Plane Wave Reflection and Transmission (1)

download Plane Wave Reflection and Transmission (1)

of 33

Transcript of Plane Wave Reflection and Transmission (1)

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    1/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    1

    Plane Wave Reflection and Transmission

    1 Normal Incidence at a Conducting Boundary

    zy

    x

    Medium 2 – perfect conductor 

    ( )∞=σ2

    Medium 1 – air or dielectric medium

    ( )01 =σ

     z = 0

    ( )11,μ ε 

    r H

    r E

    r k̂

    iE

    iH ik̂

    ( ) ( )0

    22

      ==   z z HE

    Js ρ s+ + + 

    Surface current density

    Surface charge density

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    2/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    2

    ( )   zii   e E  z

    1-j

    0ˆ   β xE   =   ( ) 1-j0

    1

    ˆ   zii

     E  z e

      β 

    η =H y

    Incident fields:

    Transmitted fields in medium 2:( ) ( ) 022   ==   z z HE

    Boundary conditions,

    ( ) ( )

    ( ) ( )

    1 1 20

    1 1 20

    ˆ 0

    ˆ

     z

    s z

     z z

     z z

    =

    =

    × − =⎡ ⎤⎣ ⎦

    × − =⎡ ⎤⎣ ⎦

    n E E

    n H H J

    Reflected electric field:( )   z

    r r    e E  z1 j

    0ˆ   β += xE   ( ) 1 j0

    1

    1ˆ   z

    r r  z E e

      β 

    η 

    += −H y

    ( ) ( ) ( )

    ( ) ( ) ( )

    1

    1

    i r 

    i r 

     z z z

     z z z

    = +

    = +

    E E E

    H H H

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    3/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    3

    ( ) ( ) 000 ||2||1   == E  E 

    Tangential

    component of E1

     Note that the boundary conditions are prescribed andcannot be theoretically derived or proved.

     Note that as only one unknown  E r 0 is to be found, weonly need the electric field boundary condition.

    ( ) ( )

    ( ) ( )

    1|| 1 1 0

    2|| 1 2 0

    ˆ0

    ˆ0

     z

     z

     E z

     E z

    =

    =

    = ×

    = ×

    n E

    n E

    Let,

    Then,

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    4/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    4

    Total electric field in medium 1:( ) ( ) ( )

     z

     z

    i

    r i

    e E e E 

     z z z

    11  j

    0

     j-

    0

    1

    ˆˆ  β  β    ++=

    +=

    xx

    EEE

    At z = 0, using the boundary condition,

    ( ) 0 00 00||1   =+⇒=   r i   E  E  E 

    00  ir    E  E    −=∴

    ( ) ( ) ( )

    ( )( ) z E  j

    ee E 

     z z z

    i

     z z

    i

    r i

    10

     j j-

    0

    1

    sin2ˆ 

    ˆ  11

     β 

     β  β 

    x

    x

    EEE

    −=

    −=

    +=+

    Total electric field:

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    5/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    5

    Reflected magnetic field :

    ( ) ( ) ( )

    ( ) ( )

     zi

     z

    i

    r r 

    e E 

    e E 

     z z

    1

    1

     j0

    1

     j

    0

    1

    1

    ˆ1

     

    ˆˆ1

     

    ˆ1

     β 

     β 

    η 

    η 

    η 

    +

    +

    =

    −×−=

    ×−=

    y

    xz

    EzH

    Reflected electric field :

    ( )   zir    e E  z

    1 j

    0ˆ   β +−= xE

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    6/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    6

    ( ) ( ) ( )

    ( )

    ( ) z E 

    ee E 

    e E e

     E 

     z z z

    i

     z zi

     z

    i

     zi

    r i

    1

    1

    0

     j j-

    1

    0

     j

    01

     j-

    1

    0

    1

    cos2ˆ 

    ˆ 

    ˆ1

    ˆ 

    11

    11

     β η 

    η 

    η η 

     β  β 

     β  β 

    y

    y

    yy

    HHH

    =

    +=

    +=

    +=

    +

    +

    Total magnetic field in medium 1:

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    7/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    7

    Instantaneous fields:

     Note that both the total electric and total magnetic fields

    in medium 1 are standing waves*.

    1. They are ⊥ to each other and 90º out of phase.2. The electric field vanishes at z = -nλ /2, n = 0,1,2,

    3. The magnetic field vanishes at z =-(λ /4 + nλ /2).

    ( ) ( ) ( ) ( )t  z E e zt  z it  j ω  β ω  sinsin2ˆRe, 1011 xEE   ==

    ( ) ( ){ }   ( ) ( )t  z E e zt  z   it  j ω  β η ω  coscos2ˆRe, 1

    1

    011 yHH   ==

    * See animation “Formation of a Pure Standing Wave” to show the making of a standing wave from

    two traveling waves moving in opposite directions

    By setting sin( β 1 z)=0 in E1

    By setting cos( β 1 z)=0 in H1

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    8/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    8

    Total electric and magnetic fields in medium 1

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    9/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    9

    Example 1A uniform plane wave (Ei, Hi) at a frequency of 100 MHz

    travels in air in the + x direction. The electric field is

     polarised in the y direction. The wave impinges normally ona perfectly conducting plane at x = 0. The amplitude of the

    incident electric field is 6×10-3 V/m and its initial phase is

    zero.(a) Write phasor and instantaneous expressions for Ei, Hi.

    (b) Write phasor and instantaneous expressions for Er , Hr .

    (c) Write phasor and instantaneous expressions for E1, H1 in

    air.

    (d) Determine the position nearest to the conducting plane

    where E1 = 0.

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    10/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    10

    Solutions(a)

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    11/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    11

    (b)

    ( x)

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    12/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    12

    (d) The electric field vanishes at  x = -nλ /2, n = 0,1,2,….Except at the boundary

    surface (n = 0), the nearest null will be at n = 1. That is, x = - λ /2 = -1.5 m.

    (c)

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    13/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    13

    2 Normal Incidence at a Dielectric Boundary

    r H

    r E

    r k̂

    iE

    iH ik̂

    zy

    x

    Medium 2 – dielectric medium

    ( )02 =σ 

    Medium 1 – air or dielectric medium

    ( )01 =σ 

     z = 0

    ( )11,μ ε    ( )22 ,μ ε 

    t E

    t H t k̂

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    14/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    14

    Incident, reflected, and transmitted fields:( )   z

    ii   e E  z1-j

    0ˆ   β xE   =   ( )   zi

    i   e E 

     z 1 j-

    1

    0ˆ   β 

    η yH   =

    ( )   zr r    e E  z 1 j

    0ˆ   β xE   =   ( )   zr r    e E  z 1

     j

    1

    0ˆ   β 

    η yH   −=

    ( )   zt t 

      e E  z 2-j

    0

    ˆ   β xE   =  ( )

      zt 

      e E 

     z 2 j-

    2

    0ˆ   β 

    η yH   =

    Medium parameters:

    222111  ,   μ ε ω  β μ ε ω  β    ==

    2

    22

    1

    11  ,

    ε 

    μ η 

    ε 

    μ η    ==

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    15/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    15

    Boundary conditions:

    ( ) ( )00 ||2||1   E  E    =   ( ) ( )00 ||2||1   H  H    =

    000   t r i   E  E  E    =+2

    0

    1

    0

    1

    0

    η η η 

    t r i   E  E  E  =−The boundary conditions lead to:

    Solving for E r 0

    and E t 0

    ,

    0

    12

    120   ir    E  E 

    η η 

    η η 

    +−

    =0

    12

    20

    2it    E  E 

    η η 

    η 

    +=

    ( ) ( ) ( ) ( ) ( )00 ,000 0||200||1   t r i   E  E  E  E  E    =+=

    ( )  ( ) ( )

    ( )  ( )

    2

    0||2

    1

    0

    1

    0||1

    00 ,

    000

    η η η 

    t r i   E  H  E  E 

     H    =−=

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    16/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    16

    Define:

    τ Γ    =+1 Note:

    1≤Γ  

    12

    12

    0

    0 t,coefficienReflectionη η 

    η η Γ  

    +−

    ==

    i

     E 

     E 

    12

    2

    0

    0 2 t,coefficienonTransmissiη η 

    η τ 

    +==

    i

     E 

     E 

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    17/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    17

    Transmitted

    Reflected

    Incident

    Using Γ  and τ , the field expressions in the media can beexpressed in terms of the incident field amplitude E i0:

    ( )   zii   e E  z

    1-j

    0ˆ   β xE   =   ( )

      zii   e

     E  z 1 j-

    1

    0ˆ   β 

    η yH   =

    ( )   zir    e E  z 1 j0ˆ   β Γ= xE   ( )   zir    e E  z1 j

    1

    0ˆ   β η Γ−=

    yH

    ( )  z

    it    e E  z2-j

    0ˆ  β 

    τ xE   =   ( )  zi

    t    e

     E 

     z2 j-

    2

    0

    ˆ

      β 

    η 

    τ 

    yH   =

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    18/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    18

    Reflected power density, S r 

    ( ) ( ){ }   ( )

    2

    20*

    1

    2

    2 0

    1

    2

    1 1ˆRe Re2 2

    1

    2

    incident power density

    ir r 

    i

     E  z z

     E 

    η 

    η 

    ⎧ ⎫⎪ ⎪= × = − Γ⎨ ⎬⎪ ⎪⎩ ⎭

    = Γ

    = Γ ×

    E H z

    reflected powerof fractiondensity powerincident

    density powerreflected2==Γ

    Power Density Relationship

    density powerincident2

    1

    1

    2

    0 =η 

    i E 

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    19/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    19

    ( ) ( ){ }2

    2 0*

    2

    2

    2 01

    2 1

    2 1

    2

    1 1ˆRe Re

    2 2

    1

    2

    incident power density

    i

    t t 

    i

     E  z z

     E 

    τ η 

    η τ 

    η η 

    η τ 

    η 

    ⎧ ⎫⎪ ⎪= × =   ⎨ ⎬

    ⎪ ⎪⎩ ⎭

    =

    = ×

    E H z

    smitted power tranof fractiondensity powerincident

    density powerdtransmitte

    2

    12 ==η 

    η τ 

    Transmitted power density, S t 

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    20/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    20

    Since the media are lossless,

    Fraction of reflected power + Fraction of transmitted power = 1

    That is,

    12

    122 =+η 

    η τ Γ  

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    21/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    21

    ( ) ( ){ }

    ( ) ( ) ( ) ( )

    { }( ) ( ){ }   ( ) ( ){ }

    ( )

    *

    1 1

    * *

    * *

    2 2

    20 0

    1 1

    2

    2 1

    2

    1Re

    2

    1Re

    21 1

    Re Re2 2

    2 2

    1 incident power density

    transmitted power density

    incident power density

    i r i r  

    i i r r  

    i i

     z z

     z z z z

     z z z z

     E E η η 

    η τ 

    η 

    = ×

    ⎡ ⎤⎡ ⎤= + × +⎣ ⎦   ⎣ ⎦

    = × + ×

    = − Γ

    = − Γ ×

    =

    = ×

    E H

    E E H H

    E H E H

    Total average power density in medium 1, S 1

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    22/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    22

    Total electric field in medium 1:( ) ( ) ( )

    ( )( )   ( )[ ]( ) ( )[ ]

    ( )[ ] z je E 

     z je E 

    eee E 

    ee E 

    e E e E  z z z

     zi

     z

    i

     z z z

    i

     z z

    i

     z

     z

    ir i

    1 j-0

    1

     j-

    0

     j- j j-

    0

     j j-

    0

     j

    0

    -j

    01

    sin2ˆ 

    sin21ˆ 

    1ˆ 

    ˆ 

    ˆˆ

    1

    1

    111

    11

    11

     β Γ  τ 

     β Γ  Γ  

    Γ  Γ  

    Γ  

     β 

     β 

     β  β  β 

     β  β 

     β  β 

    +=

    ++=

    −++=

    +=

    +=+=

    x

    x

    x

    x

    xxEEE

    travelling wave

    (amplitude: )0i E τ 

    standing wave(amplitude: )

    02 i E Γ  

    The total electric field in medium 1 has local maximum and

    minimum values but does not go to zero at any location.

    |E1|

     z

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    23/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    23

    See animation “Standing Wave (with Different Reflection

    Coefficients)” to show the making of a general standing wave from

    two traveling waves with different amplitudes (A1 and A2) moving

    in opposite directions.

    ( )

    tcoefficienreflectionA2/A1/

    2Aˆ1Aˆ 

    ˆˆwaveresultantTotal

    00

     j j-

     j

    0

    -j

    01

    11

    11

    ===Γ

    +=

    +==

    ir 

     z z

     z

     z

    i

     E  E 

    ee

    e E e E  z

     β  β 

     β  β 

    xx

    xxE

     Note that inside the website you can change the ratio of A2/A1 (i.e.,

    the reflection coefficient) to investigate the effect on the resultant

    standing wave.

    Computer Animation of a Standing Wave

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    24/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    24

    Total magnetic field in medium 1:( ) ( ) ( )

    ( )( )   ( )[ ]

    ( )[ ] ze E 

    eee E 

    ee

     E 

     z z z

     zi

     z z zi

     z zi

    r i

    1

     j-

    1

    0

     j- j j-

    1

    0

     j j-

    1

    0

    1

    cos2ˆ 

    1ˆ 

    ˆ 

    1

    111

    11

     β Γ  τ η 

    Γ  Γ  η 

    Γ  η 

     β 

     β  β  β 

     β  β 

    −=

    +−+=

    −=

    +=

    y

    y

    y

    HHH

     Note: The total fields in medium 2 are the transmitted

    waves and they are pure travelling waves.

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    25/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    25

    Maxima and minima of EM fields:( )   )( )   ( )

    ( )[ ]θ  β  β  β θ  β 

     β  β 

    −Γ+=

    Γ+=

    Γ+=

    '2 j-' j

    0

    ' j2- j' j

    01

     j2-j

    01

    11

    11

    11

    1ˆ 

    1ˆ'

     z z

    i

     z z

    i

     z z

    i

    ee E 

    eee E  z

    ee E  z

    x

    xE

    xE

    ( )   ( )

    ( )   ( )

    ( )[ ]θ  β  β 

     β θ  β 

     β  β 

    η 

    η 

    η 

    −Γ−=

    Γ−=

    Γ−=

    ' j2-

    1

    ' j

    0

    ' j2- j

    1

    ' j

    01

     j2

    1

    -j

    0

    1

    1

    1

    1

    1

    1

    1

    1ˆ 

    1ˆ'

     z z

    i

     z z

    i

     z z

    i

    ee E 

    eee E 

     z

    e

    e E 

     z

    y

    yH

    yH

     

    θ 

    Γ  Γ  

      j

    e= z z   −='

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    26/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    26

    ( )  ( )θ  β    −

    Γ+='2-j

    01 11'  z

    i   e E  zE

    ( )   ( )θ  β 

    η 

    −Γ−= ' j2-

    1

    0

    111'   z

    ie

     E  zH

    E1 achieves a maximum at z’ M when such that:

    ( )   Γ  += 101   i M    E '  zE

    That is, when:

    ,2,1,0 ,2'2 1   ==−   nn z  M    π θ  β 

    ( )1

    '2-j 1 =−θ  β   M  ze

    magnitude

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    27/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    27

    real. bothareandlossless,aremediatheIf  21   η η 

    2 12 1

    2 12 1

    0, when

    0, when

    η η η η 

    η η η η 

    > >⎧−Γ =   ⎨

    < ⎧Γ = Γ   ⎨

    = <⎩

    Therefore,

    ( )1 2 1

    1 2 1

    2 ' 2 , when2 ' 2 1 , when

     M 

     M 

     z n z n

     β π η η  β π η η 

    = >⎧⎨ = +

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    28/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    28

    E1 achieves a minimum at z’m when such that:

    ( )   Γ  −= 101   im   E '  zE

    Using the same analysis as for the maximum position,

    ( )1 2 11 2 1

    2 ' 2 1 , when

    2 ' 2 , whenm

    m

     z n

     z n

     β π η η 

     β π η η 

    ⎧   = + >⎨ =

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    29/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    29

    Table for positions of the maxima and

    minima of the EM field in medium 1

    |E1

    |max

    |E1|min

    ( )( )Γ  

    Γ  

    −=

    +=

    1 :that Note

    0min1

    0max1

    i

    i

     E 

     E 

    E

    E

     z’m z’ M  z’

    0

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    30/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    30

    The ratio of |E1|max to |E1|min is called the standing waveratio S :

    Γ  Γ  

    −+== 11

    min1

    max1

    EES 

    1

    1

    +−=

    S Γ  

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    31/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    31

    Example 2

    A beam of yellow light with a wavelength of 0.6 μm isnormally incident from air ( z > 0) on to a glass ( z < 0) . If

    the glass surface is at the plane  z = 0 and the relative

     permittivity of glass is 2.25, determine:

    (a) the locations of the electric field maxima in medium

    1 (air),(b) the fraction of the incident power transmitted into

    the glass medium.

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    32/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    32

    Solutions

    (a) We determine the medium parameters,

    ( )

    ( )

    8.012080

    1602

    2.012080

    12080

    Ω80

    25.2

    120~1

    Ω 120

    ~

    12

    2

    12

    12

    0

    0

    2

    22

    0

    0

    1

    1

    1

    =+

    =+

    =

    −=+−

    =+−

    =

    =−==

    −==

    π π 

    π 

    η η 

    η τ 

    π π 

    π π 

    η η 

    η η Γ  

    π π 

    ε ε 

    μ 

    ε 

    μ η 

    π ε 

    μ 

    ε 

    μ 

    η 

  • 8/17/2019 Plane Wave Reflection and Transmission (1)

    33/33

    Hon Tat Hui Plane Wave Reflection and Transmission

     NUS/ECE EE2011

    33

    Electric-field magnitude is a maximum at (with Γ  < 0):

    ( )

    m6.0with

    ,...2,1,0 24

    '

    1

    11

    μ λ 

    λ λ 

    =

    =+=   nn z  M 

    (b) The fraction of the incident power transmitted into

    the glass medium is

    ( ) 96%or96.02.011ely,Alternativ

    96.080

    1208.0

    2/

    2

    22

    2

    2

    12

    1

    2

    0

    2

    2

    02

    2

    2

    =−=−=

    ===⎥⎥

    ⎢⎢

    ⎡=

    Γ  

    η 

    η τ 

    η η τ 

    avi

    av

    ii

    avi

    av

    P

    P

     E  E 

    P

    P

    1 : Note avavi   PP   ≠