz

    QMC instruments QNbB/PTC

    168 kV/W

    430 /

    2.6 /

    THz

    DFG

    THz

    CW

    S/N

    1.000000 THz

    0.1 7.5 THz

  • J. Nishizawa, Y. Okuno, K. Suto, T. Sato, and S. Yamakoshi 1974 Solid State Commun. 14 889.J. Nishizawa, Y. Okuno 1975 IEEE Trans. Electron Devices ED-22 716.

    GaP

    ,

    Time

    Tem

    pera

    ture

    Time

    Tem

    pera

    ture

    P

    GPG T

    TPP TG:

    TP:

    PG:

    PP:

    eV01.1exp1067.4Torr

    B

    6GaP Tk

    P