Plasma and Sheath - Seoul National University

38
Introduction to Nuclear Engineering, Fall 2018 Plasma and Sheath Fall, 2018 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Transcript of Plasma and Sheath - Seoul National University

Page 1: Plasma and Sheath - Seoul National University

Introduction to Nuclear Engineering, Fall 2018

Plasma and Sheath

Fall, 2018

Kyoung-Jae Chung

Department of Nuclear Engineering

Seoul National University

Page 2: Plasma and Sheath - Seoul National University

2/38 Introduction to Nuclear Engineering, Fall 2018

Motions in uniform electric field

Equation of motion of a charged particle in fields

π‘šπ‘šπ‘‘π‘‘π’—π’—π‘‘π‘‘π‘‘π‘‘

= π‘žπ‘ž 𝑬𝑬(𝒓𝒓, 𝑑𝑑) + 𝒗𝒗 Γ— 𝑩𝑩(𝒓𝒓, 𝑑𝑑) ,𝑑𝑑𝒓𝒓𝑑𝑑𝑑𝑑

= 𝒗𝒗(𝑑𝑑)

Motion in constant electric field

For a constant electric field 𝑬𝑬 = π‘¬π‘¬πŸŽπŸŽ with 𝑩𝑩 = 0,

Electrons are easily accelerated by electric field due to their smaller mass than ions.

Electrons (Ions) move against (along) the electric field direction.

The charged particles get kinetic energies.

𝒓𝒓(𝑑𝑑) = π’“π’“πŸŽπŸŽ + π’—π’—πŸŽπŸŽπ‘‘π‘‘ +π‘žπ‘žπ‘¬π‘¬πŸŽπŸŽπŸπŸπ‘šπ‘š 𝑑𝑑2

Page 3: Plasma and Sheath - Seoul National University

3/38 Introduction to Nuclear Engineering, Fall 2018

Motions in uniform magnetic field

π‘šπ‘šπ‘‘π‘‘π’—π’—π‘‘π‘‘π‘‘π‘‘

= π‘žπ‘žπ’—π’— Γ— 𝑩𝑩

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘₯π‘₯𝑑𝑑𝑑𝑑

= π‘žπ‘žπ΅π΅0𝑣𝑣𝑦𝑦

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘¦π‘¦π‘‘π‘‘π‘‘π‘‘ = βˆ’π‘žπ‘žπ΅π΅0𝑣𝑣π‘₯π‘₯

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘§π‘§π‘‘π‘‘π‘‘π‘‘ = 0

𝑑𝑑2𝑣𝑣π‘₯π‘₯𝑑𝑑𝑑𝑑2 = βˆ’πœ”πœ”π‘π‘2𝑣𝑣π‘₯π‘₯ πœ”πœ”π‘π‘ =

π‘žπ‘ž 𝐡𝐡0π‘šπ‘š

Motion in constant magnetic field

For a constant magnetic field 𝑩𝑩 = 𝐡𝐡0𝒛𝒛 with 𝑬𝑬 = 0,

Cyclotron (gyration) frequency

Page 4: Plasma and Sheath - Seoul National University

4/38 Introduction to Nuclear Engineering, Fall 2018

Motions in uniform magnetic field

Particle velocity

𝑣𝑣π‘₯π‘₯ = 𝑣𝑣βŠ₯ cos πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0𝑣𝑣𝑦𝑦 = βˆ’π‘£π‘£βŠ₯ sin πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0𝑣𝑣𝑧𝑧 = 0

Particle position

π‘₯π‘₯ = π‘Ÿπ‘Ÿπ‘π‘ sin πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0 + π‘₯π‘₯0 βˆ’ π‘Ÿπ‘Ÿπ‘π‘ sinπœ™πœ™0𝑦𝑦 = π‘Ÿπ‘Ÿπ‘π‘ cos πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0 + 𝑦𝑦0 βˆ’ π‘Ÿπ‘Ÿπ‘π‘ cosπœ™πœ™0𝑧𝑧 = 𝑧𝑧0 + 𝑣𝑣𝑧𝑧0𝑑𝑑

Larmor (gyration) radius

π‘Ÿπ‘Ÿπ‘π‘ =𝑣𝑣βŠ₯πœ”πœ”π‘π‘

=π‘šπ‘šπ‘£π‘£βŠ₯π‘žπ‘ž 𝐡𝐡0

Guiding center

π‘₯π‘₯0,𝑦𝑦0, 𝑧𝑧0 + 𝑣𝑣𝑧𝑧0𝑑𝑑

Page 5: Plasma and Sheath - Seoul National University

5/38 Introduction to Nuclear Engineering, Fall 2018

Gyro-frequency and radius

The direction of gyration is always such that the magnetic field generated by the charged particle is opposite to the externally imposed field. diamagnetic

𝑓𝑓𝑐𝑐𝑐𝑐 = 2.80 Γ— 106 𝐡𝐡0 Hz 𝐡𝐡0 in gauss

π‘Ÿπ‘Ÿπ‘π‘π‘π‘ =3.37 𝐸𝐸𝐡𝐡0

cm (𝐸𝐸 in volts)

For electrons

For singly charged ions

𝑓𝑓𝑐𝑐𝑐𝑐 = 1.52 Γ— 103 𝐡𝐡0/𝑀𝑀𝐴𝐴 Hz 𝐡𝐡0 in gauss

π‘Ÿπ‘Ÿπ‘π‘π‘π‘ =144 𝐸𝐸𝑀𝑀𝐴𝐴

𝐡𝐡0cm (𝐸𝐸 in volts,𝑀𝑀𝐴𝐴 in amu)

Energy gain?

Page 6: Plasma and Sheath - Seoul National University

6/38 Introduction to Nuclear Engineering, Fall 2018

Motions in uniform E and B fields

Equation of motion

π‘šπ‘šπ‘‘π‘‘π’—π’—π‘‘π‘‘π‘‘π‘‘

= π‘žπ‘ž 𝑬𝑬 + 𝒗𝒗 Γ— 𝑩𝑩

Parallel motion: 𝑩𝑩 = 𝐡𝐡0𝒛𝒛 and 𝑬𝑬 = 𝐸𝐸0𝒛𝒛,

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘§π‘§π‘‘π‘‘π‘‘π‘‘ = π‘žπ‘žπΈπΈπ‘§π‘§

𝑣𝑣𝑧𝑧 =π‘žπ‘žπΈπΈπ‘§π‘§π‘šπ‘š 𝑑𝑑 + 𝑣𝑣𝑧𝑧0

Straightforward acceleration along B

Page 7: Plasma and Sheath - Seoul National University

7/38 Introduction to Nuclear Engineering, Fall 2018

𝑬𝑬×𝑩𝑩 drift

Transverse motion: 𝑩𝑩 = 𝐡𝐡0𝒛𝒛 and 𝑬𝑬 = 𝐸𝐸0𝒙𝒙,

Differentiating,

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘₯π‘₯𝑑𝑑𝑑𝑑

= π‘žπ‘žπΈπΈ0 + π‘žπ‘žπ΅π΅0𝑣𝑣𝑦𝑦

π‘šπ‘šπ‘‘π‘‘π‘£π‘£π‘¦π‘¦π‘‘π‘‘π‘‘π‘‘

= βˆ’π‘žπ‘žπ΅π΅0𝑣𝑣π‘₯π‘₯

𝑑𝑑2𝑣𝑣π‘₯π‘₯𝑑𝑑𝑑𝑑2 = βˆ’πœ”πœ”π‘π‘2𝑣𝑣π‘₯π‘₯𝑑𝑑2𝑣𝑣𝑦𝑦𝑑𝑑𝑑𝑑2 = βˆ’πœ”πœ”π‘π‘2

𝐸𝐸0𝐡𝐡0

+ 𝑣𝑣𝑦𝑦

Particle velocity

𝑣𝑣π‘₯π‘₯ = 𝑣𝑣βŠ₯ cos πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0𝑣𝑣𝑦𝑦 = βˆ’π‘£π‘£βŠ₯ sin πœ”πœ”π‘π‘π‘‘π‘‘ + πœ™πœ™0 βˆ’

𝐸𝐸0𝐡𝐡0

𝑣𝑣𝑔𝑔𝑐𝑐

𝒗𝒗𝐸𝐸 =𝑬𝑬 Γ— π‘©π‘©π΅π΅πŸπŸ

Page 8: Plasma and Sheath - Seoul National University

8/38 Introduction to Nuclear Engineering, Fall 2018

DC magnetron

A magnetron which is widely used in the sputtering system uses the 𝑬𝑬×𝑩𝑩 drift motion for plasma confinement.

What is the direction of 𝑬𝑬×𝑩𝑩 drift motion?

Page 9: Plasma and Sheath - Seoul National University

9/38 Introduction to Nuclear Engineering, Fall 2018

Motions in gravitational field

Generally, the guiding center drift caused by general force 𝑭𝑭

If 𝑭𝑭 is the force of gravity π‘šπ‘šπ’ˆπ’ˆ,

𝒗𝒗𝑓𝑓 =1π‘žπ‘žπ‘­π‘­ Γ— π‘©π‘©π΅π΅πŸπŸ

𝒗𝒗𝑔𝑔 =π‘šπ‘šπ‘žπ‘žπ’ˆπ’ˆ Γ— π‘©π‘©π΅π΅πŸπŸ

What is the difference between 𝒗𝒗𝐸𝐸 and 𝒗𝒗𝑔𝑔?

Page 10: Plasma and Sheath - Seoul National University

10/38 Introduction to Nuclear Engineering, Fall 2018

𝜡𝜡𝐡𝐡βŠ₯𝑩𝑩: Grad-B drift

The gradient in |𝑩𝑩| causes the Larmor radius to be larger at the bottom of the orbit than at the top, and this should lead to a drift, in opposite directions for ions and electrons, perpendicular to both 𝑩𝑩 and 𝜡𝜡𝐡𝐡.

Guiding center motion

𝒗𝒗𝛻𝛻𝐡𝐡 = Β±12 𝑣𝑣βŠ₯π‘Ÿπ‘Ÿπ‘π‘

𝑩𝑩 Γ— π›π›π΅π΅π΅π΅πŸπŸ

𝜡𝜡𝐡𝐡

Page 11: Plasma and Sheath - Seoul National University

11/38 Introduction to Nuclear Engineering, Fall 2018

Curved B: Curvature drift

The average centrifugal force

Total drift in a curved vacuum field (curvature + grad-B)

𝑭𝑭𝑐𝑐𝑓𝑓 =π‘šπ‘šπ‘£π‘£βˆ₯2

𝑅𝑅𝑐𝑐�𝒓𝒓 = π‘šπ‘šπ‘£π‘£βˆ₯2

𝑹𝑹𝑐𝑐𝑅𝑅𝑐𝑐2

Curvature drift

𝒗𝒗𝑅𝑅 =1π‘žπ‘žπ‘­π‘­π‘π‘π‘“π‘“ Γ— π‘©π‘©π΅π΅πŸπŸ =

π‘šπ‘šπ‘£π‘£βˆ₯2

π‘žπ‘žπ΅π΅πŸπŸπ‘Ήπ‘Ήπ‘π‘ Γ— 𝑩𝑩𝑅𝑅𝑐𝑐2

𝒗𝒗𝑅𝑅 + 𝒗𝒗𝛻𝛻𝐡𝐡 =π‘šπ‘šπ‘žπ‘žπ‘Ήπ‘Ήπ‘π‘ Γ— 𝑩𝑩𝑅𝑅𝑐𝑐2𝐡𝐡2

𝑣𝑣βˆ₯2 +12 𝑣𝑣βŠ₯

2

𝐡𝐡 ∝1𝑅𝑅𝑐𝑐

𝜡𝜡 𝐡𝐡𝐡𝐡 = βˆ’

𝑹𝑹𝑐𝑐𝑅𝑅𝑐𝑐2

Page 12: Plasma and Sheath - Seoul National University

12/38 Introduction to Nuclear Engineering, Fall 2018

𝜡𝜡𝐡𝐡βˆ₯𝑩𝑩: Magnetic mirror

Adiabatic invariant: Magnetic moment

Magnetic mirror

As the particle moves into regions of stronger or weaker 𝐡𝐡, its Larmorradius changes, but πœ‡πœ‡ remains invariant.

πœ‡πœ‡ = 𝐼𝐼𝐼𝐼 =12π‘šπ‘šπ‘£π‘£βŠ₯

2

𝐡𝐡

12π‘šπ‘šπ‘£π‘£βŠ₯0

2

𝐡𝐡0=

12π‘šπ‘šπ‘£π‘£βŠ₯π‘šπ‘š

2

π΅π΅π‘šπ‘š

𝑣𝑣βŠ₯π‘šπ‘š2 = 𝑣𝑣βŠ₯02 + 𝑣𝑣βˆ₯02 ≑ 𝑣𝑣02

𝐡𝐡0π΅π΅π‘šπ‘š

=𝑣𝑣βŠ₯02

𝑣𝑣βŠ₯π‘šπ‘š2 =𝑣𝑣βŠ₯02

𝑣𝑣02= sin2πœƒπœƒ

Page 13: Plasma and Sheath - Seoul National University

13/38 Introduction to Nuclear Engineering, Fall 2018

Motions in a dipole magnetic field

Trajectories of particles confined in a dipole field

Particles experience gyro-, bounce- and drift- motions

Page 14: Plasma and Sheath - Seoul National University

14/38 Introduction to Nuclear Engineering, Fall 2018

Boltzmann’s equation & macroscopic quantities

Particle density

Particle flux

Particle energy density

Page 15: Plasma and Sheath - Seoul National University

15/38 Introduction to Nuclear Engineering, Fall 2018

Particle conservation

πœ•πœ•π‘›π‘›πœ•πœ•π‘‘π‘‘

+ 𝜡𝜡 οΏ½ 𝑛𝑛𝒖𝒖 = 𝐺𝐺 βˆ’ 𝐿𝐿

The net number of particles per second generated within Ξ© either flows across the surface Ξ“ or increases the number of particles within Ξ©.

For common low-pressure discharges in steady-state:

Hence,

𝐺𝐺 = πœˆπœˆπ‘π‘π‘§π‘§π‘›π‘›π‘π‘ , 𝐿𝐿 β‰ˆ 0

𝜡𝜡 οΏ½ 𝑛𝑛𝒖𝒖 = πœˆπœˆπ‘π‘π‘§π‘§π‘›π‘›π‘π‘

The continuity equation is clearly not sufficient to give the evolution of the density 𝑛𝑛, since it involves another quantity, the mean particle velocity 𝒖𝒖.

Page 16: Plasma and Sheath - Seoul National University

16/38 Introduction to Nuclear Engineering, Fall 2018

Momentum conservation

π‘šπ‘šπ‘›π‘›πœ•πœ•π’–π’–πœ•πœ•π‘‘π‘‘

+ 𝒖𝒖 οΏ½ 𝜡𝜡 𝒖𝒖 = π‘žπ‘žπ‘›π‘›π‘¬π‘¬ βˆ’ πœ΅πœ΅π‘π‘ βˆ’π‘šπ‘šπ‘›π‘›πœˆπœˆπ‘šπ‘šπ’–π’–

Convective derivative Pressure tensor isotropic for weakly ionized plasmas

The time rate of momentum transfer per unit volume due to collisions with other species

Page 17: Plasma and Sheath - Seoul National University

17/38 Introduction to Nuclear Engineering, Fall 2018

Equation of state (EOS)

An equation of state is a thermodynamic equation describing the state of matter under a given set of physical conditions.

𝑝𝑝 = 𝑝𝑝 𝑛𝑛,𝑇𝑇 , πœ€πœ€ = πœ€πœ€(𝑛𝑛,𝑇𝑇)

Isothermal EOS for slow time variations, where temperatures are allowed to equilibrate. In this case, the fluid can exchange energy with its surroundings.

The energy conservation equation needs to be solved to determine p and T.

𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑇𝑇, 𝛻𝛻𝑝𝑝 = 𝑛𝑛𝑇𝑇𝛻𝛻𝑛𝑛

Adiabatic EOS for fast time variations, such as in waves, when the fluid does not exchange energy with its surroundings

The energy conservation equation is not required.

𝑝𝑝 = 𝐢𝐢𝑛𝑛𝛾𝛾,𝛻𝛻𝑝𝑝𝑝𝑝

= 𝛾𝛾𝛻𝛻𝑛𝑛𝑛𝑛

𝛾𝛾 =𝐢𝐢𝑝𝑝𝐢𝐢𝑣𝑣

(specific heat ratio)

Specific heat ratio vs degree of freedom (𝑓𝑓) 𝛾𝛾 = 1 +2𝑓𝑓

Page 18: Plasma and Sheath - Seoul National University

18/38 Introduction to Nuclear Engineering, Fall 2018

Equilibrium: Maxwell-Boltzmann distribution

For a single species in thermal equilibrium with itself (e.g., electrons), in the absence of time variation, spatial gradients, and accelerations, the Boltzmann equation reduces to

οΏ½πœ•πœ•π‘“π‘“πœ•πœ•π‘‘π‘‘ 𝑐𝑐

= 0

Then, we obtain the Maxwell-Boltzmann velocity distribution

𝑓𝑓 𝑣𝑣 =2πœ‹πœ‹

π‘šπ‘šπ‘›π‘›π‘‡π‘‡

3𝑣𝑣2𝑒𝑒π‘₯π‘₯𝑝𝑝 βˆ’

π‘šπ‘šπ‘£π‘£2

2𝑛𝑛𝑇𝑇

𝑓𝑓 πœ€πœ€ =2πœ‹πœ‹

πœ€πœ€π‘›π‘›π‘‡π‘‡

1/2𝑒𝑒π‘₯π‘₯𝑝𝑝 βˆ’

πœ€πœ€π‘›π‘›π‘‡π‘‡

The mean speed

�̅�𝑣 =8π‘›π‘›π‘‡π‘‡πœ‹πœ‹π‘šπ‘š

1/2

Page 19: Plasma and Sheath - Seoul National University

19/38 Introduction to Nuclear Engineering, Fall 2018

Particle and energy flux

The directed particle flux: the number of particles per square meter per second crossing the 𝑧𝑧 = 0 surface in the positive direction

Γ𝑧𝑧 =14𝑛𝑛�̅�𝑣

The average energy flux: the amount of energy per square meter per second in the +z direction

𝑆𝑆𝑧𝑧 = 𝑛𝑛12π‘šπ‘šπ‘£π‘£2𝑣𝑣𝑧𝑧

𝒗𝒗

= 2𝑛𝑛𝑇𝑇Γ𝑧𝑧

The average kinetic energy π‘Šπ‘Š per particle crossing 𝑧𝑧 = 0 in the positive direction

π‘Šπ‘Š = 2𝑛𝑛𝑇𝑇

𝑣𝑣𝑑𝑑𝑑 =π‘›π‘›π‘‡π‘‡π‘šπ‘š

1/2

Page 20: Plasma and Sheath - Seoul National University

20/38 Introduction to Nuclear Engineering, Fall 2018

Diffusion and mobility

The fluid equation of motion including collisions

In steady-state, for isothermal plasmas

π‘šπ‘šπ‘›π‘›π‘‘π‘‘π’–π’–π‘‘π‘‘π‘‘π‘‘

= π‘šπ‘šπ‘›π‘›πœ•πœ•π’–π’–πœ•πœ•π‘‘π‘‘

+ 𝒖𝒖 οΏ½ 𝜡𝜡 𝒖𝒖 = π‘žπ‘žπ‘›π‘›π‘¬π‘¬ βˆ’ πœ΅πœ΅π‘π‘ βˆ’π‘šπ‘šπ‘›π‘›πœˆπœˆπ‘šπ‘šπ’–π’–

𝒖𝒖 =1

π‘šπ‘šπ‘›π‘›πœˆπœˆπ‘šπ‘šπ‘žπ‘žπ‘›π‘›π‘¬π‘¬ βˆ’ πœ΅πœ΅π‘π‘ =

1π‘šπ‘šπ‘›π‘›πœˆπœˆπ‘šπ‘š

π‘žπ‘žπ‘›π‘›π‘¬π‘¬ βˆ’ π‘›π‘›π‘‡π‘‡πœ΅πœ΅π‘›π‘›

=π‘žπ‘ž

π‘šπ‘šπœˆπœˆπ‘šπ‘šπ‘¬π‘¬ βˆ’

π‘›π‘›π‘‡π‘‡π‘šπ‘šπœˆπœˆπ‘šπ‘š

πœ΅πœ΅π‘›π‘›π‘›π‘› = Β±πœ‡πœ‡π‘¬π‘¬ βˆ’ 𝐷𝐷

πœ΅πœ΅π‘›π‘›π‘›π‘›

In terms of particle flux

πšͺπšͺ = 𝑛𝑛𝒖𝒖 = Β±π‘›π‘›πœ‡πœ‡π‘¬π‘¬ βˆ’ π·π·πœ΅πœ΅π‘›π‘›

πœ‡πœ‡ =π‘žπ‘ž

π‘šπ‘šπœˆπœˆπ‘šπ‘šβˆΆ Mobility 𝐷𝐷 =

π‘›π‘›π‘‡π‘‡π‘šπ‘šπœˆπœˆπ‘šπ‘š

∢ Diffusion coefficient

πœ‡πœ‡ =π‘žπ‘ž 𝐷𝐷𝑛𝑛𝑇𝑇 ∢ Einstein relation

Drift Diffusion

Page 21: Plasma and Sheath - Seoul National University

21/38 Introduction to Nuclear Engineering, Fall 2018

Ambipolar diffusion

The flux of electrons and ions out of any region must be equal such that charge does not build up. Since the electrons are lighter, and would tend to flow out faster in an unmagnetized plasma, an electric field must spring up to maintain the local flux balance.

The ambipolar diffusion coefficient for weakly ionized plasmas

Γ𝑐𝑐 = +π‘›π‘›πœ‡πœ‡π‘π‘πΈπΈ βˆ’ 𝐷𝐷𝑐𝑐𝛻𝛻𝑛𝑛 Γ𝑐𝑐 = βˆ’π‘›π‘›πœ‡πœ‡π‘π‘πΈπΈ βˆ’ 𝐷𝐷𝑐𝑐𝛻𝛻𝑛𝑛

Ambipolar electric field for Γ𝑐𝑐 = Γ𝑐𝑐

𝐸𝐸 =𝐷𝐷𝑐𝑐 βˆ’ π·π·π‘π‘πœ‡πœ‡π‘π‘ + πœ‡πœ‡π‘π‘

𝛻𝛻𝑛𝑛𝑛𝑛

The common particle flux

Ξ“ = βˆ’πœ‡πœ‡π‘π‘π·π·π‘π‘ + πœ‡πœ‡π‘π‘π·π·π‘π‘πœ‡πœ‡π‘π‘ + πœ‡πœ‡π‘π‘

𝛻𝛻𝑛𝑛 = βˆ’π·π·π‘Žπ‘Žπ›»π›»π‘›π‘›

π·π·π‘Žπ‘Ž =πœ‡πœ‡π‘π‘π·π·π‘π‘ + πœ‡πœ‡π‘π‘π·π·π‘π‘πœ‡πœ‡π‘π‘ + πœ‡πœ‡π‘π‘

β‰ˆ 𝐷𝐷𝑐𝑐 +πœ‡πœ‡π‘π‘πœ‡πœ‡π‘π‘π·π·π‘π‘ β‰ˆ 𝐷𝐷𝑐𝑐 1 +

TeTi

~πœ‡πœ‡π‘π‘Te

Page 22: Plasma and Sheath - Seoul National University

22/38 Introduction to Nuclear Engineering, Fall 2018

Steady-state plane-parallel solutions

Diffusion equationπœ•πœ•π‘›π‘›πœ•πœ•π‘‘π‘‘

βˆ’ 𝐷𝐷𝛻𝛻2𝑛𝑛 = 𝐺𝐺 βˆ’ 𝐿𝐿

volume source and sink

For a plane-parallel geometry with no volume source or sink

βˆ’π·π·π‘‘π‘‘2𝑛𝑛𝑑𝑑π‘₯π‘₯2

= 0 𝑛𝑛 = 𝐼𝐼π‘₯π‘₯ + 𝐡𝐡

For a uniform specified source of diffusing particles

βˆ’π·π·π‘‘π‘‘2𝑛𝑛𝑑𝑑π‘₯π‘₯2 = 𝐺𝐺0 𝑛𝑛 =

𝐺𝐺0𝑙𝑙2

8𝐷𝐷 1 βˆ’2π‘₯π‘₯𝑙𝑙

2

𝑛𝑛 =Ξ“0𝐷𝐷

𝑙𝑙2 βˆ’ π‘₯π‘₯

B.C. Ξ“ π‘₯π‘₯ = 0 = Ξ“0𝑛𝑛 π‘₯π‘₯ = 𝑙𝑙/2 = 0

B.C. symmetric at π‘₯π‘₯ = 0

𝑛𝑛 π‘₯π‘₯ = ±𝑙𝑙/2 = 0

The most common case is for a plasma consisting of positive ions and an equal number of electrons which are the source of ionization

𝛻𝛻2𝑛𝑛 +πœˆπœˆπ‘π‘π‘§π‘§π·π· 𝑛𝑛 = 0 where, 𝐷𝐷 = π·π·π‘Žπ‘Ž and πœˆπœˆπ‘π‘π‘§π‘§ is the ionization frequency

𝑛𝑛0 is determined

Page 23: Plasma and Sheath - Seoul National University

23/38 Introduction to Nuclear Engineering, Fall 2018

Boltzmann’s relation

The density of electrons in thermal equilibrium can be obtained from the electron force balance in the absence of the inertial, magnetic, and frictional forces

Setting 𝑬𝑬 = βˆ’πœ΅πœ΅Ξ¦ and assuming 𝑝𝑝𝑐𝑐 = 𝑛𝑛𝑐𝑐𝑛𝑛𝑇𝑇𝑐𝑐

Integrating, we have

π‘šπ‘šπ‘›π‘›π‘π‘πœ•πœ•π’–π’–πœ•πœ•π‘‘π‘‘

+ 𝒖𝒖 οΏ½ 𝜡𝜡 𝒖𝒖 = βˆ’π‘’π‘’π‘›π‘›π‘π‘π‘¬π‘¬ βˆ’ πœ΅πœ΅π‘π‘π‘π‘ βˆ’ π‘šπ‘šπ‘›π‘›π‘π‘πœˆπœˆπ‘šπ‘šπ’–π’–

π‘’π‘’π‘›π‘›π‘π‘πœ΅πœ΅Ξ¦ βˆ’ π‘›π‘›π‘‡π‘‡π‘π‘πœ΅πœ΅π‘›π‘›π‘π‘ = π‘›π‘›π‘π‘πœ΅πœ΅ 𝑒𝑒Φ βˆ’ 𝑛𝑛𝑇𝑇𝑐𝑐ln𝑛𝑛𝑐𝑐 = 0

𝑛𝑛𝑐𝑐 𝒓𝒓 = 𝑛𝑛0exp𝑒𝑒Φ 𝒓𝒓𝑛𝑛𝑇𝑇𝑐𝑐

= 𝑛𝑛0expΞ¦ 𝒓𝒓

TeBoltzmann’s relation for electrons

For positive ions in thermal equilibrium at temperature Ti 𝑛𝑛𝑐𝑐(𝒓𝒓) = 𝑛𝑛0exp βˆ’Ξ¦(𝒓𝒓)

Ti

However, positive ions are almost never in thermal equilibrium in low pressure discharges because the ion drift velocity 𝑒𝑒𝑖𝑖 is large, leading to inertial or frictional forces comparable to the electric field or pressure gradient forces.

Page 24: Plasma and Sheath - Seoul National University

24/38 Introduction to Nuclear Engineering, Fall 2018

Debye shielding (screening)

Coulomb potential

Screened Coulomb potential

Ξ¦ π‘Ÿπ‘Ÿ =𝑄𝑄

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ

Ξ¦ π‘Ÿπ‘Ÿ =𝑄𝑄

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿexp βˆ’

π‘Ÿπ‘Ÿπœ†πœ†π·π·

𝛻𝛻2Ξ¦ = βˆ’π‘’π‘’π‘›π‘›0πœ–πœ–0

1 βˆ’ 𝑒𝑒𝑐𝑐Φ/π‘˜π‘˜π‘‡π‘‡π‘’π‘’ β‰ˆπ‘’π‘’2𝑛𝑛0πœ–πœ–0𝑛𝑛𝑇𝑇𝑐𝑐

Ξ¦ =Ξ¦πœ†πœ†π·π·2

Poisson’s equation

Debye length

πœ†πœ†π·π· =πœ–πœ–0𝑛𝑛𝑇𝑇𝑐𝑐𝑒𝑒2𝑛𝑛0

1/2

=πœ–πœ–0Te𝑒𝑒𝑛𝑛0

1/2

Plasma

Page 25: Plasma and Sheath - Seoul National University

25/38 Introduction to Nuclear Engineering, Fall 2018

Debye length

πœ†πœ†π·π· cm =πœ–πœ–0Te𝑒𝑒𝑛𝑛0

⁄1 2

= 743Te eV

𝑛𝑛0 cmβˆ’3 = 7434

1010 β‰ˆ 0.14 mm

The electron Debye length πœ†πœ†π·π·π‘π‘ is the characteristic length scale in a plasma.

The Debye length is the distance scale over which significant charge densities can spontaneously exist. For example, low-voltage (undriven) sheaths are typically a few Debye lengths wide.

+

-

--

--

+

+

+

+

Ξ»D

Quasi-neutrality?

Typical values for a processing plasma (ne = 1010 cm-3, Te = 4 eV)

It is on space scales larger than a Debye length that the plasma will tend to remain neutral.

The Debye length serves as a characteristic scale length to shield the Coulomb potentials of individual charged particles when they collide.

Page 26: Plasma and Sheath - Seoul National University

26/38 Introduction to Nuclear Engineering, Fall 2018

Quasi-neutrality

The potential variation across a plasma of length 𝑙𝑙 ≫ πœ†πœ†π·π·π‘π‘ can be estimated from Poisson’s equation

We generally expect that

Then, we obtain

𝛻𝛻2Ξ¦~Φ𝑙𝑙2 ~

π‘’π‘’πœ–πœ–0

𝑍𝑍𝑛𝑛𝑐𝑐 βˆ’ 𝑛𝑛𝑐𝑐

Ξ¦ ≲ Te =π‘’π‘’πœ–πœ–0π‘›π‘›π‘π‘πœ†πœ†π·π·π‘π‘2

𝑍𝑍𝑛𝑛𝑐𝑐 βˆ’ 𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐

β‰²πœ†πœ†π·π·π‘π‘2

𝑙𝑙2 β‰ͺ 1

𝑍𝑍𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑐𝑐Plasma approximation

The plasma approximation is violated within a plasma sheath, in proximity to a material wall, either because the sheath thickness s β‰ˆ πœ†πœ†π·π·π‘π‘, or because Ξ¦ ≫ Te.

Page 27: Plasma and Sheath - Seoul National University

27/38 Introduction to Nuclear Engineering, Fall 2018

Plasma oscillations

Electrons overshoot by inertia and oscillate around their equilibrium position with a characteristic frequency known as plasma frequency.

Equation of motion (cold plasma)2 2

02

0

ex e

d n em eE

dt

2 20

20

0ee

d n e

mdt

Electron plasma frequency

πœ”πœ”π‘π‘π‘π‘ =𝑛𝑛0𝑒𝑒2

π‘šπ‘šπœ–πœ–0

1/2

If the assumption of infinite mass ions is not made, then the ions also move slightly and we obtain the natural frequency

πœ”πœ”π‘π‘ = πœ”πœ”π‘π‘π‘π‘2 + πœ”πœ”π‘π‘π‘π‘2 1/2 where, πœ”πœ”π‘π‘π‘π‘ = 𝑛𝑛0𝑒𝑒2/π‘€π‘€πœ–πœ–0 1/2 (ion plasma frequency)

Page 28: Plasma and Sheath - Seoul National University

28/38 Introduction to Nuclear Engineering, Fall 2018

Plasma frequency

Plasma oscillation frequency for electrons and ions

𝑓𝑓𝑝𝑝𝑐𝑐 =πœ”πœ”π‘π‘π‘π‘2πœ‹πœ‹ = 8980 𝑛𝑛0 Hz 𝑛𝑛0 in cmβˆ’3

𝑓𝑓𝑝𝑝𝑐𝑐 =πœ”πœ”π‘π‘π‘π‘2πœ‹πœ‹ = 210 𝑛𝑛0/𝑀𝑀𝐴𝐴 Hz 𝑛𝑛0 in cmβˆ’3,𝑀𝑀𝐴𝐴 in amu

Typical values for a processing plasma (Ar)

𝑓𝑓𝑝𝑝𝑐𝑐 =πœ”πœ”π‘π‘π‘π‘2πœ‹πœ‹ = 8980 1010 Hz = 9 Γ— 108 [Hz]

𝑓𝑓𝑝𝑝𝑐𝑐 =πœ”πœ”π‘π‘π‘π‘2πœ‹πœ‹ = 210 1010/40 Hz = 3.3 Γ— 106 [Hz]

Collective behavior

πœ”πœ”π‘π‘π‘π‘πœπœ > 1 Plasma frequency > collision frequency

Page 29: Plasma and Sheath - Seoul National University

29/38 Introduction to Nuclear Engineering, Fall 2018

Criteria for plasmas

Criteria for plasmas:

πœ†πœ†π·π· β‰ͺ 𝐿𝐿

πœ”πœ”π‘π‘π‘π‘πœπœπ‘π‘ > 1

𝑁𝑁𝐷𝐷 ≫ 1

𝑁𝑁𝐷𝐷 = 𝑛𝑛43πœ‹πœ‹πœ†πœ†π·π·3

The picture of Debye shielding is valid only if there are enough particles in the charge cloud. Clearly, if there are only one or two particles in the sheath region, Debye shielding would not be a statistically valid concept. We can compute the number of particles in a β€œDebye sphere”:

Plasma parameter

Ξ› = 4πœ‹πœ‹π‘›π‘›πœ†πœ†π·π·3 = 3𝑁𝑁𝐷𝐷

Coupling parameter

Ξ“ =Coulomb energyThermal energy =

π‘žπ‘ž2/(4πœ‹πœ‹πœ–πœ–0π‘Žπ‘Ž)𝑛𝑛𝑇𝑇𝑐𝑐

~Ξ›βˆ’2/3

Wigner-Seitz radius π‘Žπ‘Ž = 3 4πœ‹πœ‹π‘›π‘›π‘π‘/3

Page 30: Plasma and Sheath - Seoul National University

30/38 Introduction to Nuclear Engineering, Fall 2018

Formation of plasma sheaths

Plasma sheath: the non-neutral potential region between the plasma and the wall caused by the balanced flow of particles with different mobility such as electrons and ions.

Page 31: Plasma and Sheath - Seoul National University

31/38 Introduction to Nuclear Engineering, Fall 2018

Plasma-sheath structure

Page 32: Plasma and Sheath - Seoul National University

32/38 Introduction to Nuclear Engineering, Fall 2018

Collisionless sheath

Ion energy & flux conservations (no collision)

Ion density profile

12𝑀𝑀𝑒𝑒(π‘₯π‘₯)2 + 𝑒𝑒Φ(π‘₯π‘₯) =

12𝑀𝑀𝑒𝑒𝑠𝑠2 𝑛𝑛𝑐𝑐 π‘₯π‘₯ 𝑒𝑒 π‘₯π‘₯ = 𝑛𝑛𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠

𝑛𝑛𝑐𝑐 π‘₯π‘₯ = 𝑛𝑛𝑐𝑐𝑠𝑠 1 βˆ’2𝑒𝑒Φ(π‘₯π‘₯)𝑀𝑀𝑒𝑒𝑠𝑠2

βˆ’1/2

Electron density profile

𝑛𝑛𝑐𝑐(π‘₯π‘₯) = 𝑛𝑛𝑐𝑐𝑠𝑠expΞ¦(π‘₯π‘₯)

Te

Setting 𝑛𝑛𝑐𝑐𝑠𝑠 = 𝑛𝑛𝑐𝑐𝑠𝑠 ≑ 𝑛𝑛𝑠𝑠

𝑑𝑑2Φ𝑑𝑑π‘₯π‘₯2 =

π‘’π‘’π‘›π‘›π‘ π‘ πœ–πœ–0

expΦTe

βˆ’ 1 βˆ’Ξ¦β„°π‘ π‘ 

βˆ’1/2

where, 𝑒𝑒ℰ𝑠𝑠 ≑12𝑀𝑀𝑒𝑒𝑠𝑠2

Page 33: Plasma and Sheath - Seoul National University

33/38 Introduction to Nuclear Engineering, Fall 2018

Bohm sheath criterion

Multiplying the sheath equation by 𝑑𝑑Φ/𝑑𝑑π‘₯π‘₯ and integrating over π‘₯π‘₯

οΏ½0

Φ𝑑𝑑Φ𝑑𝑑π‘₯π‘₯

𝑑𝑑𝑑𝑑π‘₯π‘₯

𝑑𝑑Φ𝑑𝑑π‘₯π‘₯

𝑑𝑑π‘₯π‘₯ =π‘’π‘’π‘›π‘›π‘ π‘ πœ€πœ€0

οΏ½0

Φ𝑑𝑑Φ𝑑𝑑π‘₯π‘₯ exp

Ξ¦Te

βˆ’ 1 βˆ’Ξ¦β„°π‘ π‘ 

βˆ’1/2

𝑑𝑑π‘₯π‘₯

Cancelling 𝑑𝑑π‘₯π‘₯’s and integrating with respect to Ξ¦

12

𝑑𝑑Φ𝑑𝑑π‘₯π‘₯

2

=π‘’π‘’π‘›π‘›π‘ π‘ πœ€πœ€0

TeexpΦTe

βˆ’ Te + 2ℰ𝑠𝑠 1 βˆ’Ξ¦β„°π‘ π‘ 

1/2

βˆ’ 2ℰ𝑠𝑠 β‰₯ 0

𝑒𝑒𝑠𝑠 β‰₯𝑒𝑒Te𝑀𝑀

1/2

≑𝑛𝑛𝑇𝑇𝑐𝑐𝑀𝑀

1/2

≑ 𝑒𝑒𝐡𝐡 (Bohm speed)

ℰ𝑠𝑠 ≑1

2𝑒𝑒𝑀𝑀𝑒𝑒𝑠𝑠2 β‰₯

Te2

Bohm sheath criterion

Page 34: Plasma and Sheath - Seoul National University

34/38 Introduction to Nuclear Engineering, Fall 2018

Presheath

To give the ions the directed velocity 𝑒𝑒𝐡𝐡, there must be a finite electric field in the plasma over some region, typically much wider than the sheath, called the presheath.

At the sheath–presheath interface there is a transition from subsonic (𝑒𝑒𝑐𝑐 < 𝑒𝑒𝐡𝐡) to supersonic (𝑒𝑒𝑐𝑐 > 𝑒𝑒𝐡𝐡) ion flow, where the condition of charge neutrality must break down.

The potential drop across a collisionless presheath, which accelerates the ions to the Bohm velocity, is given by

12𝑀𝑀𝑒𝑒𝐡𝐡

2 =𝑒𝑒Te

2 = 𝑒𝑒Φ𝑝𝑝where, Φ𝑝𝑝 is the plasma potential with respect to the potential at the sheath–presheath edge

The spatial variation of the potential Φ𝑝𝑝(π‘₯π‘₯) in a collisional presheath (Riemann)

12 βˆ’

12 exp

2Φ𝑝𝑝

Teβˆ’Ξ¦π‘π‘

Te=π‘₯π‘₯πœ†πœ†π‘π‘

The ratio of the density at the sheath edge to that in the plasma

𝑛𝑛𝑠𝑠 = π‘›π‘›π‘π‘π‘’π‘’βˆ’Ξ¦π‘π‘/Te β‰ˆ 0.61𝑛𝑛𝑏𝑏

Page 35: Plasma and Sheath - Seoul National University

35/38 Introduction to Nuclear Engineering, Fall 2018

Sheath potential at a floating Wall

Ion flux

Electron flux

Γ𝑐𝑐 = 𝑛𝑛𝑠𝑠𝑒𝑒𝐡𝐡

Γ𝑐𝑐 =14𝑛𝑛𝑐𝑐𝑒𝑒�̅�𝑣𝑐𝑐 =

14𝑛𝑛𝑠𝑠�̅�𝑣𝑐𝑐exp

Φ𝑒𝑒Te

Ion flux = electron flux for a floating wall

𝑛𝑛𝑠𝑠𝑒𝑒Te𝑀𝑀

1/2

=14𝑛𝑛𝑠𝑠

8𝑒𝑒Teπœ‹πœ‹π‘šπ‘š

1/2

expΦ𝑒𝑒Te

Wall potential

Φ𝑒𝑒 = βˆ’Te2 ln

𝑀𝑀2πœ‹πœ‹π‘šπ‘š

Ion bombarding energy

Φ𝑒𝑒 β‰ˆ βˆ’2.8Te for hydrogen and Φ𝑒𝑒 β‰ˆ βˆ’4.7Te for argon

ℰ𝑐𝑐𝑖𝑖𝑖𝑖 =𝑒𝑒Te

2 + 𝑒𝑒 Φ𝑒𝑒 =𝑒𝑒Te

2 1 + ln𝑀𝑀

2πœ‹πœ‹π‘šπ‘š

a few πœ†πœ†π·π·π‘ π‘ 

Page 36: Plasma and Sheath - Seoul National University

36/38 Introduction to Nuclear Engineering, Fall 2018

High-voltage sheath: matrix sheath

The potential Ξ¦ in high-voltage sheaths is highly negative with respect to the plasma–sheath edge; hence 𝑛𝑛𝑐𝑐~𝑛𝑛𝑠𝑠𝑒𝑒Φ/Te β†’ 0 and only ions are present in the sheath.

The simplest high-voltage sheath, with a uniform ion density, is known as a matrix sheath (not self-consistent in steady-state).

Poisson’s eq.

𝑑𝑑2Φ𝑑𝑑π‘₯π‘₯2 = βˆ’

π‘’π‘’π‘›π‘›π‘ π‘ πœ–πœ–0

Ξ¦ = βˆ’π‘’π‘’π‘›π‘›π‘ π‘ πœ–πœ–0

π‘₯π‘₯2

2

Setting Ξ¦ = βˆ’π‘‰π‘‰0 at π‘₯π‘₯ = 𝑠𝑠, we obtain the matrix sheath thickness

𝑠𝑠 =2πœ–πœ–0𝑉𝑉0𝑒𝑒𝑛𝑛𝑠𝑠

1/2

In terms of the electron Debye length at the sheath edge

𝑠𝑠 = πœ†πœ†π·π·π‘ π‘ 2𝑉𝑉0Te

1/2

where, πœ†πœ†π·π·π‘ π‘  = πœ–πœ–0Te/𝑒𝑒𝑛𝑛𝑠𝑠 1/2

Page 37: Plasma and Sheath - Seoul National University

37/38 Introduction to Nuclear Engineering, Fall 2018

High-voltage sheath: space-charge-limited current

In the limit that the initial ion energy ℰ𝑠𝑠 is small compared to the potential, the ion energy and flux conservation equations reduce to

12𝑀𝑀𝑒𝑒2(π‘₯π‘₯) = βˆ’π‘’π‘’Ξ¦(π‘₯π‘₯)

𝑒𝑒𝑛𝑛 π‘₯π‘₯ 𝑒𝑒 π‘₯π‘₯ = 𝐽𝐽0𝑛𝑛 π‘₯π‘₯ =

𝐽𝐽0𝑒𝑒 βˆ’

2𝑒𝑒Φ𝑀𝑀

βˆ’1/2

Poisson’s eq.

𝑑𝑑2Φ𝑑𝑑π‘₯π‘₯2 = βˆ’

π‘’π‘’πœ–πœ–0

(𝑛𝑛𝑐𝑐 βˆ’ 𝑛𝑛𝑐𝑐) = βˆ’π½π½0πœ–πœ–0

βˆ’2𝑒𝑒Φ𝑀𝑀

βˆ’1/2

Multiplying by 𝑑𝑑Φ/𝑑𝑑π‘₯π‘₯ and integrating twice from 0 to π‘₯π‘₯

Letting Ξ¦ = βˆ’π‘‰π‘‰0 at π‘₯π‘₯ = 𝑠𝑠 and solving for 𝐽𝐽0, we obtain

βˆ’Ξ¦3/4 =32

𝐽𝐽0πœ–πœ–0

1/2 2𝑒𝑒𝑀𝑀

βˆ’1/4

π‘₯π‘₯

𝐽𝐽0 =49 πœ–πœ–0

2𝑒𝑒𝑀𝑀

1/2 𝑉𝑉03/2

𝑠𝑠2Child law:Space-charge-limited current in a plane diode

B.C. �𝑑𝑑Φ𝑑𝑑π‘₯π‘₯ π‘₯π‘₯=0

= 0

Page 38: Plasma and Sheath - Seoul National University

38/38 Introduction to Nuclear Engineering, Fall 2018

High-voltage sheath: Child law sheath

For a plasma 𝐽𝐽0 = 𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝐡𝐡

Child law sheath

Potential, electric field and density within the sheath

Ξ¦ = βˆ’π‘‰π‘‰0π‘₯π‘₯𝑠𝑠

4/3

𝑒𝑒𝑛𝑛𝑠𝑠𝑒𝑒𝐡𝐡 =49πœ–πœ–0

2𝑒𝑒𝑀𝑀

1/2 𝑉𝑉03/2

𝑠𝑠2

𝑠𝑠 =2

3πœ–πœ–0Te𝑒𝑒𝑛𝑛𝑠𝑠

1/2 2𝑉𝑉0Te

3/4

=2

3πœ†πœ†π·π·π‘ π‘ 

2𝑉𝑉0Te

3/4

𝐸𝐸 =43𝑉𝑉0𝑠𝑠

π‘₯π‘₯𝑠𝑠

1/3

Assuming that an ion enters the sheath with initial velocity 𝑒𝑒 0 = 0

𝑛𝑛 =49πœ–πœ–0𝑒𝑒𝑉𝑉0𝑠𝑠2

π‘₯π‘₯𝑠𝑠

βˆ’2/3

𝑑𝑑π‘₯π‘₯𝑑𝑑𝑑𝑑 = 𝑣𝑣0

π‘₯π‘₯𝑠𝑠

2/3where, 𝑣𝑣0 is the characteristic ion velocity in the sheath

Ion transit time across the sheathπ‘₯π‘₯ 𝑑𝑑𝑠𝑠 =

𝑣𝑣0𝑑𝑑3𝑠𝑠

3πœπœπ‘π‘ =

3𝑠𝑠𝑣𝑣0

𝑣𝑣0 =2𝑒𝑒𝑉𝑉0𝑀𝑀

1/2