Pneumatic Control microfluidic systems and...

33
/57 Pneumatic Control microfluidic systems and applications Songjing Li Department of Fluid Control and Automation Harbin Institute of Technology, Harbin, China

Transcript of Pneumatic Control microfluidic systems and...

Page 1: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Pneumatic Control microfluidic systems

and applications

Songjing Li

Department of Fluid Control and Automation

Harbin Institute of Technology, Harbin, China

Page 2: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Contents

Background

Pneumatic off-chip valves

Applications

Conclusions and outlooks

Pneumatic microvalves and systems

Page 3: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

1 Background

Chip size: several cm2

All kinds of functionsChemical reaction, biomedical analysis

Drug delivery

Micro-channel networkControllable fluidic system

Lab on a chip

Page 4: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Pneumatic microfluidic chips

large scale integrated pneumatic microfluidic chips

1 Background

Quake's Group, Stanford University, 2000

Large scale integrations with hundreds pneumatic micro valves and

actuators

Page 5: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

1 Background

Page 6: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57/57

To make the off-chip supporting

devices smaller, portable and easily

to be integrated with the chips

1 Background

Prof. Whitesides, Harvard University

Schematic of a pneumatic actuated multi-

layer microfluidic chip with its pneumatic

supporting systems

Page 7: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Schematic design of the microvalve in open state (left) and closed state (right)

Advantages: PDMS valve body, smaller friction

force on the spool Better sealing Better to be linked with the chip Rapid prototyping

Schematic design of the electromagnetic actuator (a), 1.plastic housing;

2. ferromagnetic shell; 3.coil; 4=static iron; 5.moving iron; 6.return

spring; 7.positioning pins; 8.fixing device; 9.glass slide; 10.valve core.

PDMS valve body + low cost actuation

2 Pneumatic off-chip valves

Page 8: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

2 Pneumatic off-chip valves

Page 9: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Driving methods of the PDMS pneumatic off-chip valve

2 Pneumatic off-chip valves

Micro stepper motor

Page 10: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Fabrication of the off-chip valve-

soft lithography

Valve-seat Spool

Stainless

steel tube

Electromagnetic

actuator

Valve-

membrane

PDMS block with

air channel

The packaged Electromagnetic actuator

The packaged the off-chip valve

2 Pneumatic off-chip valves

Page 11: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Simulation results of the off-chip microvalve

0 10 20 30 40-30

-20

-10

0

10

响应时间 [ms]

反向电动势

[V

]

0 10 20 30 40 50-0.5

0

0.5

1

响应时间 [ms]

阀芯出力

[N

]

0 10 20 30 40

0

50

100

150

电磁驱动器吸合时间 [ms]

阀芯位移

m]

0 10 20 30 40

0

50

100

150

电磁驱动器释放时间 [ms]

阀芯位移

m]

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

30kPa

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

50kPa

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

100kPa

0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

占空比0.2

0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

占空比0.5

0 0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [t]

片下微阀出口流量

[m

l/m

in]

占空比0.8

Back electromotive voltage Spool actuated force Spool pull dynamic response

Outlet flow rate of the

off-chip micrvalve

under different

pressures

Outlet flow rate of the

off-chip micrvalve

under different duty

cycles

Spool release dynamic response

30kPa 50kPa 100kPa

0.2 0.5 0.8

2 Pneumatic off-chip valves

Time(s)

Flo

w r

ate(

ml/m

in)

Time(s)F

low

rate(

ml/m

in)

Time(s)

Flo

w r

ate(

ml/m

in)

Time(s)

Flo

w r

ate(

ml/m

in)

Time(s)

Flo

w r

ate(

ml/m

in)

Time(s)

Flo

w r

ate(

ml/m

in)

Time(ms)

Flo

w r

ate(

ml/m

in)

Time(ms)

Flo

w r

ate(

ml/m

in)

Time(ms)

Flo

w r

ate(

ml/m

in)

Time(ms)

Flo

w r

ate(

ml/m

in)

Page 12: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

0 10 20 30 40

0

50

100

150

微阀打开时间 [ms]

阀芯位移

m]

仿真结果

试验结果

0 10 20 30 40

0

50

100

150

微阀关闭时间 [ms]

阀芯位移

m]

仿真结果

试验结果

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

30kPa 仿真结果

30kPa 试验数据压差30kPa

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

50kPa 仿真结果

50kPa 试验结果压差50kPa

0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

100kPa 仿真结果

100kPa 试验数据压差100kPa

0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

仿真结果

试验数据占空比0.2

0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [s]

片下微阀出口流量

[m

l/m

in]

仿真结果

试验数据占空比0.5

0 0.2 0.4 0.6 0.8 1-50

0

50

100

150

200

250

300

350

响应时间 [t]

片下微阀出口流量

[m

l/m

in]

仿真结果

试验数据占空比0.8

Comparison between

experimental data about outlet

flow of the off-chip micrvalve

under different pressures and

simulation results

Comparison between

experimental data about outlet

flow of the off-chip micrvalve

under different duty cycles and

simulation results

Testing schematic diagram and response time

experimental results of the electromagnetic

microvalve

2 Pneumatic off-chip valves

Time(s)Time(s)Time(s)

Time(s)Time(s)Time(s)

Flo

w r

ate(

ml/m

in)

Flo

w r

ate(

ml/m

in)

Flo

w r

ate(

ml/m

in)

Flo

w r

ate(

ml/m

in)

Flo

w r

ate(

ml/m

in)

Flo

w r

ate(

ml/m

in)

Time(ms)Time(ms)

Dis

pla

cem

ent(μ

m)

Dis

pla

cem

ent(μ

m)

Page 13: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Structure and working principle of the on-chip microvalve

Schematic of one membrane microvalve

with a pneumatic actuator

Schematic diagrams in Fully open/ partially open/ fully

closed state of the membrane microvalve

Three-dimensional structure view

3 Pneumatic microvalve and system

Page 14: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Structure of the PDMS pneumatic pressure driven microvalve

3 Pneumatic microvalve and system

PDMS pneumatic pressure driven microvalve and the

system

三通微阀

PDMS气压控制微阀

气源

电磁驱动器1 电磁驱动器2

膜阀

电磁微阀1

三通微阀

膜阀

气源

排气口

电磁微阀1

液体微通道

PDMS驱动薄膜

电磁微阀2

驱动腔

电磁微阀2

液体微流道

气动微流控芯片

气动微驱动器

排气口芯片外部

Compressed

air

atmosphere

Off-chip

valve

pipe

pneumatic

channel

PDMS

membrane

Liquid

channel

Liquid

channel

Pneumatic

microfluidic

chip

Pneumatic

actuation

Liquid

channel

Page 15: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

(a) Undeformed configuration of 1/4 structure; (b) Deformed configuration

of 1/4 structure; (c) Cross-sectional view (pmd <pclose); (d) Cross-sectional

view (pmd ≥pclose); (e) Longitudinal sectional view (pmd=pclose); (f)

Longitudinal sectional view (pmd>pclose).

conclusion:1.Large deformation theory;

2.Nonlinear characteristics;

3.Uniform deformation in length.

a b

c

d

e

f

3.2 Multi-physical fields coupling mechanism and mathematic models research

PDMS actuated membrane deflection mathematic

model and characteristics analysis

213

4

13 mm md mmax

m

( )w vp w

Eh

2

3m m max

ml w

V

Page 16: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Flow rate mathematical model of the on-chip microvalve under different valve-openings

and calculation analysis

b0

a0/2

b

y

x

0

2( )

3

aA b b

Size of the valve port of the on-chip microvalve

Cross-section area

2 d

Pq C A

Driven liquid pressure kPa

Pneumatic pressure kPa10 20 30

0 2.05×103 1.85×103 1.72×103

10 1.87×103 2.89×103 2.26×103

20 2.13×103 3.74×103 3.54×103

30 1.62×103 3.01×103 5.61×103

40 1.14×103 2.26×103 3.69×103

50 0.69×103 1.61×103 2.80×103

60 0.30×103 0.98×103 1.97×103

70 0 0.42×103 1.20×103

80 0 0 0.52×103

90 0 0 0

Theoretical calculated liquid flow rate with different valve-openings of

the on-chip microvalve (μL/min)

3 Pneumatic microvalve and system

Page 17: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Model of the actuated chamber with

variable volume

可变容积控制体外界

可变容积控制体可移动边界

出口约束节流口

进气约束节流口

S管A管

Q

dt

1dm

dt

2dm

dt

1p 2p

2T1T

. .pV T

m

3 Pneumatic microvalve and system

Variable volume

chamber outside

surface

Variable volume

chamber control

interfaceOutlet

orifice

inlet

orifice

Page 18: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Numerical calculation results of response time for TBC under different

pressures, the initial differential pressure is 10kPa, 52kPa, 90kPa, 120kPa,

150kPa, separately

0 12864

单位:μm

The actuated PDMS membrane

deformation under 100kPa

3 Pneumatic microvalve and system

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Page 19: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

min

max

0 ( )( )

1 ( )

e k Ek

e k Eu

Bang-Bang controller: Set two control limit values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6100

120

140

160

180

200

220

时间t[s ]

绝对压力

p [

kP

a]

130kPa

150kPa

200kPa

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1128.5

129

129.5

130

130.5

时间t [s]

绝对压力

p [

kP

a]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

199

200

201

202

时间t [s]

绝对压力

p [

kP

a]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8100

110

120

130

140

150

160

时间t [s]

绝对压力

p [

kP

a]

下阈值0kPa

下阈值-0.5kPa

下阈值-1kPa

下阈值-2kPa

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8100

110

120

130

140

150

160

时间t [s]

绝对压力

p [

kP

a]

上阈值0kPa

上阈值0.5kPa

上阈值1kPa

上阈值2kPa

Step response process of the actuator

under different inlet pressures

Step response process under different

Bang-Bang lower thresholds

0.2 0.25 0.3 0.35 0.4 0.45 0.5148.5

149

149.5

150

150.5

151

151.5

152

152.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5148.5

149

149.5

150

150.5

151

151.5

152

152.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5148.5

149

149.5

150

150.5

151

151.5

152

152.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5148.5

149

149.5

150

150.5

151

151.5

152

152.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5147.5

148

148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5147.5

148

148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5147.5

148

148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.2 0.25 0.3 0.35 0.4 0.45 0.5147.5

148

148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

-2kPa -1kPa

-0.5kPa 0kPa

2kPa 1kPa

0.5kPa 0kPa

130kPa

150kPa

200kPa

Step response process under different

Bang-Bang super thresholds

3 Pneumatic microvalve and system

Time(ms)C

ham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Page 20: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

1 ( 1) ( 1 )( ) 1,2,...,

0 ( 1 )

j T t j D Tu t j n

j D T t jT

PWM controller: modulations duty cycles

0 0.2 0.4 0.6 0.8 1 1.2 1.4100

110

120

130

140

150

160

时间 t [ms]

绝对压力

p [

kP

a]

P控制

无P控制

0.4 0.45 0.5 0.55 0.6 0.65148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [k

Pa]

0.4 0.45 0.5 0.55 0.6 0.65148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0 0.2 0.4 0.6 0.8 1 1.2 1.4100

110

120

130

140

150

160

时间 t [s]

绝对压力

p [

kP

a]

10Hz

20Hz

50Hz

100Hz

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

时间t [s]

绝对压力

p [

kP

a]

0 0.2 0.4 0.6 0.8 1 1.2 1.4100

110

120

130

140

150

160

时间t [s]

绝对压力

p [

kP

a]

设定误差0.1kPa

设定误差0.5kPa

设定误差1kPa

设定误差2kPa

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

0.5 0.6 0.7 0.8 0.9 1148.5

149

149.5

150

150.5

151

151.5

时间t [s]

绝对压力

p [

kP

a]

Pressure control

performance impact of the

pneumatic micro actuator

with P controller or without

P controller

Without P controller

Pressure control

performance impact of the

pneumatic micro actuator

with different PWM carrier

frequencies

10Hz 20Hz

50Hz 100Hz

2kPa 1kPa

0.5kPa 0.1kPa

With P controller

Pressure control

performance impact

of the micro actuator

with different PWM

carrier amplitudes

3 Pneumatic microvalve and system

Time(s)Cham

ber pre

ssure

(kP

a)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(ms)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(s)

Cham

ber pre

ssure

(kP

a)

Time(ms)

Cham

ber pre

ssure

(kP

a)

Time(ms)

Cham

ber pre

ssure

(kP

a)

Time(ms)

Cham

ber pre

ssure

(kP

a)

Time(ms)

Page 21: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Composite controller:Bang-Bang+P+PWM composite controller

0 0.2 0.4 0.6 0.8 1 1.2 1.4100

110

120

130

140

150

160

时间t [s]

绝对压力

p [

kP

a]

1 1.1 1.2 1.3 1.4149

150

151

0 0.5 1 1.5 2 2.5 3100

150

200

时间t [s]

绝对压力

p [

kP

a]

实际压力

设定压力

0 0.5 1 1.5 2 2.5 3-100

-50

0

50

100

时间t [s]

压力误差

pee

r[kP

a]

Actuated chamber pressure change

process of the actuator chamber

tracking step signal

Tracking error change process

Composite controller

model of the actuated

chamber pressure

3 Pneumatic microvalve and systemC

ham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Cham

ber

pre

ssure

(kP

a)

Time(ms)

Step response curve of the actuated chamber

pressure using composite control method

(150kPa)

Page 22: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Microscope

pictures of arc

molds

Pictures of damaged

mold and patterned

PDMS block

Pictures of arc

molds

surface profiles

Microscope

pictures of PDMS

cast surfaces

128μm

40μm

202μm

58μm276μm

62.6μm

3 Pneumatic microvalve and system

Page 23: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Experimental research

Schematic diagram of performance measurement

for the off-chip microvalve

Comparison between the spool actuated force results

NO Parameters Valves

1 Experiment /N 0.844

2Simulation / N

0.88

1

2 Theory /N 0.983

3 Design demand /N 0.220

流量

[m

l/m

in]

25 50 75 100

流量

[m

l/m

in]

压差50kPa流量

[m

l/m

in]

100

150

200

250

50

0

0 0.2 0.4 0.6 0.8 1

阀口开度

试验值

仿真值

Measurement results when

differential pressure is

50kPa

Leak rate Flow rate under fully open

3 Pneumatic microvalve and system

Flo

w r

ate

(ml/m

in)

Time(ms)

Flo

w r

ate

(ml/m

in)

Time(ms)

Flo

w r

ate

(ml/m

in)

Time(ms)

Page 24: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

0 50 100 1500

50

100

150

200

压差P [kPa]

m

ax [

μm

]

理论值

仿真值

试验值

0 5 10 15 20 25 30

100

101

102

反应时间 [ms]

m

ax [

μm

]

data1

16kPa

52kPa

90kPa

120kPa

150kPa

8

响应时间 [ms]

充气压力(kPa) 16 52 90 120 150

Theoretical inflation time tⅠ(ms) 0 0 0 1.26 2.23

Theoretical inflation time tⅡ(ms) 9.69 16.01 20.65 21.86 23.05

Theoretical total inflation time t(ms) 9.69 16.01 20.65 23.12 25.28

Experimental total inflation time ts(ms) 10.05 15.2 19.72 24.93 27.19

Error δ% -3.72% 5.06% 4.52% -7.85% -7.55%

Comparison between experimental results and theoretical calculation results about response time

of the pneumatic micro actuator (valve-opening of the electromagnetic microvalve 1 is 20%)

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

阀口开度

TB

C反应时间

[m

s]

20kPa

50kPa

80kPa

100kPa

150kPa

Response time simulation results of the

pneumatic micro actuator with different valve-

openings of the electromagnetic microvalve 1

Experimental results compared with the

theoretical calculation and FEM results of the

PDMS actuated membrane maximum deflection

versus different pressures with dimension

500μm×200μm×40μm

Dynamic response testing curves of the pneumatic

micro actuator maximum deflection with the

actuated part dimension 200μm×500μm

Microscope images of the PDMS actuated

membrane deformations versus different

pressures with the actuated part dimension

200μm×500μm

3 Pneumatic microvalve and system

Response

tim

e(m

s)

Time(ms)Valve openingPressure difference(kPa)

Page 25: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Test bench for liquid flow rate of the membrane

microvalve

Driven liquid kPa

Pneumatic pressure kPa10 20 30

0 85 189 240

10 93 200 274

20 75 226 310

30 45 112 374

40 28 66 148

50 12 42 93

60 4 19 56

70 1 7 30

80 0 4 12

90 0 1 5

100 0 0 4

110 0 0 1

120 0 0 0

Liquid flow rates measuring results with different valve-openings of the

membrane microvalve (μL/min)

Comparison between modified theoretical results

and experimental datas about liquid flow rate of

the membrane microvalve

3 Pneumatic microvalve and system

Flo

w r

ate

(ml/m

in)

pressure(kPa)

Page 26: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Compressed-air driven liquid system, a compressed-air driven liquidsystem is used for controlling the accurate differential pressure for theliquid microchannels, The compressed air system linked to the airchannels is used for control the air pressure in the pneumatic actuators.

Diagram of fluid driving setup

3 Pneumatic microvalve and system

Page 27: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Experimental setup of PDMS pneumatic micro actuator of the on-

chip microvalve

Main performances

1.Less than accuracy 1kPa;2.Working pressure 100kPa;3.Responding speed(1ms<rt<1s);

Computer Power amplifier N2 tankPrecision regulator

Pneumatic micro actuator with the 3-way microvalve

Data acquisition card

Linear power supply

Signal amplification

Miniature pressure sensor

Miniature pressure sensor XCQ-062

PCI-1710-CE data acquisition card

Signal amplification

3 Pneumatic microvalve and system

Page 28: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

pneumatic micro mixing chip

Structure of the pneumatic micro mixing chip

PDMS actuated membrane

motion in a cycle

Reagents motion of the micro

mixing chamber in a cycle

4 Applications

Page 29: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Pictures of reagents

and their containers

Test bench for measuring the

micro mixing chip performances

4 Applications

Page 30: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

时间t [min]

混合效率

inde

x

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

inde

x

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [t]

混合效率

index

振动频率 0.5Hz

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

index

振动频率 1Hz

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

index

振动频率 2Hz

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

index

驱动气压 10kPa

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

index

驱动气压 20kPa

0 2 4 6 8 100.2

0.4

0.6

0.8

1

时间t [s]

混合效率

index

驱动气压 30kPa

Influence of vibrating frequency on mixing efficiency

Influence of

actuated pressure

on mixing

efficiency

4 Applications

Page 31: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

Page 32: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

5 Conclusions and outlooks

Conclusions

• pneumatic microvalves can be easily integrated with microchips and

fabricated if the valve body was made of PDMS.

• pneumatic microfluidic systems can be controlled by the PDMS

microvalves to realize the pressure control below 200kPa.

• PDMS pneumatic microvalves can be applied in micro-mixer chips to

improve the mixing effieciency.

Future work

• Improve the accuracy of the pressure control and responding speed.

• Make further integration of the valve group for large scale integration.

• To develop wireless and remote control model for microfluidic systems.

Page 33: Pneumatic Control microfluidic systems and applicationslaship.ufsc.br/site/wp-content/uploads/2016/11/WED3_1330.pdf · /57 Pneumatic Control microfluidic systems and applications

/57

[email protected]