Pile Reaction and Pile Cap (4PG) - P142

119
1.0 Introduction 2.0 Design of Pier cap 2.1 Material and permissible stresses Concrete - M 60 ( For pier) Concrete - M40 ( For pile and pile cap) HYSD - Fe 500 Concrete in bending compression - 20.0 Mpa IRC 21: 2000 clause 303.1 Steel in bending tension - 240 M pa IRC 21 : 2000 clause 303.2. Steel in bending compression - 205 M Pa IRC 21 : 2000 clause 303.2. Over stressing factor Seismic - - 1.5 Wind - - 1.33 IRC 6 : 2000 Table 1 Constuction with 50 % seismic - 1.5 Construction with wind - 1.33 2.2 Details of carriageway and levels Type of superstructure = Simply supported with Fixed and Free bearing Span c/c of pier(anik Side) = 35 m Span c/c of pier(Museum Sise) = 26 m Formation width = 17.2 m Radious of curvature = 760 m FRL = 39.907 m GL = 28.32 m Pile cap Top = 27.82 m Length (GL to top of socket) = 12.47 m Top of Socket = 15.85 m Wearing coat thickness = 0.09 m Depth of superstructure = 2.5 m c.g. of superstructure from so = 1.495 m Height of pedestal + bearing = 0.5 m Impact factor Effetcive span( anik side) = 33.5 Effetcive span( museum side) = 24.5 For span 33.5 For span 24.5 For Class A = 1.114 = 1.148 For Class 70R = 1.114 = 1.148 2.3 Vertical forces 4 1.5 2 2.55 1.25 1.5 5 ( All dimension in mtr ) This design note presents the revised design of piles for EJ pier at locati elevated road from Museum to Anik junction The pier supports 20.60m museum spa side. The centre to centre distance between bearing in longitudinal as well as direction is as shown in the sketch m. All spans are simply supported with continu for live load only. All pier are expansion joint pier A B D C LONG anik side

description

design sheet for pile cap

Transcript of Pile Reaction and Pile Cap (4PG) - P142

Page 1: Pile Reaction and Pile Cap (4PG) - P142

1.0 Introduction

2.0 Design of Pier cap

2.1 Material and permissible stresses

Concrete - M 60 ( For pier)

Concrete - M40 ( For pile and pile cap)

HYSD - Fe 500

Concrete in bending compression - 20.0 Mpa IRC 21: 2000 clause 303.1

Steel in bending tension - 240 M pa IRC 21 : 2000 clause 303.2.1

Steel in bending compression - 205 M Pa IRC 21 : 2000 clause 303.2.1

Over stressing factor

Seismic - - 1.5Wind - - 1.33 IRC 6 : 2000 Table 1Constuction with 50 % seismic - 1.5Construction with wind - 1.33

2.2 Details of carriageway and levelsType of superstructure = Simply supported with Fixed and Free bearingSpan c/c of pier(anik Side) = 35 mSpan c/c of pier(Museum Sise) = 26 mFormation width = 17.2 mRadious of curvature = 760 mFRL = 39.907 mGL = 28.32 mPile cap Top = 27.82 mLength (GL to top of socket) = 12.47 mTop of Socket = 15.85 mWearing coat thickness = 0.09 mDepth of superstructure = 2.5 mc.g. of superstructure from soffit = 1.495 mHeight of pedestal + bearing = 0.5 m

Impact factorEffetcive span( anik side) = 33.5Effetcive span( museum side) = 24.5

For span 33.5 For span 24.5For Class A = 1.114 = 1.148For Class 70R = 1.114 = 1.148

2.3 Vertical forces

4

1.5 22.55

1.25

5 ( All dimension in mtr )

This design note presents the revised design of piles for EJ pier at location P 142 of the elevated road from Museum to Anik junction The pier supports 20.60m museum span and 22 m anik side. The centre to centre distance between bearing in longitudinal as well as in transverse direction is as shown in the sketch m. All spans are simply supported with continuity in deck slab for live load only. All pier are expansion joint pier

A B

D C

LONG

anik side

Page 2: Pile Reaction and Pile Cap (4PG) - P142

EJ Pier

EJ

26 26

P141 P142 P143

Free EJ pier Free

a) Self weight

Cross sectional area of the box girder is worked out as =

DL reaction = 9.15 x 35 x(Museum Side) 2

= 4668 kN ( Increased by 10 % for web thickening)

DL reaction = 9.15 x 26 x(Anik Side) 2

= 3467 kN ( Increased by 10 % for web thickening)

Weight of diaphragm = 275 kN ( Assumed )

b) Super imposed loadi) Wearing coat = 0.09 m thick

Carriageway width = 15.1 mDensity of WC = 23 kN/m3UDL = 31.26 kN/m

ii) Crash barrier c/s A = 0.40 m2Weight of barrier = 10.00 kN/m per side

iii) Service through = 1.00 kN/m per crash barriercrash barrier

iv) Median = 0.40 x 2.00 x= 20.00 kN/m

v) Additional overlay = 1.1 kN/m2= 2 x 7.55 x 1.1= 16.61 kN/m

Total SIDL = 89.87 kN/msay = 90 kN/m

SIDL reaction = 90.00 x 35(Museum Side) 2

= 1575 kN

SIDL reaction = 90.00 x 26(Anik Side) 2

= 1170 kN

LONG

muzeum side anik side

museum side

A B

C D

Page 3: Pile Reaction and Pile Cap (4PG) - P142

c) Live load reaction

The structure is analysed for 1,2,3 and 4 lane of class A, 1 and 2 lane of Class 70R and overload as given in tender document. The analysis is done in STAAD Pro and the output is tabulated as given below.

For Maximum Longitudinal MomentType of Live load Reaction Ra + Rb Reaction Rc + Rd Total Reaction (kN)

IRC class A 413 0 413IRC class 2A 826 0 826IRC class 3A 1239 0 1239IRC class 4A 1652 0 1652

IRC class 70R 867 0 867IRC class 2 70R 1734 0 1734Over load 1 lane 749 0 749

All reactions are in kNs and distances in mtr

Case 1: Live load placed at extreme edge from central axis

Case 2: Live load placed at central axis

6.85 Class A one lane in case 1

Total LL413

Total LL0

4Ra Rb

1.9 Class A one lane in case 2

Total LL413

Total LL0

4Ra Rb

5.10 Class A two lane in case 1

Total LL826

Total LL0

4Ra Rb

3.65 Class A two lane in case 2

Total LL826

Total LL0

Page 4: Pile Reaction and Pile Cap (4PG) - P142

4Ra Rb

5.10 3.65 Class A four lane in case 1 and case 2

Total LL1652

Total LL0

4Ra Rb

5.555

Class 70R one lane in case 1

Total LL867

Total LL0

4Ra Rb

3.195

Class 70R one lane in case 2

Total LL867

Total LL0

4Ra Rb

5.555 3.195 Class 70R two lane in case 1 and case 2

Total LL1734

Total LL0

4Ra Rb

Page 5: Pile Reaction and Pile Cap (4PG) - P142

one lan eover load is special load(i.e. traffic load)2.3

One lane over load in case 2

Total LL749

Total LL0

4Ra Rb

2.35.1

Total LL1575Total LL0

4Ra Rb

2.35.555

Total LL1616Total LL0

4Ra Rb

6.45

One lane over load in case 1

Total LL749

Total LL0

Ra 4 Rb

6.453.2

2.55

4Ra Rb

5.83.2

1.9

One lane over load ( in case 2 )+ 2 Lane Class A (in case 1)

One lane over load ( in case 2 )+ Class 70R (in case 1)

class 70RA

class A

over load

class 70RA

class A

over load

class 2A

over load

class 70R

over load

Page 6: Pile Reaction and Pile Cap (4PG) - P142

4Ra Rb

6.453.65

2.55

4Ra Rb

5.62

(Special load + One lane Class A)

Total LL0

Total LL0

RaRa Rb

Assume extreme edge is the special loadThe centroidal distance from C.G. of the loading of special vehicle to the C.G.of the class A loading =2.13M

Summary of Live load reactions on bearing are as sumarised below.

Sr. No. Type of Live load Ra Rb Rc Rd1 IRC class A 914 -501 0 02 IRC class 2A 1466 -640 0 03 IRC class 4A 1125 527 0 04 IRC class 70R 1638 -771 0 0

5 IRC class 2 70R 1379 355 0 0

6 IRC class 70R + Class A 1648 -368 0 0

7 IRC class 70R + Class 2A 1297 396 0 08 Over load 1 lane -56 805 0 09 (Over load) + (2 lane class A) 1410 165 1410 -141010 Over load + 1 lane class 70R 1581 35 0 011 Over load only -833 1582 0 0

11 277 1711 0 0

12237 1792 0 0

13426 1603 0 0

Unit : kNFor Pier cap design, Sr.No. 6 will govern while for pier design, Sr.No. 5 will govern

For Maximum Transverse Moment

Type of Live load Reaction Ra + Rb Reaction Rc + Rd Total Reaction (kN)

(Over load + 1 lane class A) +(Two lane Class A)

(Over load + 1 lane class A) +(One lane of 70R) in case 1

(Over load + 1 lane class A) +(One lane of 70R) in case 2

class 2AA class A

over load

specialA class A

A

Page 7: Pile Reaction and Pile Cap (4PG) - P142

IRC class A 194 300 494IRC class 2A 388 600 988IRC class 3A 582 900 1482IRC class 4A 776 1200 1976

IRC class 70R 444 471 915IRC class 2 70R 888 942 1830Over load 1 lane 634 530 1164

All reactions are in kNs and distances in mtr

Case 1: Live load placed at extreme edge from central axis

Case 2: Live load placed at central axis

6.85 Class A one lane in case 1

Page 8: Pile Reaction and Pile Cap (4PG) - P142

Total LL194

Total LL300

4Ra Rb

1.9 Class A one lane in case 2

Total LL194

Total LL300

4Ra Rb

5.10 Class A two lane in case 1

Total LL388

Total LL600

4Ra Rb

3.65 Class A two lane in case 2

Total LL388

Total LL600

4Ra Rb

5.10 3.65 Class A four lane in case 1

Total LL776

Total LL1200

4Ra Rb

5.555

Class 70R one lane in case 1

Total LL444

Total LL471

4Ra Rb

Page 9: Pile Reaction and Pile Cap (4PG) - P142

3.195

Class 70R one lane in case 2

Total LL444

Total LL471

4Ra Rb

5.555 3.195 Class 70R two lane in case 1 and case 2

Total LL888

Total LL942

4Ra Rb

Page 10: Pile Reaction and Pile Cap (4PG) - P142

0.6+0.4+1.8/2

2.3

One lane over load in case 2

Total LL634

Total LL530

4Ra Rb

2.35.1

Total LL1022Total LL1130

4Ra Rb

2.35.555

Total LL1078Total LL1001

4Ra Rb

6.45

4Ra Rb

6.453.195

2.55

4Ra Rb

5.83.2

1.9

One lane over load ( in case 2 )+ 2 Lane Class A (in case 1)

One lane over load ( in case 2 )+ Class 70R (in case 1)

class 70RA

class A

over load

class 70RA

class A

over load

class 2A

over load

class 70R

over load

Page 11: Pile Reaction and Pile Cap (4PG) - P142

4Ra Rb

6.453.65

2.55

4Ra Rb

5.62 6.45

2.55 (Special load + One lane Class A)Total LL

828Total LL

830

4Ra Rb

The centroidal distance from C.G. of the loading of special vehicle to the C.G.of the class A loading =2.13Summary of Live load reactions on bearing are as sumarised below.

Sr. No. Type of Live load Ra Rb

1 IRC class A 429 -2352 IRC class 2A 689 -3013 IRC class 4A 529 2474 IRC class 70R 839 -3955 IRC class 2 70R 706 1826 IRC class 70R + Class A 843 -2057 IRC class 70R + Class 2A 679 1538 Over load 1 lane -48 6829 Over load + 2 lane class A 641 38110 Over load + 1 lane class 70R 791 28711 Over load 1 lane -705 133912 (Over load + 1 lane class A) -732 156013

-155 1427

14 -20 1292

15 -184 1400

For Pier cap design,and for pier design, Sr.No. 12 will govern

Summary of load on pier cap

Sr.No. Load combination A B1 OSD without LL+0.5 L Seismic 3259 32592 OSD without LL+0.5 T Seismic 3259 32593 OSD with one lane class A 4173 27584 OSD with two lane class A 4183 3161

(Over load + 1 lane class A) +(One lane of 70R) in case 1

(Over load + 1 lane class A) +(One lane of 70R) in case 2

(Over load + 1 lane class A) +(Two lane Class A)

class 2AA class A

over load

Page 12: Pile Reaction and Pile Cap (4PG) - P142

5 DL + SIDL = COMB 1 3259 3259

6 3496 5051

7 2527 48198 COMB 2 + WIND ( 100 % TRANS ) 3496 50519 COMB 3 + WIND ( 100 % TRANS ) 2527 481910 COMB 2 + WIND ( 65 %T - 35 % L ) 3496 505111 COMB 3 + WIND ( 65 %T - 35 % L ) 2527 481912 COMB 1 + Wind ( 100 % TRANS ) 3259 325913 COMB 1 + Wind ( 65% T - 35 % L) 3259 325914 COMB 1 +0.5 LL ( For Max ML) + L Seismic 3377 415515 COMB 1 +0.5 LL ( For Max MT) + L Seismic 2893 403916 COMB 1 +0.5 LL ( For Max ML) + T Seismic 3377 415517 COMB 1 +0.5 LL ( For Max MT) + T Seismic 2893 403918 COMB 1 +4CLASSA + CF = COMB4 3787 350619 COMB4 (50% seismic)+ T SEI 3523 338220 COMB4 + 100 % WIND ( Tran) 3787 3506

Unit : kN

Check for stability

Reaction due to DL + SIDL = 3259 kNMax. tensile reaction due to LL = 771 kN (at bearing A)Factor of Safety = 4.23 > 2 hence, ok.

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 13: Pile Reaction and Pile Cap (4PG) - P142

Size req. for pedestal

Grade of Concrete = M 60= 15 Mpa

= A1 Cl-307.1, IRC-21-2000A2

where A1 > 2A2

= 2 X 15

= 30 Mpa

Max. Vertical Load on Pedstal = 5051 kNDia. Of Pedstal req. = 763 mmDia. Of Pedstal Provided = 800 mm

2.4 The cap is designed as Corbel as per procedure given in Concrete Bridge Design by V.K. Raina

X

A

Y

C

X

Self weight of the cap

Calculating the weight of the cap assuming linear variation

V = ( A1 + A2 + SQRT ( A1 A2 ) H /3

A1 = 1.5 x 2 = 3 m2

A2 = 5 x 2.55 = 12.75 m2

H = 2.31 m

V = 16.89 m3

W = 439.1 kN

Permisible sco

scc sco X

scc

AS

aVu

Ah

Av

S

d'h

Page 14: Pile Reaction and Pile Cap (4PG) - P142

IRC 21: 2000 clause 303.1

IRC 21 : 2000 clause 303.2.1

IRC 21 : 2000 clause 303.2.1

2.31

1.5

This design note presents the revised design of piles for EJ pier at location P 142 of the elevated road from Museum to Anik junction The pier supports 20.60m museum span and 22 m anik side. The centre to centre distance between bearing in longitudinal as well as in transverse direction is as shown in the sketch m. All spans are simply supported with continuity in

Page 15: Pile Reaction and Pile Cap (4PG) - P142

9.15 m2

26.5 x 1.12

( Increased by 10 % for web thickening)

26.5 x 1.12

( Increased by 10 % for web thickening)

25.00

Page 16: Pile Reaction and Pile Cap (4PG) - P142

The structure is analysed for 1,2,3 and 4 lane of class A, 1 and 2 lane of Class 70R and

Total Reaction (kN) L / C413 32082612391652867 7331734749 1106

Class A one lane in case 1

Total LL Ra Rb413 914 -501

Total LL Rc Rd0 0 0

Class A one lane in case 2

Total LL Ra Rb413 10 403

Total LL Rc Rd0 0 0

Class A two lane in case 1

Total LL Ra Rb826 1466 -640

Total LL Rc Rd0 0 0

Class A two lane in case 2

Total LL Ra Rb826 -341 1167

Total LL Rc Rd0 0 0

Page 17: Pile Reaction and Pile Cap (4PG) - P142

Class A four lane in case 1 and case 2

Total LL Ra Rb1652 1125 527

Total LL Rc Rd0 0 0

Class 70R one lane in case 1

Total LL Ra Rb867 1638 -771

Total LL Rc Rd0 0 0

Class 70R one lane in case 2

Total LL Ra Rb867 -259 1126

Total LL Rc Rd0 0 0

Class 70R two lane in case 1 and case 2

Total LL Ra Rb1734 1379 355

Total LL Rc Rd0 0 0

Page 18: Pile Reaction and Pile Cap (4PG) - P142

one lan eover load is special load(i.e. traffic load)

One lane over load in case 2

Total LL Ra Rb749 -56 805

Total LL Rc Rd0 0 0

Ra Rb1410 165

Rc Rd1410 -1410

Ra Rb1581 35

Rc Rd0 0

One lane over load in case 1

Ra Rb-833 1582

Rc Rd0 0

One lane over load + Class A + Class 70R in case 1Total LL Ra Rb

2029 237 1792Total LL Rc Rd

0 0 0

One lane over load + Class A + Class 70R in case 2Total LL Ra Rb

One lane over load ( in case 2 )+ 2 Lane Class A (in case 1)

One lane over load ( in case 2 )+ Class 70R (in case 1)

Page 19: Pile Reaction and Pile Cap (4PG) - P142

2029 426 1603Total LL Rc Rd

0 0 0

One lane over load + Class A + Class 2ATotal LL Ra Rb

1988 277 1711Total LL Rc Rd

0 0 0

(Special load + One lane Class A)

Total LL Ra Rb0 #VALUE! #VALUE!

Total LL Rc Rd0 #VALUE! #VALUE!

The centroidal distance from C.G. of the loading of special vehicle to the C.G.of the class A loading =2.13M

ML SUM OF REACTIONS

310 413

620 826

1239 1652

650 867

1301 1734

960 1280

1270 1693

562 749

1181 1575

1212 1616

562 749

1491 1988

1522 2029

1522 2029

Total Reaction (kN) L / C

Page 20: Pile Reaction and Pile Cap (4PG) - P142

494 14498814821976915 58218301164 1191

Class A one lane in case 1

Page 21: Pile Reaction and Pile Cap (4PG) - P142

Total LL Ra Rb194 429 -235

Total LL Rc Rd300 664 -364

Class A one lane in case 2

Total LL Ra Rb194 5 189

Total LL Rc Rd300 5 293

Class A two lane in case 1

Total LL Ra Rb388 689 -301

Total LL Rc Rd600 1065 -465

Class A two lane in case 2

Total LL Ra Rb388 -160 548

Total LL Rc Rd600 -248 848

Class A four lane in case 1

Total LL Ra Rb776 529 247

Total LL Rc Rd1200 818 382

Class 70R one lane in case 1

Total LL Ra Rb444 839 -395

Total LL Rc Rd471 890 -419

Page 22: Pile Reaction and Pile Cap (4PG) - P142

Class 70R one lane in case 2

Total LL Ra Rb444 577 -133

Total LL Rc Rd471 612 -141

Class 70R two lane in case 1 and case 2

Total LL Ra Rb888 706 182

Total LL Rc Rd942 749 193

Page 23: Pile Reaction and Pile Cap (4PG) - P142

0.6+0.4+1.8/2

One lane over load in case 2

Total LL Ra Rb634 -48 682

Total LL Rc Rd530 -40 570

Ra Rb641 381Rc Rd

1025 105

Ra Rb791 287Rc Rd

850 151

One lane over load in case 1Total LL Ra Rb

634 -705 1339Total LL Rc Rd

530 -590 1120

One lane over load + Class A + Class 70RTotal LL Ra Rb

1272 -155 1427Total LL Rc Rd

1301 -182 1483

One lane over load + Class A + Class 70R in case 2Total LL Ra Rb

1272 -20 1292Total LL Rc Rd

One lane over load ( in case 2 )+ 2 Lane Class A (in case 1)

One lane over load ( in case 2 )+ Class 70R (in case 1)

Page 24: Pile Reaction and Pile Cap (4PG) - P142

1301 116 1185

One lane over load + Class A + Class 2ATotal LL Ra Rb

1216 -184 1400Total LL Rc Rd

1430 217 1213

(Special load + One lane Class A)Total LL Ra Rb

828 -732 1560Total LL Rc Rd

830 -631 1461

The centroidal distance from C.G. of the loading of special vehicle to the C.G.of the class A loading =2.13

Rc Rd MT

664 -364 3383.91065 -465 5038.8818 382 1432.6890 -419 5083749 193 2159.4894 -126 4139642 429 1477-40 570 2677.2

1025 105 2361.6850 151 2406-590 1120 7507.8-631 1461 8768

-182 1483 6497

116 1185 4761.8

217 1213 5161.3

C D0 00 00 00 0

Page 25: Pile Reaction and Pile Cap (4PG) - P142

2456 2456

2456 2456

1825 39172456 24561825 39172456 24561825 39172456 24562456 24562456 24562141 31872456 24562141 31873274 28392865 26473274 2839

Page 26: Pile Reaction and Pile Cap (4PG) - P142

The cap is designed as Corbel as per procedure given in Concrete Bridge Design by V.K. Raina

Long

B

Y

D

Page 27: Pile Reaction and Pile Cap (4PG) - P142

3.0 Design of pier

3.1 Vertical forcesThe details of vertical forces at the bottom of pier cap are as tabulated below.

Sr.No. Load combination A B C1 OSD without LL + 50% L Sei 3259 3259 02 OSD without LL + 50% T Sei 3259 3259 03 OSD with one lane class A 4173 2758 04 OSD with two lane class A 4183 3161 05 DL + SIDL = COMB 1 3259 3259 24566 3496 5051 24567 2527 4819 18258 COMB 2 + WIND ( 100 % TRANS ) 3496 5051 24569 COMB 3 + WIND ( 100 % TRANS ) 2527 4819 1825

10 COMB 2 + WIND ( 65 %T - 35 % L ) 3496 5051 245611 COMB 3 + WIND ( 65 %T - 35 % L ) 2527 4819 182512 COMB 1 + Wind ( 100 % TRANS ) 3259 3259 245613 COMB 1 + Wind ( 65% T - 35 % L) 3259 3259 245614 COMB 1 +0.5 LL ( Max ML) + L Seismic 3377 4155 245615 COMB 1 +0.5 LL ( Max MT) + L Seismic 2893 4039 214116 COMB 1 +0.5 LL (Max ML) + T Seismic 3377 4155 245617 COMB 1 +0.5 LL ( Max MT) + T Seismic 2893 4039 214118 COMB 1 +4CLASSA + CF = COMB4 3787 3506 327419 COMB4 + T SEI 3523 3382 286520 COMB4 + 100 % WIND ( Tran) 3787 3506 3274

3.2 Horizontal forcesSince the pier supports superstructure with expansion joints, all bearings are free in longitudinal direction while one bearing from each slab is fixed in trenaverse direction.

a) Loads due to frictionHorizontal load due to friction free pier = Clause 214.5.2 IRC 6 : 2000

= 0.05= 0.03

Lever arm for these force = 9.497 mHorizontal loads due to friction in PTFE bearings will be as follows

Sr.No. Load combination Fh long1 OSD without LL + 50% L Sei 3262 OSD without LL + 50% T Sei 3263 OSD with one lane class A 3474 OSD with two lane class A 3675 DL + SIDL = COMB 1 1796 2807 1958 COMB 2 + WIND ( 100 % TRANS ) 2809 COMB 3 + WIND ( 100 % TRANS ) 195

10 COMB 2 + WIND ( 65 %T - 35 % L ) 28011 COMB 3 + WIND ( 65 %T - 35 % L ) 19512 COMB 1 + Wind ( 100 % TRANS ) 17913 COMB 1 + Wind ( 65% T - 35 % L) 17914 COMB 1 +0.5 LL ( Max ML) + L Seismic 62215 COMB 1 +0.5 LL ( Max MT) + L Seismic 61316 COMB 1 +0.5 LL (Max ML) + T Seismic 229

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

m Rm m

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

Page 28: Pile Reaction and Pile Cap (4PG) - P142

17 COMB 1 +0.5 LL ( Max MT) + T Seismic 18718 COMB 1 +4CLASSA + CF = COMB4 18119 COMB4 + T SEI 18020 COMB4 + 100 % WIND ( Tran) 181

Unit : KN

b) Wind load

Height of superstructure above GL = 11.587 m

1) For Wind load 100 % in transverse direction

For wind load on loaded structure wind pressure shall be

Wind pressure at this height = 96.08 kg/m2

= 0.960784 kN/m2

Depth of super structure = 2.500 + 1

( Including crash barrier ) = 3.5 mWind load = 3.36 kN/m

Wind load on Live load = 300 kg/m= 3 kN/m

Total wind load = 6.36 kN/m >

Wind force for superstructure

For Live load condition = 3.00 x 30.5= 91.5 kN

Lever Arm = 13.587 m

For Superstructure = 3.36 x 30.5= 102.6 kN= 10.992 m

Wind load for substructure

Exposed area of pier cap = 2.55 + 2 x2

= 5.25525 m2Wind load = 0.960784 x 5.25525

5.05 kNLever arm = 8.23 mArea of pier exposed = 2 x 6.19

= 12.374 m2Wind load = 0.960784 X 12.374

11.89 kNLever Arm = 3.59 m

For wind load on unloaded structure wind pressure shall be

= 240 kg/m2= 2.4 kN/m2

Page 29: Pile Reaction and Pile Cap (4PG) - P142

Wind load on superstructure = 8.40 kN/m >

Wind force for superstructure

For No -Live load condition = 8.40 x 30.5= 256.2 kN

Wind load for substructure

Exposed area of pier cap = 2.55 + 2 x2

= 5.25525 m2Wind load = 2.4 x 5.25525

12.6126 kNLever arm = 8.23 m

Area of pier exposed = 2 x 6.187= 12.374 m2

Wind load = 2.40 X 12.37429.70 kN

Lever Arm = 3.59 m

Sr.No. Load combination Fh trans superstructure Fh trans pier cap

102.6 SUPP1 DL + SIDL + LL + Wind 91.50 LL 5.052 DL + SIDL + Wind 256.20 12.61

Unit : kN

2) For Wind load 65 % in transverse ans 35 % wind in longitudinal direction

Sr.No. Load combination Superstructure Pier cap65 % FT 35 % FL 65 % FT 35 % FL

1 DL + SIDL + LL + Wind66.67 35.9059.48 32.03 3.28 1.77

2 DL + SIDL + Wind 166.53 89.67 8.20 4.41

c) Seismic condition

Calculation of Time period

Calculation of Time period T as per Interim recommendations of IRC-6 2000

T = 2 D1000 F

Where,T = Time periodD = Appropriate Dead and Live load in kNF = Horizontal force to be applied at superstructure mass to

produce 1 mm deflectin at top of pier

Page 30: Pile Reaction and Pile Cap (4PG) - P142

FP L3 Diflection 1.0mm3 E I

pier

GLAh = Z Sa I

2 g R

Soil type NoHard 1

Medium 2Soft 3

For OSD case For Seismic case(in OSD Case 50 % Seismic)F = 31.71 kN F = 31.71 kND = 6518 kN D = 12259 kNT = 0.907 sec T = 1.244 sec

Z = 0.16 Z = 0.16I = 1.5 I = 1.5R = 2.5 R = 2.5

Soil type = 1 Soil type = 1sa/g = 1.103 sa/g = 0.804Ah = 0.026 Ah = 0.039

1) Longitudinal seimic with OSD

a) Forces due to superstructure

Horizontal force == 326 kN

Lever arm of this force = 9.497 m

b) Forces due to substructure

Force due pier cap = 0.026 x= 11.62 kN

Lever arm for this force = 8.23 m

For due to Pier = 0.026 x= 14.07 kN

Lever arm for this force = 3.59 m

d =

m Rx

Page 31: Pile Reaction and Pile Cap (4PG) - P142

2) Transverse seimic with OSD

a) Forces due to superstructure

Horizontal force == 326 kN

Lever arm of this force = 9.497 m

Transverse force = 0.026 x 6518= 172.51 kN

Lever arm of this force = 10.992 m

b) Forces due to substructure

Force due pier cap = 0.026 x= 11.62 kN

Lever arm for this force = 8.23 m

For due to Pier = 0.026 x= 14.07 kN

Lever arm for this force = 3.59 m

3) Longitudinal Seismic

a) Forces due to superstructure

Longitudinal force =

Max ML case = 622 kN

LA of this force = 9.50 m

b) Forces due to substructure

Force due to pier cap = 0.0386 x 439.132= 16.95 kN= 8.23 m

For due to Pier = 0.039 x 532= 20.52 kN

Lever arm for this force = 3.59 m

m Rx

m Rx

Page 32: Pile Reaction and Pile Cap (4PG) - P142

4) Transverse seismic

a) Forces due to superstructure

Longitudinal force =

Longitudinal force = 613 kNLA of this force = 9.50 m

Transverse force due to max ML = 0.039 x 11430(DL+SIDL) = 441.19 kN

LA of this force (LL) = 10.99 mFor due to LL = 0.039 x 1015

= 39.16 kN

LA of this force (LL) = 10.99 m

Transverse force due to max MT = 0.039 x 11430

(DL+SIDL) = 441.19 kNLA of this force = 10.99 m

For due to LL = 0.039 x 829= 32.00 kN

LA of this force (LL) = 13.59 m

b) Forces due to substructure

Force due to pier cap = 0.039 x 439= 16.95 kN= 8.23 m

For due to Pier = 0.039 x 532= 20.52 kN

Lever arm for this force = 3.59 m

5) Centrifugal Force

CF = As per IRC-6-2000, Cl-215.2127R

For Max ML Case:-

Max, Live load reaction, W = 1280 kNDesign speed for curved span, V = 100 KmphRediuas of Curveture span, R = 760 m

Centrifugal Force, CF = 1280 x 100127 x 760

m Rx

WV2

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to load other than super load is only calculated.

Page 33: Pile Reaction and Pile Cap (4PG) - P142

Centrifugal Force, CF = 132.62 kNLA for this force = 13.587 m

3.3

For Max MT Case:-

3.3.1Max, Live load reaction, W = 494 kN

Design speed for curved span, V = 100 KmphRediuas of Curveture span, R = 760 m

Centrifugal Force, CF = 494 x 100127 x 760

Centrifugal Force, CF = 51.18 kNLA for this force = 13.587 m

6) Forces due to vertical loadsVertical loadSr.No. Load combination Combination Cap + Pier

1 OSD without LL + 50% L Sei 6518 9712 OSD without LL + 50% T Sei 6518 9713 OSD with one lane class A 6931 9714 OSD with two lane class A 7344 9715 DL + SIDL = COMB 1 11430 9716 13459 9717 13088 9718 COMB 2 + WIND ( 100 % TRANS ) 13459 9719 COMB 3 + WIND ( 100 % TRANS ) 13088 971

10 COMB 2 + WIND ( 65 %T - 35 % L ) 13459 97111 COMB 3 + WIND ( 65 %T - 35 % L ) 13088 97112 COMB 1 + Wind ( 100 % TRANS ) 11430 97113 COMB 1 + Wind ( 65% T - 35 % L) 11430 97114 COMB 1 +0.5 LL ( Max ML) + L Seismic 12445 97115 COMB 1 +0.5 LL ( Max MT) + L Seismic 12259 97116 COMB 1 +0.5 LL (Max ML) + T Seismic 12445 97117 COMB 1 +0.5 LL ( Max MT) + T Seismic 12259 97118 COMB 1 +4CLASSA + CF = COMB4 13406 97119 COMB4 + T SEI 12418 97120 COMB4 + 100 % WIND ( Tran) 13406 971

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to load other than super load is only calculated.

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

Page 34: Pile Reaction and Pile Cap (4PG) - P142

Bending moments in Long direction

Sr.No. Load combination Unbalanced P e Long1 OSD without LL + 50% L Sei 6518 0.752 OSD without LL + 50% T Sei 6518 0.753 OSD with one lane class A 6931 0.754 OSD with two lane class A 7344 0.755 DL + SIDL = COMB 1 1605 0.75

6 3634 0.75

7 1603 0.758 COMB 2 + WIND ( 100 % TRANS ) 3634 0.759 COMB 3 + WIND ( 100 % TRANS ) 1603 0.75

10 COMB 2 + WIND ( 65 %T - 35 % L ) 3634 0.7511 COMB 3 + WIND ( 65 %T - 35 % L ) 1603 0.7512 COMB 1 + Wind ( 100 % TRANS ) 1605 0.7513 COMB 1 + Wind ( 65% T - 35 % L) 1605 0.7514 COMB 1 +0.5 LL ( Max ML) + L Seismic 2620 0.7515 COMB 1 +0.5 LL ( Max MT) + L Seismic 1604 0.7516 COMB 1 +0.5 LL (Max ML) + T Seismic 2620 0.7517 COMB 1 +0.5 LL ( Max MT) + T Seismic 1604 0.7518 COMB 1 +4CLASSA + CF = COMB4 1181 0.7519 COMB4 + T SEI 1393 0.7520 COMB4 + 100 % WIND ( Tran) 1181 0.75

Unit : kN, m, kN-m

Bending moments in Trans direction

Sr.No. Load combination Unbalanced P e Trans1 OSD without LL + 50% L Sei 0 22 OSD without LL + 50% T Sei 0 23 OSD with one lane class A 1415 24 OSD with two lane class A 1022 25 DL + SIDL = COMB 1 0 2

6 1555 2

7 4384 28 COMB 2 + WIND ( 100 % TRANS ) 1555 29 COMB 3 + WIND ( 100 % TRANS ) 4384 2

10 COMB 2 + WIND ( 65 %T - 35 % L ) 1555 211 COMB 3 + WIND ( 65 %T - 35 % L ) 4384 212 COMB 1 + Wind ( 100 % TRANS ) 0 213 COMB 1 + Wind ( 65% T - 35 % L) 0 214 COMB 1 +0.5 LL ( Max ML) + L Seismic 777 215 COMB 1 +0.5 LL ( Max MT) + L Seismic 2192 216 COMB 1 +0.5 LL (Max ML) + T Seismic 777 217 COMB 1 +0.5 LL ( Max MT) + T Seismic 2192 218 COMB 1 +4CLASSA + CF = COMB4 716 219 COMB4 + T SEI 358 220 COMB4 + 100 % WIND ( Tran) 716 2

Unit : kN, m, kN-m

The forces arisng due to horizontal loads are as tabulated as given in next table.

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 35: Pile Reaction and Pile Cap (4PG) - P142

3.3.2 Forces due to horizontal loads

3.3.2.1 Bending moments in Longitudinal direction due to superstructure

Sr.No. Load combination LA1 OSD without LL + 50% L Sei 326 9.4972 OSD without LL + 50% T Sei 326 9.4973 OSD with one lane class A 347 9.4974 OSD with two lane class A 367 9.4975 DL + SIDL = COMB 1 179 9.497

6 280 9.497

7 195 9.4978 COMB 2 + WIND ( 100 % TRANS ) 280 9.4979 COMB 3 + WIND ( 100 % TRANS ) 195 9.497

10 COMB 2 + WIND ( 65 %T - 35 % L ) 280 9.49711 COMB 3 + WIND ( 65 %T - 35 % L ) 195 9.49712 COMB 1 + Wind ( 100 % TRANS ) 179 9.49713 COMB 1 + Wind ( 65% T - 35 % L) 179 9.49714 COMB 1 +0.5 LL ( Max ML) + L Seismic 622 9.49715 COMB 1 +0.5 LL ( Max MT) + L Seismic 613 9.49716 COMB 1 +0.5 LL (Max ML) + T Seismic 229 9.49717 COMB 1 +0.5 LL ( Max MT) + T Seismic 187 9.49718 COMB 1 +4CLASSA + CF = COMB4 181 9.49719 COMB4 + T SEI 180 9.49720 COMB4 + 100 % WIND ( Tran) 181 9.497

Unit : kN, m , kN-m

Bending moments in Transverse direction due to superstructure

Sr.No. Load combination LA1 OSD without LL + 50% L Sei 0 0.0002 OSD without LL + 50% T Sei 173 10.9923 OSD with one lane class A 0 0.0004 OSD with two lane class A 0 0.0005 DL + SIDL = COMB 1 0 0.000

6 0 0.000

7 0 13.5878(1) COMB 2 + WIND ( 100 % TRANS ) 103 SUPP 10.9928(2) COMB 2 + WIND ( 100 % TRANS ) 92 LL 13.5879(1) COMB 3 + WIND ( 100 % TRANS ) 103 SUPP 10.9929(2) COMB 3 + WIND ( 100 % TRANS ) 92 LL 13.587

10(1) COMB 2 + WIND ( 65 %T - 35 % L ) 67 SUPP 10.99210(2) COMB 2 + WIND ( 65 %T - 35 % L ) 59 LL 13.58711(1) COMB 3 + WIND ( 65 %T - 35 % L ) 67 SUPP 10.99211(2) 59 LL 13.587

12 COMB 1 + Wind ( 100 % TRANS ) 256 10.99213 COMB 1 + Wind ( 65% T - 35 % L) 167 10.99214 COMB 1 +0.5 LL ( Max ML) + L Seismic 0 13.28715 COMB 1 +0.5 LL ( Max MT) + L Seismic 0 13.287

16(1) COMB 1 +0.5 LL (Max ML) + T Seismic 441 DL+SIDL 10.99216(2) COMB 1 +0.5 LL (Max ML) + T Seismic 39 (LL) 13.587

FL

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

FT

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 36: Pile Reaction and Pile Cap (4PG) - P142

17(1) COMB 1 +0.5 LL ( Max MT) + T Seismic 441 DL+SIDL 10.99217(2) COMB 1 +0.5 LL ( Max MT) + T Seismic 32 (LL) 13.587

18 COMB 1 +4CLASSA + CF = COMB4 019(1) COMB4 + T SEI (DL+SIDL) 441 DL+SIDL19(2) COMB4 + T SEI (LL) 3920(1) COMB1 + 100 % WIND ( Tran) (DL+SIDL) 10320(2) COMB1 + 100 % WIND ( Tran) (LL) 92

Unit : kN, m , kN-m

Transverse force due to centrifugal force on superstructure

Sr.No. Load combination

6 132.62

7 51.188 COMB 2 + WIND ( 100 % TRANS ) 132.629 COMB 3 + WIND ( 100 % TRANS ) 51.18

10 COMB 2 + WIND ( 65 %T - 35 % L ) 132.6211 COMB 2 + WIND ( 65 %T - 35 % L ) 51.1814 COMB 1 +0.5 LL ( Max ML) + L Seismic 66.3115 COMB 1 +0.5 LL ( Max MT) + L Seismic 25.5916 COMB 1 +0.5 LL (Max ML) + T Seismic 66.3117 COMB 1 +0.5 LL ( Max MT) + T Seismic 25.59

FT

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 37: Pile Reaction and Pile Cap (4PG) - P142

3.3.2.2 Bending moments in Longitudinal direction due to Substructure

Sr.No. Load combination LA1 OSD without LL + 50% L Sei

Pier cap 11.62 8.2Pier 14.07 3.6

2 OSD without LL + 50% T SeiPier cap

Pier 3 OSD with one lane class A

Pier capPier

4 OSD with two lane class APier cap

Pier 5 DL + SIDL = COMB 1

Pier capPier

6Pier cap

Pier 7

Pier capPier

8 COMB 2 + WIND ( 100 % TRANS )Pier cap

Pier 9 COMB 3 + WIND ( 100 % TRANS )

Pier capPier

10 COMB 2 + WIND ( 65 %T - 35 % L )Pier cap 1.77 8.23

Pier 4.16 3.5911 COMB 3 + WIND ( 65 %T - 35 % L )

Pier cap 1.77 8.23Pier 4.16 3.59

12 COMB 1 + Wind ( 100 % TRANS )Pier cap

Pier 13 COMB 1 + Wind ( 65% T - 35 % L)

Pier cap 4.41 8.23Pier 10.39 3.59

14 COMB 1 +0.5 LL ( Max ML) + L Seismic Pier cap 16.95 8.23

Pier 20.52 3.5915 COMB 1 +0.5 LL ( Max MT) + L Seismic

Pier cap 16.95 8.23Pier 20.52 3.59

16 COMB 1 +0.5 LL (Max ML) + T Seismic Pier cap 0.00 8.23

Pier 0.00 3.5917 COMB 1 +0.5 LL ( Max MT) + T Seismic

Pier cap 0.00 8.23Pier 0.00 3.59

3.3.2.3 Bending moments in Transverse direction due to SubstructureSr.No. Load combination LA

1 OSD without LL + 50% L SeiPier cap

FL

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

FT

Page 38: Pile Reaction and Pile Cap (4PG) - P142

Pier 2 OSD without LL + 50% T Sei

Pier cap 11.62 8.23Pier 14.07 3.59

3 OSD with one lane class APier cap

Pier 4 OSD with two lane class A

Pier capPier

5 DL + SIDL = COMB 1Pier cap

Pier 6

Pier capPier

7Pier cap

Pier 8 COMB 2 + WIND ( 100 % TRANS )

Pier cap 5.05 8.23Pier 11.89 3.59

9 COMB 3 + WIND ( 100 % TRANS )Pier cap 5.05 8.23

Pier 11.89 3.5910 COMB 2 + WIND ( 65 %T - 35 % L )

Pier cap 3.28 8.23Pier 8.20 3.59

11 COMB 3 + WIND ( 65 %T - 35 % L )Pier cap 3.28 8.23

Pier 8.20 3.5912 COMB 1 + Wind ( 100 % TRANS )

Pier cap 12.61 8.23Pier 29.70 3.59

13 COMB 1 + Wind ( 65% T - 35 % L)Pier cap 8.20 8.23

Pier 4.41 3.5914 COMB 1 +0.5 LL ( Max ML) + L Seismic

Pier capPier

15 COMB 1 +0.5 LL ( Max MT) + L Seismic Pier cap

Pier 16 COMB 1 +0.5 LL (Max ML) + T Seismic

Pier cap 16.95 8.23Pier 20.52 3.59

17 COMB 1 +0.5 LL ( Max MT) + T Seismic Pier cap 16.95 8.23

Pier 20.52 3.59Unit : kN, m , kN-m

3.4 Design Loads

As per design criteria, an pier impact load is to be added to the design forces as given below.

To these design loads collision loads as given in tender will be added.

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 39: Pile Reaction and Pile Cap (4PG) - P142

Forces in longitudinal direction = 150 x 3.5= 525 kN-m

Forces in transverse direction = 100 x 3.5= 350 kN-m

These forces shall be added to DL+SIDL load case only and overstressing shall be allowed asper load combination V

Sr.No. Load combination P1 OSD without LL + 50% L Sei 7488 81292 OSD without LL + 50% T Sei 7488 79833 OSD with one lane class A 7901 84894 OSD with two lane class A 8314 89955 DL + SIDL = COMB 1 12401 3424

6 14430 5384

7 14059 30548 COMB 2 + WIND ( 100 % TRANS ) 14430 53849 COMB 3 + WIND ( 100 % TRANS ) 14059 3054

10 COMB 2 + WIND ( 65 %T - 35 % L ) 14430 541411 COMB 3 + WIND ( 65 %T - 35 % L ) 14059 308412 COMB 1 + Wind ( 100 % TRANS ) 12401 289913 COMB 1 + Wind ( 65% T - 35 % L) 12401 297314 COMB 1 +0.5 LL ( Max ML) + L Seismic 13415 808715 COMB 1 +0.5 LL ( Max MT) + L Seismic 13230 723816 COMB 1 +0.5 LL (Max ML) + T Seismic 13415 414217 COMB 1 +0.5 LL ( Max MT) + T Seismic 13230 2977

Units : kN, kN-m

3.5 Design of Pier

The design of pier is done by using Bending and Thrust programme,the result of which are attached with this design note

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 40: Pile Reaction and Pile Cap (4PG) - P142

C D0 00 00 00 0

2456 24562456 24561825 39172456 24561825 39172456 24561825 39172456 24562456 24562456 24562141 31872456 24562141 31873274 28392865 26473274 2839

Since the pier supports superstructure with expansion joints, all bearings are free in longitudinal

Clause 214.5.2 IRC 6 : 2000

4173

Page 41: Pile Reaction and Pile Cap (4PG) - P142

Table 4 of IRC 6 : 2000

4.5

30.5

30.5

2.31

Clause 212.6 of IRC 6: 2000

Page 42: Pile Reaction and Pile Cap (4PG) - P142

6.36

30.5

2.31

Fh trans pier cap Fh trans pier

5.05 11.8912.61 29.70

Pier cap Pier35 % FL 65 % FT

1.77 7.73 4.164.41 19.30 10.39

9.761

Clause 212.7 of IRC 6: 2000

35 %

Page 43: Pile Reaction and Pile Cap (4PG) - P142

Centre of super structure

9.497 m 10.99

1.8 m

### m

439.1

531.6

fixity at the socket top

Page 44: Pile Reaction and Pile Cap (4PG) - P142

439

531.6

Clause 214.5 of IRC 6 : 2000

Page 45: Pile Reaction and Pile Cap (4PG) - P142

Clause 214.5 of IRC 6 : 2000

2

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to load other than super load is only calculated.

Page 46: Pile Reaction and Pile Cap (4PG) - P142

2

Cap + Pier Total P971 7488971 7488971 7901971 8314971 12401971 14430971 14059971 14430971 14059971 14430971 14059971 12401971 12401971 13415971 13230971 13415971 13230971 14377971 13389971 14377

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to load other than super load is only calculated.

Page 47: Pile Reaction and Pile Cap (4PG) - P142

e Long0.75 48880.75 48880.75 51980.75 55080.75 1204

0.75 2726

0.75 12020.75 27260.75 12020.75 27260.75 12020.75 12040.75 12040.75 19650.75 12030.75 19650.75 12030.75 8860.75 10450.75 886

e Trans2 02 02 28292 20442 0

2 3110

2 87672 31102 87672 31102 87672 02 02 15552 43842 15552 43842 14332 7162 1433

Moment ML

Moment MT

Page 48: Pile Reaction and Pile Cap (4PG) - P142

LA9.497 30959.497 30959.497 32919.497 34879.497 1695

9.497 2659

9.497 18529.497 26599.497 18529.497 26599.497 18529.497 16959.497 16959.497 59099.497 58219.497 21779.497 17749.497 17229.497 17099.497 1722

LA0.000 0

10.992 18960.000 00.000 00.000 0

0.000 0

13.587 010.992 112713.587 124310.992 112713.587 124310.992 73313.587 80810.992 73313.587 80810.992 281610.992 183013.287 013.287 010.992 485013.587 532

Moment ML

Moment MT

Page 49: Pile Reaction and Pile Cap (4PG) - P142

10.992 485013.587 435### 0### 4850### 532### 1127### 1243

LA

13.587 1802

13.587 69513.587 180213.587 69513.587 180213.587 69513.587 90113.587 34813.587 90113.587 348

Moment MT

Page 50: Pile Reaction and Pile Cap (4PG) - P142

LA

8.2 963.6 51

8.23 14.543.59 14.95

8.23 14.543.59 14.95

8.23 36.323.59 37.35

8.23 139.453.59 73.74

8.23 139.453.59 73.74

8.23 0.003.59 0.00

8.23 0.003.59 0.00

LA

Moment ML

Moment MT

Page 51: Pile Reaction and Pile Cap (4PG) - P142

8.23 95.623.59 50.57

8.23 41.543.59 42.72

8.23 41.543.59 42.72

8.23 27.003.59 29.46

8.23 27.003.59 29.46

8.23 103.763.59 106.72

8.23 67.453.59 15.86

8.23 139.453.59 73.74

8.23 139.453.59 73.74

As per design criteria, an pier impact load is to be added to the design forces as given below.

Page 52: Pile Reaction and Pile Cap (4PG) - P142

These forces shall be added to DL+SIDL load case only and overstressing shall be allowed as

8129 07983 20428489 28298995 20443424 350

5384 4912

3054 94635384 73663054 119185414 65093084 110602899 30272973 19148087 24567238 47314142 80512977 10229

The design of pier is done by using Bending and Thrust programme,the result of which

ML MT

Page 53: Pile Reaction and Pile Cap (4PG) - P142

4.0 Design of piles

4.1 Summary of forces at the bottom of pier are as listed below.

Sr.No. Load combination P1 OSD without LL + 50% L Sei 74882 OSD without LL + 50% T Sei 74883 OSD with one lane class A 79014 OSD with two lane class A 83145 DL + SIDL = COMB 1 124016 144307 140598 COMB 2 + WIND ( 100 % TRANS ) 144309 COMB 3 + WIND ( 100 % TRANS ) 14059

10 COMB 2 + WIND ( 65 %T - 35 % L ) 1443011 COMB 3 + WIND ( 65 %T - 35 % L ) 1405912 COMB 1 + Wind ( 100 % TRANS ) 1240113 COMB 1 + Wind ( 65% T - 35 % L) 1240114 COMB 1 +0.5 LL ( Max ML) + L Seismic 1341515 COMB 1 +0.5 LL ( Max MT) + L Seismic 1323016 COMB 1 +0.5 LL (Max ML) + T Seismic 1341517 COMB 1 +0.5 LL ( Max MT) + T Seismic 13230

Units : kN, kN-m

4.2 Pile configuration

Diameter of pile = 1.2 mNos. of pile = 5 nos.Spacing of piles = 3.00 d

= 3.6 mFree length of pile from pile cap = 10.17 mbottom to fixity levelAdopting the size of pile cap as rectangularAssumeing the four piles shifted by 53mm

P1 3.6 P2

1.500

23.6

5.1 3.60

3.60

P4 3.6 P3

5.1

Thickness of pile cap = 1.8 m

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

Page 54: Pile Reaction and Pile Cap (4PG) - P142

Thickness of backfill on cap = 0.5 mArea of pile cap = 26.010 m2Self weight of pile cap = 1170 kNWeight of Backfill on cap = 286 kNSelf weight of cap and backfill will be added to axial load on pile group

minimum eccentricity in L- Dirction (eL) = 0 mminimum eccentricity inT- Dirction(Es) = 0 m

4.3 Case 1: ML is acting in the direction of pile P3

Distance between centre line of pier to c.g. of pile cap =

Sr.No. Load combination P1 OSD without LL + 50% L Sei 89452 OSD without LL + 50% T Sei 89453 OSD with one lane class A 93584 OSD with two lane class A 97715 DL + SIDL = COMB 1 13857

6 15886

7 155158 COMB 2 + WIND ( 100 % TRANS ) 158869 COMB 3 + WIND ( 100 % TRANS ) 15515

10 COMB 2 + WIND ( 65 %T - 35 % L ) 1588611 COMB 3 + WIND ( 65 %T - 35 % L ) 1551512 COMB 1 + Wind ( 100 % TRANS ) 1385713 COMB 1 + Wind ( 65% T - 35 % L) 1385714 COMB 1 +0.5 LL ( Max ML) + L Seismic 1487215 COMB 1 +0.5 LL ( Max MT) + L Seismic 1468616 COMB 1 +0.5 LL (Max ML) + T Seismic 1487217 COMB 1 +0.5 LL ( Max MT) + T Seismic 14686

Unit : kN, kN-mThe pile reactions will be calculated by using rivet theory since the pile cap is rigid.

Reaction of pile

R pile = P ± ±

nWhere,

R pile = Reaction on perticular pileP = Total vertical loadn = Number of pile

= Moment in longitudinal direction

= Moment in transverse direction

= Distance of pile from c.g. of load in Long direction

= Distance of pile from c.g. of load in Trans direction

Pile No.P1 1.800 -1.8 3.240 3.240P2 1.800 1.8 3.240 3.240 12.960P3 -1.800 1.8 3.240 3.240P4 -1.800 -1.8 3.240 3.240

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

ML RL

S R L2

ML

MT

RL

RT

RL RT RL2 RT2 S RL2

Page 55: Pile Reaction and Pile Cap (4PG) - P142

P5 0.000 0 0.000 0.000Unit : m, m2

Pile reactionsSr.No. Load combination P1

1 OSD without LL + 50% L Sei 29182 OSD without LL + 50% T Sei 26143 OSD with one lane class A 26584 OSD with two lane class A 29205 DL + SIDL = COMB 1 3198

6 3243

7 22138 COMB 2 + WIND ( 100 % TRANS ) 29029 COMB 3 + WIND ( 100 % TRANS ) 1872

10 COMB 2 + WIND ( 65 %T - 35 % L ) 302511 COMB 3 + WIND ( 65 %T - 35 % L ) 199512 COMB 1 + Wind ( 100 % TRANS ) 275413 COMB 1 + Wind ( 65% T - 35 % L) 291914 COMB 1 +0.5 LL ( Max ML) + L Seismic 375715 COMB 1 +0.5 LL ( Max MT) + L Seismic 328516 COMB 1 +0.5 LL (Max ML) + T Seismic 243117 COMB 1 +0.5 LL ( Max MT) + T Seismic 1930

Unit : kN

4.5 RC design of piles

The piles in this case are end bearing piles. The fixity of the piles shall be considered at top of thesocket where it will be assumed that piles are fixed there.

Therefore pile and pile cap will behvae more like a portal frame. Since the pile cap is rigid in its own plane, horizontal forces will be shared equally by all piles.

Horizontal force in individual pile = Total horizontal force5

Pile length = Length of pile from pile cap bottom to top of socket.

Bending moment in pile = H force in each pile

Length of pile = Pile cap depth + Free length of Pile

= 1.8 + 10.17

= 11.97 m+' 1m increase in founding level '=' 13.17 m-' 1m decrease in founding level '=' 10.77 m

Sr.No. Load combination1 OSD without LL + 50% L Sei 352 702 OSD without LL + 50% T Sei 326 65

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Total FL FL per Pile

Page 56: Pile Reaction and Pile Cap (4PG) - P142

3 OSD with one lane class A 347 694 OSD with two lane class A 367 735 DL + SIDL = COMB 1 329 66

6 280 56

7 195 398 COMB 2 + WIND ( 100 % TRANS ) 280 569 COMB 3 + WIND ( 100 % TRANS ) 195 39

10 COMB 2 + WIND ( 65 %T - 35 % L ) 286 5711 COMB 3 + WIND ( 65 %T - 35 % L ) 201 4012 COMB 1 + Wind ( 100 % TRANS ) 179 3613 COMB 1 + Wind ( 65% T - 35 % L) 193 3914 COMB 1 +0.5 LL ( Max ML) + L Seismic 660 13215 COMB 1 +0.5 LL ( Max MT) + L Seismic 650 13016 COMB 1 +0.5 LL (Max ML) + T Seismic 229 4617 COMB 1 +0.5 LL ( Max MT) + T Seismic 187 37

Unit : kN, kN-m

Sr.No. Load combination1 OSD without LL + 50% L Sei 0 02 OSD without LL + 50% T Sei 198 403 OSD with one lane class A 0 04 OSD with two lane class A 0 05 DL + SIDL = COMB 1 100 20

6 133 27

7 51 108 COMB 2 + WIND ( 100 % TRANS ) 344 699 COMB 3 + WIND ( 100 % TRANS ) 262 52

10 COMB 2 + WIND ( 65 %T - 35 % L ) 270 5411 COMB 3 + WIND ( 65 %T - 35 % L ) 189 3812 COMB 1 + Wind ( 100 % TRANS ) 299 6013 COMB 1 + Wind ( 65% T - 35 % L) 179 3614 COMB 1 +0.5 LL ( Max ML) + L Seismic 66 1315 COMB 1 +0.5 LL ( Max MT) + L Seismic 26 516 COMB 1 +0.5 LL (Max ML) + T Seismic 584 11717 COMB 1 +0.5 LL ( Max MT) + T Seismic 536 107

Unit : kN-m

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Total FT FT per Pile

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 57: Pile Reaction and Pile Cap (4PG) - P142

While checking the Pmax, self weight of the pile is added.Dia of pile = 1.2 mArea of pile = 1.131 m2Length = 10.170 mWeight = 288 kN

4.6 Design forces for pile with max axial force

Sr.No. Load combination P max BM11 OSD without LL + 50% L Sei 3206 4212 OSD without LL + 50% T Sei 3469 457

3 OSD with one lane class A 3731 4154 OSD with two lane class A 3775 440

5 DL + SIDL = COMB 1 3583 411

6 4895 371

7 5129 241

8 COMB 2 + WIND ( 100 % TRANS ) 5236 531

9 COMB 3 + WIND ( 100 % TRANS ) 5470 391

10 COMB 2 + WIND ( 65 %T - 35 % L ) 5121 47111 COMB 3 + WIND ( 65 %T - 35 % L ) 5355 33012 COMB 1 + Wind ( 100 % TRANS ) 3882 41613 COMB 1 + Wind ( 65% T - 35 % L) 3738 31514 COMB 1 +0.5 LL ( Max ML) + L Seismic 4726 79415 COMB 1 +0.5 LL ( Max MT) + L Seismic 4887 77916 COMB 1 +0.5 LL (Max ML) + T Seismic 4955 751

17 COMB 1 +0.5 LL ( Max MT) + T Seismic 5059 680

Unit : kN, kN-m max 5470

4.7 Design forces for pile with min axial forceSr.No. Load combination P min BM1

1 OSD without LL + 50% L Sei 660 4212 OSD without LL + 50% T Sei 397 457

3 OSD with one lane class A 300 415

4 OSD with two lane class A 421 4405 DL + SIDL = COMB 1 2247 411

6 1747 371

7 1365 241

8 COMB 2 + WIND ( 100 % TRANS ) 1406 531

9 COMB 3 + WIND ( 100 % TRANS ) 1024 391

10 COMB 2 + WIND ( 65 %T - 35 % L ) 1521 471

11 COMB 3 + WIND ( 65 %T - 35 % L ) 1139 33012 COMB 1 + Wind ( 100 % TRANS ) 1948 41613 COMB 1 + Wind ( 65% T - 35 % L) 2093 315

14 COMB 1 +0.5 LL ( Max ML) + L Seismic 1510 794

15 COMB 1 +0.5 LL ( Max MT) + L Seismic 1275 77916 COMB 1 +0.5 LL (Max ML) + T Seismic 1281 75117 COMB 1 +0.5 LL ( Max MT) + T Seismic 1103 680

Unit : kN, kN-m min 300

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 58: Pile Reaction and Pile Cap (4PG) - P142

4.8 Vertical Pile capacity as per tenderAs per the tender document the SBC including all effects shall not be more than 500t/m2

Dia of pile = 1.200 mArea of pile = 1.131 m2

SBC = UCS x Nj x 3FOS

UCS = Unconfined Compreesive Strength of rock in t/m2 = 2710The Nj value of rock strata = 0.3

FOS = 5SBC = 487.8 t/m2

As per tender, as the sbc > 200 t/m2, the socketing will be done for 2 x dia of pile which the SBC will be enhanced by 2.5

Enhanced SBC = 1220 ( 2.5 x SBC) t/m2

As per tender documents the SBC including all effects shall not be more than 500 t/m2

Pile capacity = SBC x Area of pile= 5000 X 1.131= 5655 kN

Maximum Vertical Reaction on individual pile for working condition =

hence, it is Safe

Pile Capacity considering both end bearing and frictional resistance due to socketing

UCS = 2057 t/m2Nj = 0.3 As per IS 14593Nd = 1.398 (0.8+0.2*Ls/D)<=2D = 1.2 m ( Dia of pile)Ap = 1.131 m2 (Area of pile)Ls = 3.589 (Socketing Depth in meter)alpha = 0.133 (from fig 1. of IS14593)Beta = 1 (from fig 2. of IS14593)FOS1 = 5 ( FOR END BEARINGFOS2 = 10 ( FOR FRICTIONAL RESISTANCE)

Safe bearing capacity of pile in T/m2= 500 ( in T/m2)

Safe load capacity of pile(Qs)= 565 t

qs = ultimate shearing strength along socket = 500 T/m2 for normal rock and may be reduced to 200 T/m2 for weatherd rock.)qs = UCS X alpha x Beta = 273.64 T/m2

Qs = UCS x Nj x Nd x Ap + UCS x pi x D X Ls x alpha x Beta =FOS1 FOS2

=565 = 565 =

D282
\: goal seek
Page 59: Pile Reaction and Pile Cap (4PG) - P142

Goal Seek 0

Page 60: Pile Reaction and Pile Cap (4PG) - P142

8129 07983 20428489 28298995 20443424 3505384 49123054 94635384 73663054 119185414 65093084 110602899 30272973 19148087 24567238 47314142 80512977 10229

Longitudnal direction

TransverseDirection

z1.061

Dimensions in Mtrs.

ML MT

Page 61: Pile Reaction and Pile Cap (4PG) - P142

0.000 m

8129 07983 20428489 28298995 20443424 350

5384 4912

3054 94635384 73663054 119185414 65093084 110602899 30272973 19148087 24567238 47314142 80512977 10229

Distance of pile from c.g. of load in Long direction

Distance of pile from c.g. of load in Trans direction

0.1389 -0.13912.960 0.1389 0.139

-0.1389 0.139-0.1389 -0.139

ML MT

MT RT

S R T2

S RT2 RL/S RL2 RT/S RT2

Page 62: Pile Reaction and Pile Cap (4PG) - P142

0.0000 0.000

Column P5 is ACTIVE

P2 P3 P42918 660 6603181 964 3973444 1085 3003487 989 4213296 2344 2247

4607 3112 1747

### 3993 13654948 3453 14065183 4334 10244833 3329 15215068 4211 11393595 2789 19483450 2624 20934439 2192 15104600 2589 12754668 3517 12814771 3945 1103

The piles in this case are end bearing piles. The fixity of the piles shall be considered at top of the

Therefore pile and pile cap will behvae more like a portal frame. Since the pile cap is rigid in its

x Pile length2

Pile cap depth + Free length of Pile

BM1 BM2 BM370 421 463 37965 390 429 351

FL per Pile

Page 63: Pile Reaction and Pile Cap (4PG) - P142

69 415 456 37373 440 484 39566 393 433 354

56 335 369 302

39 233 257 21056 335 369 30239 233 257 21057 342 377 30840 241 265 21636 214 235 19239 231 255 208

132 790 869 710130 779 857 70146 274 302 24737 224 246 201

BM BM2 BM30 0 0 0

40 237 261 2130 0 0 00 0 0 0

20 120 132 108

27 159 175 143

10 61 67.4 5569 411 453 37052 314 345 28254 323 356 29138 226 249 20360 357 393 32136 214 236 19313 79 87.3 715 31 33.7 28

117 699 769 629107 642 706 578

FT per Pile

Page 64: Pile Reaction and Pile Cap (4PG) - P142

BM1 BM2 BM3 Max BM421 463 379 463457 502 411 502

415 456 373 456440 484 395 484

411 452 370 452

371 408 334 408

241 266 217 266

531 584 477 584

391 430 352 430

471 518 424 518330 363 297 363416 458 375 458315 347 284 347794 873 714 873779 857 701 857751 826 676 826

680 748 612 748

873

BM1 BM2 BM3 Max BM421 463 379 463457 502 411 502

415 456 373 456

440 484 395 484411 452 370 452

371 408 334 408

241 266 217 266

531 584 477 584

391 430 352 430

471 518 424 518

330 363 297 363416 458 375 458315 347 284 347

794 873 714 873

779 857 701 857751 826 676 826680 748 612 748

266

Page 65: Pile Reaction and Pile Cap (4PG) - P142

4895 kN

Formula used by stupNd = (1+0.4*Ls/D)<=2

qs = ultimate shearing strength along socket = 500 T/m2 for normal rock and may be reduced to 200 T/m2 for weatherd rock.)

976+

37035 10195 + 370565

Page 66: Pile Reaction and Pile Cap (4PG) - P142
Page 67: Pile Reaction and Pile Cap (4PG) - P142

7.0 Design of pile cap

The pile cap is designed as per Bending theory as per IRC 21 and IRC 78.

7.1 Materials, permissible stresses and design constants

ConcreteGrade of concrete = M 40Permissibel bending comp stress = 13.33 M Pa Clause 303.1 of IRC 21 : 2000Permissibel punching shear stress ` = 1.01 M Pa Clause 307.2.5.5 of IRC 21:2000Permissibel shear stress = 2.50 M Pa Clause 304.7.1.2 of IRC 21:2000

HYSD reinforcement

Grade of reinforcement = Fe 500Permissibel stress in tension = 240 M Pa Clause 303.2.1 of IRC 21: 2000Permissibel stress in Shear = 240 M Pa

Design constantsNormal case

Modular ratio = 10k = 0.36j = 0.88Q = 2.10

7.2 Permissible overstressing

Sr.No. Load combination Overstress1 OSD without LL + 50% L Sei 1.52 OSD without LL + 50% T Sei 1.53 OSD with one lane class A 14 OSD with two lane class A 1 Table 1 of IRC 6 : 20005 DL + SIDL = COMB 1 16 COMB 1 + LL ( For Max ML ) = COMB2 17 COMB 1 + LL ( For Max MT )=COMB 3 18 COMB 2 + WIND ( 100 % TRANS ) 1.339 COMB 3 + WIND ( 100 % TRANS ) 1.33

10 COMB 2 + WIND ( 65 %T - 35 % L ) 1.3311 COMB 3 + WIND ( 65 %T - 35 % L ) 1.3312 COMB 1 + Wind ( 100 % TRANS ) 1.3313 COMB 1 + Wind ( 65% T - 35 % L) 1.3314 COMB 1 +0.5 LL ( Max ML) + L Seismic 1.515 COMB 1 +0.5 LL ( Max MT) + L Seismic 1.516 COMB 1 +0.5 LL (Max ML) + T Seismic 1.5

17 COMB 1 +0.5 LL ( Max MT) + T Seismic 1.5

7.3 Design of pile cap

Page 68: Pile Reaction and Pile Cap (4PG) - P142

As mentioned in the introduction, the pile cap is deigned using bending theory

Part -1 : Designing P1-P2 side of pile cap

5.13.6

P1 P2

3.6

0.8

0

1.05

Shear

Sect

ion

3.605.10 3.60 2.00

1.5

P4 P3

1.8

All dimensions are in Mtr

BM due to self weight of pile cap

Area of cap = 1.550 x 5.100= 7.905 m2

Pile diameter = 1.200 mThickness of pile cap = 1.800 mWeight = 7.905 x 1.800 x

= 356 kN

Assuming Lever arm = 0.775 m

BM due to self weight = 275.69 kN-m

BM due to Pile reaction

Page 69: Pile Reaction and Pile Cap (4PG) - P142

Sr.No. Load combination P1+P2 LA BM Self BM1 OSD without LL + 50% L Sei 5836 46692 OSD without LL + 50% T Sei 5796 46363 OSD with one lane class A 6101 48814 OSD with two lane class A 6407

0.8005126

2765 DL + SIDL = COMB 1 6494 51956 COMB 1 + LL ( For Max ML ) = COMB2 7850 62807 COMB 1 + LL ( For Max MT )=COMB 3 7055 56448 COMB 2 + WIND ( 100 % TRANS ) 7850 62809 COMB 3 + WIND ( 100 % TRANS ) 7055 5644

10 COMB 2 + WIND ( 65 %T - 35 % L ) 7858 628711 COMB 3 + WIND ( 65 %T - 35 % L ) 7063 565012 COMB 1 + Wind ( 100 % TRANS ) 6348 507913 COMB 1 + Wind ( 65% T - 35 % L) 6369 509514 COMB 1 +0.5 LL ( Max ML) + L Seismic 8195 655615 COMB 1 +0.5 LL ( Max MT) + L Seismic 7885 630816 COMB 1 +0.5 LL (Max ML) + T Seismic 7099 567917 COMB 1 +0.5 LL ( Max MT) + T Seismic 6701 5361

Units : kN, m, kN-m

Check for depth - Bending ConsiderationWidth of the cap available at critical section = 5.100 mTotal depth of pile cap = 1800 mmClear cover to Reinf = 75 mmDia of bars = 32 mmEffective depth = 1709 mm

Sr.No. Load combination Design BM Over stress d required1 OSD without LL + 50% L Sei 4393 1.5 5232 OSD without LL + 50% T Sei 4361 1.5 5213 OSD with one lane class A 4605 1 6564 OSD with two lane class A 4850 1 6735 DL + SIDL = COMB 1 4920 1 6786 COMB 1 + LL ( For Max ML ) = COMB2 6004 1 7497 COMB 1 + LL ( For Max MT )=COMB 3 5368 1 7088 COMB 2 + WIND ( 100 % TRANS ) 6004 1.33 6509 COMB 3 + WIND ( 100 % TRANS ) 5368 1.33 614

10 COMB 2 + WIND ( 65 %T - 35 % L ) 6011 1.33 65011 COMB 3 + WIND ( 65 %T - 35 % L ) 5375 1.33 61512 COMB 1 + Wind ( 100 % TRANS ) 4803 1.33 58113 COMB 1 + Wind ( 65% T - 35 % L) 4819 1.33 58214 COMB 1 +0.5 LL ( Max ML) + L Seismic 6280 1.5 62615 COMB 1 +0.5 LL ( Max MT) + L Seismic 6032 1.5 61316 COMB 1 +0.5 LL (Max ML) + T Seismic 5404 1.5 58017 COMB 1 +0.5 LL ( Max MT) + T Seismic 5085 1.5 563

Unit : kN-m, mmIt is seen that the effective depth provided is SUFFICIENT

Page 70: Pile Reaction and Pile Cap (4PG) - P142

Check for depth - Punching shear Consideration

Punching shear = Pile reaction / ( Depth of pile cap x perimeter at d/2)Perimeter = 3.856 m

Sr.No. Load combination Max P1/P2 Over stress Shear Stress1 OSD without LL + 50% L Sei 2918 1.5 0.2802 OSD without LL + 50% T Sei 3181 1.5 0.3063 OSD with one lane class A 3444 1 0.4964 OSD with two lane class A 3487 1 0.5025 DL + SIDL = COMB 1 3296 1 0.4756 COMB 1 + LL ( For Max ML ) = COMB2 4607 1 0.6647 COMB 1 + LL ( For Max MT )=COMB 3 4842 1 0.6988 COMB 2 + WIND ( 100 % TRANS ) 4948 1.33 0.5369 COMB 3 + WIND ( 100 % TRANS ) 5183 1.33 0.561

10 COMB 2 + WIND ( 65 %T - 35 % L ) 4833 1.33 0.52411 COMB 3 + WIND ( 65 %T - 35 % L ) 5068 1.33 0.54912 COMB 1 + Wind ( 100 % TRANS ) 3595 1.33 0.38913 COMB 1 + Wind ( 65% T - 35 % L) 3450 1.33 0.37414 COMB 1 +0.5 LL ( Max ML) + L Seismic 4439 1.5 0.42615 COMB 1 +0.5 LL ( Max MT) + L Seismic 4600 1.5 0.44216 COMB 1 +0.5 LL (Max ML) + T Seismic 4668 1.5 0.44817 COMB 1 +0.5 LL ( Max MT) + T Seismic 4771 1.5 0.458

Unit : kN, M Pa

Hence it can be seen that the thickness of pile cap is SAFE

Check for depth - Punching shear Consideration for PIER

Punching shear = Pier reaction / ( Depth of pile cap x perimeter at d/2)Perimeter = 13.836 m

Sr.No. Load combination Pier Reaction Over stress Shear Stress1 OSD without LL + 50% L Sei 7488 1.5 0.2002 OSD without LL + 50% T Sei 7488 1.5 0.2003 OSD with one lane class A 7901 1 0.3174 OSD with two lane class A 8314 1 0.3345 DL + SIDL = COMB 1 12401 1 0.4986 COMB 1 + LL ( For Max ML ) = COMB2 14430 1 0.5797 COMB 1 + LL ( For Max MT )=COMB 3 14059 1 0.5658 COMB 2 + WIND ( 100 % TRANS ) 14430 1.33 0.4369 COMB 3 + WIND ( 100 % TRANS ) 14059 1.33 0.424

10 COMB 2 + WIND ( 65 %T - 35 % L ) 14430 1.33 0.43611 COMB 3 + WIND ( 65 %T - 35 % L ) 14059 1.33 0.42412 COMB 1 + Wind ( 100 % TRANS ) 12401 1.33 0.37413 COMB 1 + Wind ( 65% T - 35 % L) 12401 1.33 0.37414 COMB 1 +0.5 LL ( Max ML) + L Seismic 13415 1.5 0.35915 COMB 1 +0.5 LL ( Max MT) + L Seismic 13230 1.5 0.354

Page 71: Pile Reaction and Pile Cap (4PG) - P142

16 COMB 1 +0.5 LL (Max ML) + T Seismic 13415 1.5 0.35917 COMB 1 +0.5 LL ( Max MT) + T Seismic 13230 1.5 0.354

Unit : kN, M PaThe thickness of pile cap is SAFE

Reinforcement calculation

Bending SteelProviding reinf in two layers

Sr.No. Load combination Design BM Over stress Reinforcement1 OSD without LL + 50% L Sei 4393 1.5 81062 OSD without LL + 50% T Sei 4361 1.5 80463 OSD with one lane class A 4605 1 127454 OSD with two lane class A 4850 1 134225 DL + SIDL = COMB 1 4920 1 136156 COMB 1 + LL ( For Max ML ) = COMB2 6004 1 166187 COMB 1 + LL ( For Max MT )=COMB 3 5368 1 148568 COMB 2 + WIND ( 100 % TRANS ) 6004 1.33 124959 COMB 3 + WIND ( 100 % TRANS ) 5368 1.33 11170

10 COMB 2 + WIND ( 65 %T - 35 % L ) 6011 1.33 1250811 COMB 3 + WIND ( 65 %T - 35 % L ) 5375 1.33 1118412 COMB 1 + Wind ( 100 % TRANS ) 4803 1.33 999413 COMB 1 + Wind ( 65% T - 35 % L) 4819 1.33 1002814 COMB 1 +0.5 LL ( Max ML) + L Seismic 6280 1.5 1158815 COMB 1 +0.5 LL ( Max MT) + L Seismic 6032 1.5 1113016 COMB 1 +0.5 LL (Max ML) + T Seismic 5404 1.5 997017 COMB 1 +0.5 LL ( Max MT) + T Seismic 5085 1.5 9383

Unit : kN-m, mm2

Sr.No. Load combination Reinforcement No of Bars Spacing1 OSD without LL + 50% L Sei 8106 11 4922 OSD without LL + 50% T Sei 8046 11 4923 OSD with one lane class A 12745 16 3284 OSD with two lane class A 13422 17 3075 DL + SIDL = COMB 1 13615 17 3076 COMB 1 + LL ( For Max ML ) = COMB2 16618 22 2347 COMB 1 + LL ( For Max MT )=COMB 3 14856 19 2738 COMB 2 + WIND ( 100 % TRANS ) 12495 16 3289 COMB 3 + WIND ( 100 % TRANS ) 11170 14 378

10 COMB 2 + WIND ( 65 %T - 35 % L ) 12508 16 32811 COMB 3 + WIND ( 65 %T - 35 % L ) 11184 14 37812 COMB 1 + Wind ( 100 % TRANS ) 9994 13 41013 COMB 1 + Wind ( 65% T - 35 % L) 10028 13 41014 COMB 1 +0.5 LL ( Max ML) + L Seismic 11588 15 35115 COMB 1 +0.5 LL ( Max MT) + L Seismic 11130 14 37816 COMB 1 +0.5 LL (Max ML) + T Seismic 9970 13 410

Page 72: Pile Reaction and Pile Cap (4PG) - P142

17 COMB 1 +0.5 LL ( Max MT) + T Seismic 9383 12 447Unit : mm2, Nos, mm

Minimum Tension steel

The minimum tension steel shall be = 0.12 x b x d Clause 305.19 of IRC 21

100

= 0.12 x 5100 x 1800100

= 11016 mm2

= 14 Nos @ 387 mm c/c

Minimum reinforcement is less than actual reinforcement required

One way shear Check

1.400

Shear Section

0.8545

0.200

Effective shear = Pile reaction x ( 1.400 - 0.8545

1.400 - 0.200

= 0.455 x Pile reaction - Self weight of capA

The actual Shear force will depend on the magnitude of 'A' as follows

IF A is more than 1, it will be taken as 1IF A is less than 1, it will be taken as it isIF A is less than 0, it will be taken as 0

= 0.455 x Pile reaction - Self weight of cap

Self weight = 5.1 x 0.695 x 1.80 x 25

= 160 kN .

Page 73: Pile Reaction and Pile Cap (4PG) - P142

b = 5100 mmd = 1709 mm

Sr.No. Load combination Shear Force Overstress1 OSD without LL + 50% L Sei 2493 1.5 0.1912 OSD without LL + 50% T Sei 2475 1.5 0.1893 OSD with one lane class A 2614 1 0.3004 OSD with two lane class A 2753 1 0.3165 DL + SIDL = COMB 1 2793 1 0.3206 COMB 1 + LL ( For Max ML ) = COMB2 3409 1 0.3917 COMB 1 + LL ( For Max MT )=COMB 3 3047 1 0.3508 COMB 2 + WIND ( 100 % TRANS ) 3409 1.33 0.2949 COMB 3 + WIND ( 100 % TRANS ) 3047 1.33 0.263

10 COMB 2 + WIND ( 65 %T - 35 % L ) 3413 1.33 0.29411 COMB 3 + WIND ( 65 %T - 35 % L ) 3051 1.33 0.26312 COMB 1 + Wind ( 100 % TRANS ) 2726 1.33 0.23513 COMB 1 + Wind ( 65% T - 35 % L) 2736 1.33 0.23614 COMB 1 +0.5 LL ( Max ML) + L Seismic 3566 1.5 0.27315 COMB 1 +0.5 LL ( Max MT) + L Seismic 3425 1.5 0.26216 COMB 1 +0.5 LL (Max ML) + T Seismic 3068 1.5 0.23517 COMB 1 +0.5 LL ( Max MT) + T Seismic 2887 1.5 0.221

Unit : kN, m, m , M Pa

Shear reinforcement

Ast provided = 32 dia bars x 22= 17693 mm2

% Ast = 17693 x 1005100 x 1709

= 0.20

= 0.21 M Pa

Vs =

Asw =

Minimum shear reinforcement

Asw min = ( 0.4 x b x s ) / ( 0.87 x f y )

Adoptings = 180 mm

t v

t c

V - tc b d

Shear reinforcement shall be provided if tv > tc.

( Vs x s ) / ( s s x d)

Page 74: Pile Reaction and Pile Cap (4PG) - P142

Sr.No. Load combination Vs Asw Asw min1 OSD without LL + 50% L Sei 0 0

844

2 OSD without LL + 50% T Sei 0 03 OSD with one lane class A 757 3324 OSD with two lane class A 896 3935 DL + SIDL = COMB 1 935 4106 COMB 1 + LL ( For Max ML ) = COMB2 1552 6817 COMB 1 + LL ( For Max MT )=COMB 3 1190 5228 COMB 2 + WIND ( 100 % TRANS ) 939 3109 COMB 3 + WIND ( 100 % TRANS ) 577 190

10 COMB 2 + WIND ( 65 %T - 35 % L ) 943 31111 COMB 3 + WIND ( 65 %T - 35 % L ) 581 19212 COMB 1 + Wind ( 100 % TRANS ) 256 8513 COMB 1 + Wind ( 65% T - 35 % L) 265 8814 COMB 1 +0.5 LL ( Max ML) + L Seismic 780 22815 COMB 1 +0.5 LL ( Max MT) + L Seismic 639 18716 COMB 1 +0.5 LL (Max ML) + T Seismic 282 8217 COMB 1 +0.5 LL ( Max MT) + T Seismic 101 30

Unit : kN, mm2, mm2Provide shear reinforcement as 12 dia bars, no of legs 7.5 say 8 legged

Part -2 : Designing P2-P3 side of pile cap

BM due to self weight of pile cap

Area of cap = 1.800 x 5.100

= 9.180 m2Weight = 9.180 x 1.800 x

= 413 kN

Assuming Lever arm = 0.900 mBM due to self weigth = 372 kN-m

BM due to Pile reaction

Sr.No. Load combination P2+P3 LA BM Self BM1 OSD without LL + 50% L Sei 3578 37572 OSD without LL + 50% T Sei 4145 43533 OSD with one lane class A 4529 47554 OSD with two lane class A 4476

1.0504700

3725 DL + SIDL = COMB 1 5640 59226 COMB 1 + LL ( For Max ML ) = COMB2 7719 81057 COMB 1 + LL ( For Max MT )=COMB 3 8835 92768 COMB 2 + WIND ( 100 % TRANS ) 8401 8821

IF V - tc b d is negative then the same shall be considered as Zero.

Page 75: Pile Reaction and Pile Cap (4PG) - P142

9 COMB 3 + WIND ( 100 % TRANS ) 9517 999210 COMB 2 + WIND ( 65 %T - 35 % L ) 8163 857111 COMB 3 + WIND ( 65 %T - 35 % L ) 9278 974212 COMB 1 + Wind ( 100 % TRANS ) 6384 670313 COMB 1 + Wind ( 65% T - 35 % L) 6075 637814 COMB 1 +0.5 LL ( Max ML) + L Seismic 6631 696215 COMB 1 +0.5 LL ( Max MT) + L Seismic 7189 754816 COMB 1 +0.5 LL (Max ML) + T Seismic 8185 859417 COMB 1 +0.5 LL ( Max MT) + T Seismic 8716 9152

Unit : kN, m, kN-m

Check for depth - Bending Consideration

Width of cap available at the section = 5.100 mTotal depth of pile cap = 1800 mmClear cover to Reinf = 75 mmDia of bars = 32 mmEffective depth = 1709 mm

Sr.No. Load combination Design BM Over stress d required1 OSD without LL + 50% L Sei 3385 1.5 4592 OSD without LL + 50% T Sei 3981 1.5 4983 OSD with one lane class A 4384 1 6404 OSD with two lane class A 4328 1 6365 DL + SIDL = COMB 1 5550 1 7206 COMB 1 + LL ( For Max ML ) = COMB2 7733 1 8507 COMB 1 + LL ( For Max MT )=COMB 3 8905 1 9128 COMB 2 + WIND ( 100 % TRANS ) 8449 1.33 7719 COMB 3 + WIND ( 100 % TRANS ) 9621 1.33 822

10 COMB 2 + WIND ( 65 %T - 35 % L ) 8199 1.33 75911 COMB 3 + WIND ( 65 %T - 35 % L ) 9371 1.33 81212 COMB 1 + Wind ( 100 % TRANS ) 6331 1.33 66713 COMB 1 + Wind ( 65% T - 35 % L) 6006 1.33 65014 COMB 1 +0.5 LL ( Max ML) + L Seismic 6591 1.5 64115 COMB 1 +0.5 LL ( Max MT) + L Seismic 7176 1.5 66916 COMB 1 +0.5 LL (Max ML) + T Seismic 8222 1.5 71617 COMB 1 +0.5 LL ( Max MT) + T Seismic 8780 1.5 740

Unit : kN-m, mm

Reinforcement calculation

Bending Steel

Sr.No. Load combination Design BM Over stress Reinforcement1 OSD without LL + 50% L Sei 3385 1.5 62462 OSD without LL + 50% T Sei 3981 1.5 73453 OSD with one lane class A 4384 1 121324 OSD with two lane class A 4328 1 11979

Page 76: Pile Reaction and Pile Cap (4PG) - P142

5 DL + SIDL = COMB 1 5550 1 153616 COMB 1 + LL ( For Max ML ) = COMB2 7733 1 214027 COMB 1 + LL ( For Max MT )=COMB 3 8905 1 246448 COMB 2 + WIND ( 100 % TRANS ) 8449 1.33 175819 COMB 3 + WIND ( 100 % TRANS ) 9621 1.33 20019

10 COMB 2 + WIND ( 65 %T - 35 % L ) 8199 1.33 1706111 COMB 3 + WIND ( 65 %T - 35 % L ) 9371 1.33 1949912 COMB 1 + Wind ( 100 % TRANS ) 6331 1.33 1317413 COMB 1 + Wind ( 65% T - 35 % L) 6006 1.33 1249914 COMB 1 +0.5 LL ( Max ML) + L Seismic 6591 1.5 1216015 COMB 1 +0.5 LL ( Max MT) + L Seismic 7176 1.5 1324116 COMB 1 +0.5 LL (Max ML) + T Seismic 8222 1.5 1517117 COMB 1 +0.5 LL ( Max MT) + T Seismic 8780 1.5 16199

Unit : kN-m, mm2

Sr.No. Load combination Reinforcement No of Bars Spacing1 OSD without LL + 50% L Sei 6246 8 7032 OSD without LL + 50% T Sei 7345 10 5463 OSD with one lane class A 12132 16 3284 OSD with two lane class A 11979 15 3515 DL + SIDL = COMB 1 15361 20 2596 COMB 1 + LL ( For Max ML ) = COMB2 21402 27 1897 COMB 1 + LL ( For Max MT )=COMB 3 24644 32 1598 COMB 2 + WIND ( 100 % TRANS ) 17581 22 2349 COMB 3 + WIND ( 100 % TRANS ) 20019 25 205

10 COMB 2 + WIND ( 65 %T - 35 % L ) 17061 22 23411 COMB 3 + WIND ( 65 %T - 35 % L ) 19499 25 20512 COMB 1 + Wind ( 100 % TRANS ) 13174 17 30713 COMB 1 + Wind ( 65% T - 35 % L) 12499 16 32814 COMB 1 +0.5 LL ( Max ML) + L Seismic 12160 16 32815 COMB 1 +0.5 LL ( Max MT) + L Seismic 13241 17 30716 COMB 1 +0.5 LL (Max ML) + T Seismic 15171 19 27317 COMB 1 +0.5 LL ( Max MT) + T Seismic 16199 21 246

Unit : mm2, Nos, mm

One way shear Check

1.650

Shear section

0.8545

0.450

Effective shear = Pile reaction x ( 1.650 - 0.8545

Page 77: Pile Reaction and Pile Cap (4PG) - P142

1.650 - 0.450

= 0.663 x Pile reaction - Self weight of capA

The actual Shear force will depend on the magnitude of 'A' as follows

IF A is more than 1, it will be taken as 1IF A is less than 1, it will be taken as it isIF A is less than 0, it will be taken as 0

= 0.663 x Pile reaction - Self weight of cap

Self weight = 5.10 x 0.945 x 1.8 x 25

= 217 kN .b = 5.100 md = 1.709 m

Sr.No. Load combination Shear Force Overstress Shear Stress1 OSD without LL + 50% L Sei 2155 1.5 0.1652 OSD without LL + 50% T Sei 2531 1.5 0.1943 OSD with one lane class A 2785 1 0.3204 OSD with two lane class A 2750 1 0.3165 DL + SIDL = COMB 1 3522 1 0.4046 COMB 1 + LL ( For Max ML ) = COMB2 4900 1 0.5627 COMB 1 + LL ( For Max MT )=COMB 3 5640 1 0.6478 COMB 2 + WIND ( 100 % TRANS ) 5352 1.33 0.4629 COMB 3 + WIND ( 100 % TRANS ) 6092 1.33 0.526

10 COMB 2 + WIND ( 65 %T - 35 % L ) 5194 1.33 0.44811 COMB 3 + WIND ( 65 %T - 35 % L ) 5934 1.33 0.51212 COMB 1 + Wind ( 100 % TRANS ) 4015 1.33 0.34613 COMB 1 + Wind ( 65% T - 35 % L) 3810 1.33 0.32914 COMB 1 +0.5 LL ( Max ML) + L Seismic 4179 1.5 0.32015 COMB 1 +0.5 LL ( Max MT) + L Seismic 4549 1.5 0.34816 COMB 1 +0.5 LL (Max ML) + T Seismic 5209 1.5 0.39817 COMB 1 +0.5 LL ( Max MT) + T Seismic 5561 1.5 0.425

Unit : kN, M PaShear reinforcement

Ast provided = 32 dia bars x 32= 25736 mm2

% Ast = 25736 x 1005100 x 1709

= 0.30

Page 78: Pile Reaction and Pile Cap (4PG) - P142

= 0.25 M Pa

Vs =

Asw =

Minimum shear reinforcement

Asw min = ( 0.4 x b x s ) / ( 0.87 x f y )Adopting

s = 165 mm

IF V - tc b d is negative then the same shall be considered as Zero.

Sr.No. Load combination Vs Asw Asw min1 OSD without LL + 50% L Sei 0 0

774

2 OSD without LL + 50% T Sei 0 03 OSD with one lane class A 639 2574 OSD with two lane class A 604 2435 DL + SIDL = COMB 1 1375 5536 COMB 1 + LL ( For Max ML ) = COMB2 2753 11087 COMB 1 + LL ( For Max MT )=COMB 3 3493 14058 COMB 2 + WIND ( 100 % TRANS ) 2497 7559 COMB 3 + WIND ( 100 % TRANS ) 3237 979

10 COMB 2 + WIND ( 65 %T - 35 % L ) 2339 70711 COMB 3 + WIND ( 65 %T - 35 % L ) 3079 93112 COMB 1 + Wind ( 100 % TRANS ) 1160 35113 COMB 1 + Wind ( 65% T - 35 % L) 955 28914 COMB 1 +0.5 LL ( Max ML) + L Seismic 959 25715 COMB 1 +0.5 LL ( Max MT) + L Seismic 1329 35616 COMB 1 +0.5 LL (Max ML) + T Seismic 1989 53317 COMB 1 +0.5 LL ( Max MT) + T Seismic 2341 628

Unit : kN, mm2, mm2Provide shear reinforcement as 16 dia bars, no of legs 7.0 say 8 legged

t c

V - tc b d

Shear reinforcement shall be provided if tv > tc.

( Vs x s ) / ( s s x d)

Page 79: Pile Reaction and Pile Cap (4PG) - P142

Clause 303.1 of IRC 21 : 2000Clause 307.2.5.5 of IRC 21:2000Clause 304.7.1.2 of IRC 21:2000

Clause 303.2.1 of IRC 21: 2000

Clause 303.1 of IRC 21: 2000

Table 1 of IRC 6 : 2000

Page 80: Pile Reaction and Pile Cap (4PG) - P142

Longitudnal direction

1.55

Transverse direction

3.856

25

Page 81: Pile Reaction and Pile Cap (4PG) - P142

Design BM43934361460548504920600453686004536860115375480348196280603254045085

d required523521656673678749708650614650615581582626613580563

Page 82: Pile Reaction and Pile Cap (4PG) - P142

Pile reaction / ( Depth of pile cap x perimeter at d/2)

Shear Stress0.2800.3060.4960.5020.4750.6640.6980.5360.5610.5240.5490.3890.3740.4260.4420.4480.458

Pier reaction / ( Depth of pile cap x perimeter at d/2)

Shear Stress0.2000.2000.3170.3340.4980.5790.5650.4360.4240.4360.4240.3740.3740.3590.354

Page 83: Pile Reaction and Pile Cap (4PG) - P142

0.3590.354

Reinforcement81068046

1274513422136151661814856124951117012508111849994

10028115881113099709383

Spacing492492328307307234273328378328378410410351378410

Page 84: Pile Reaction and Pile Cap (4PG) - P142

447

Clause 305.19 of IRC 21

)

Page 85: Pile Reaction and Pile Cap (4PG) - P142

0.1910.1890.3000.3160.3200.3910.3500.2940.2630.2940.2630.2350.2360.2730.2620.2350.221

$c value :% Ast $c fo M40

0.15 0.20.25 0.23

0.5 0.320.20 0.21

t v

Page 86: Pile Reaction and Pile Cap (4PG) - P142

Asw min

844

legged

25

Design BM33853981438443285550773389058449

Page 87: Pile Reaction and Pile Cap (4PG) - P142

962181999371633160066591717682228780

d required459498640636720850912771822759812667650641669716740

Reinforcement62467345

1213211979

Page 88: Pile Reaction and Pile Cap (4PG) - P142

15361214022464417581200191706119499131741249912160132411517116199

Spacing703546328351259189159234205 234205307328328307273246

)

Page 89: Pile Reaction and Pile Cap (4PG) - P142

Shear Stress0.1650.1940.3200.3160.4040.5620.6470.4620.5260.4480.5120.3460.3290.3200.3480.3980.425

Xc value

% Ast $c fo M400.25 0.23

0.5 0.320.30 0.25

Page 90: Pile Reaction and Pile Cap (4PG) - P142

Asw min

774

legged

Page 91: Pile Reaction and Pile Cap (4PG) - P142

4.0 Calculation of seismic forces with fixity at pile cap top

Load factores considered for limit state checkDL = 1.5SIDL = 2LL = 2.5EQ = 1WL = 1

4.1 Vertical forcesThe details of vertical forces at the bottom of pier cap are as tabulated below.

Sr.No. Load combination A B1 OSD without LL + 50% L Sei 5282 52822 OSD without LL + 50% T Sei 5282 52823 OSD with one lane class A 7566 40304 OSD with two lane class A 8947 36825 DL + SIDL = COMB 1 5282 52826 5875 97627 3452 91828 COMB 2 + WIND ( 100 % TRANS ) 5875 97629 COMB 3 + WIND ( 100 % TRANS ) 3452 9182

10 COMB 2 + WIND ( 65 %T - 35 % L ) 5875 976211 COMB 3 + WIND ( 65 %T - 35 % L ) 3452 918212 COMB 1 + Wind ( 100 % TRANS ) 5282 528213 COMB 1 + Wind ( 65% T - 35 % L) 5282 528214 COMB 1 +0.5 LL ( Max ML) + L Seismic 5578 752215 COMB 1 +0.5 LL ( Max MT) + L Seismic 4367 723216 COMB 1 +0.5 LL (Max ML) + T Seismic 5578 752217 COMB 1 +0.5 LL ( Max MT) + T Seismic 4367 723218 COMB 1 +4CLASSA + CF = COMB4 6604 590019 COMB4 + T SEI 6604 590020 COMB4 + 100 % WIND ( Tran) 6604 5900

4.2 Horizontal forcesSince the pier supports superstructure with expansion joints, all bearings are free in longitudinal direction while one bearing from each slab is fixed in trenaverse direction.

a) Loads due to frictionHorizontal load due to friction free pier =

= 0.05= 0.03

Lever arm for these force = 9.497 mHorizontal loads due to friction in PTFE bearings will be as follows

Sr.No. Load combination Fh long1 OSD without LL + 50% L Sei 5282 OSD without LL + 50% T Sei 5283 OSD with one lane class A 5804 OSD with two lane class A 6315 DL + SIDL = COMB 1 2906 5437 331

This design notes consists of Limit State check for Pier P264. The design of pile is already submitted in design notes no. 5661/E/DN-354. For vertical forces acting on pier ref. design notes no 5661/e/dn-354, the are enhanced by respective load factor as shown below

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

m Rm m

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

Page 92: Pile Reaction and Pile Cap (4PG) - P142

8 COMB 2 + WIND ( 100 % TRANS ) 5439 COMB 3 + WIND ( 100 % TRANS ) 331

10 COMB 2 + WIND ( 65 %T - 35 % L ) 54311 COMB 3 + WIND ( 65 %T - 35 % L ) 33112 COMB 1 + Wind ( 100 % TRANS ) 29013 COMB 1 + Wind ( 65% T - 35 % L) 29014 COMB 1 +0.5 LL ( Max ML) + L Seismic 89415 COMB 1 +0.5 LL ( Max MT) + L Seismic 85016 COMB 1 +0.5 LL (Max ML) + T Seismic 41617 COMB 1 +0.5 LL ( Max MT) + T Seismic 31018 COMB 1 +4CLASSA + CF = COMB4 29719 COMB4 + T SEI 29720 COMB4 + 100 % WIND ( Tran) 297

Unit : KN

b) Wind load

Height of superstructure above GL = 11.587 m

1) For Wind load 100 % in transverse direction

For wind load on loaded structure wind pressure shall be

Wind pressure at this height = 96.08 kg/m2

= 0.960784 kN/m2

Depth of super structure = 2.500 + 1

( Including crash barrier ) = 3.5 mWind load = 3.36 kN/m

Wind load on Live load = 300 kg/m= 3 kN/m

Total wind load = 6.36 kN/m

Wind force for superstructure

For Live load condition = 3.00 x= 91.5 kN

Lever Arm = 13.587 m

For Superstructure = 3.36 x= 102.6 kN= 10.992 m

Wind load for substructure

Exposed area of pier cap = 2.55 + 22

= 5.25525 m2Wind load = 0.960784 x 5.25525

5.05 kNLever arm = 8.23 mArea of pier exposed = 2 x 6.19

Page 93: Pile Reaction and Pile Cap (4PG) - P142

= 12.374 m2Wind load = 0.960784 X 12.374

11.89 kNLever Arm = 3.59 m

For wind load on unloaded structure wind pressure shall be

= 240 kg/m2= 2.4 kN/m2

Wind load on superstructure = 8.40 kN/m

Wind force for superstructure

For No -Live load condition = 8.40 x= 256.2 kN

Wind load for substructure

Exposed area of pier cap = 2.55 + 22

= 5.25525 m2Wind load = 2.4 x 5.25525

12.6126 kNLever arm = 8.23 m

Area of pier exposed = 2 x 6.187= 12.374 m2

Wind load = 2.40 X 12.37429.70 kN

Lever Arm = 3.59 m

Sr.No. Load combination Fh trans superstructure Fh trans pier cap

102.6 SUPP1 DL + SIDL + LL + Wind 91.50 LL 5.052 DL + SIDL + Wind 256.20 12.61

Unit : kN

2) For Wind load 65 % in transverse ans 35 % wind in longitudinal direction

Sr.No. Load combination Superstructure Pier cap65 % FT 35 % FL 65 % FT

1 DL + SIDL + LL + Wind66.6663998 35.897292

59.48 32.03 3.282 DL + SIDL + Wind 166.53 89.67 8.20

c) Seismic condition

Calculation of Time period

Calculation of Time period T as per Interim recommendations of IRC-6 2000

Page 94: Pile Reaction and Pile Cap (4PG) - P142

T = 2 D1000 F

Where,T = Time periodD = Appropriate Dead and Live load in kNF = Horizontal force to be applied at superstructure mass to

produce 1 mm deflectin at top of pier

Page 95: Pile Reaction and Pile Cap (4PG) - P142

FP L3 Diflection 1.0mm3 E I

GLAh = Z Sa I

2 g R

Soil type NoHard 1

Medium 2Soft 3

For OSD case For Seismic case(in OSD Case 50 % Seismic)F = 90.58 kN F = 90.58D = 10564 kN D = 20590T = 0.683 sec T = 0.954

Z = 0.16 Z = 0.16I = 1.5 I = 1.5R = 2.5 R = 2.5

Soil type = 1 Soil type = 1sa/g = 1.464 sa/g = 1.049Ah = 0.035 Ah = 0.050

1) Longitudinal seimic with OSD

a) Forces due to superstructure

Horizontal force == 528 kN

Lever arm of this force = 9.497

b) Forces due to substructure

Force due pier cap = 0.035= 23.15

Lever arm for this force = 8.23

For due to Pier = 0.035= 28.02

Lever arm for this force = 3.59

d =

m Rx

Page 96: Pile Reaction and Pile Cap (4PG) - P142

2) Transverse seimic with OSD

a) Forces due to superstructure

Horizontal force == 528 kN

Lever arm of this force = 9.497

Transverse force = 0.035 x 10564= 371.20 kN

Lever arm of this force = 10.992 m

b) Forces due to substructure

Force due pier cap = 0.035= 23.15

Lever arm for this force = 8.23

For due to Pier = 0.035= 28.02

Lever arm for this force = 3.59

3) Longitudinal Seismic

a) Forces due to superstructure

Longitudinal force =

Max ML case = 894 kN

LA of this force = 9.50 m

b) Forces due to substructure

Force due to pier cap = 0.0503 x 658.698= 33.16 kN= 8.23 m

For due to Pier = 0.050 x= 40.14 kN

Lever arm for this force = 3.59 m

m Rx

m Rx

Page 97: Pile Reaction and Pile Cap (4PG) - P142

4) Transverse seismic

a) Forces due to superstructure

Longitudinal force =

Longitudinal force = 850 kNLA of this force = 9.50 m

Transverse force due to max ML = 0.050 x 18518(DL+SIDL) = 932.14 kN

LA of this force (LL) = 10.99 mFor due to LL = 0.050 x 2536

= 127.67 kN

LA of this force (LL) = 10.99 m

Transverse force due to max MT = 0.050 x 18518

(DL+SIDL) = 932.14 kNLA of this force = 10.99 m

For due to LL = 0.050 x 2073= 104.33 kN

LA of this force (LL) = 13.59 m

b) Forces due to substructure

Force due to pier cap = 0.050 x 659= 33.16 kN= 8.23 m

For due to Pier = 0.050 x= 40.14 kN

Lever arm for this force = 3.59 m

5) Centrifugal Force

CF = As per IRC-6-2000, Cl-215.2127R

For Max ML Case:-

Max, Live load reaction, W = 1280 kNDesign speed for curved span, V = 100 KmphRediuas of Curveture span, R = 760 m

Centrifugal Force, CF = 1280 x127 x

m Rx

WV2

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to lo

Page 98: Pile Reaction and Pile Cap (4PG) - P142

Centrifugal Force, CF = 132.62 kNLA for this force = 13.587 m

4.3

For Max MT Case:-

4.3.1Max, Live load reaction, W = 494 kN

Design speed for curved span, V = 100 KmphRediuas of Curveture span, R = 760 m

Centrifugal Force, CF = 494 x127 x

Centrifugal Force, CF = 51.18 kNLA for this force = 13.587 m

6) Forces due to vertical loadsVertical loadSr.No. Load combination Combination

1 OSD without LL + 50% L Sei 105642 OSD without LL + 50% T Sei 105643 OSD with one lane class A 115964 OSD with two lane class A 126295 DL + SIDL = COMB 1 185186 235907 226638 COMB 2 + WIND ( 100 % TRANS ) 235909 COMB 3 + WIND ( 100 % TRANS ) 22663

10 COMB 2 + WIND ( 65 %T - 35 % L ) 2359011 COMB 3 + WIND ( 65 %T - 35 % L ) 2266312 COMB 1 + Wind ( 100 % TRANS ) 1851813 COMB 1 + Wind ( 65% T - 35 % L) 1851814 COMB 1 +0.5 LL ( Max ML) + L Seismic 2105415 COMB 1 +0.5 LL ( Max MT) + L Seismic 2059016 COMB 1 +0.5 LL (Max ML) + T Seismic 2105417 COMB 1 +0.5 LL ( Max MT) + T Seismic 2059018 COMB 1 +4CLASSA + CF = COMB4 2345819 COMB4 + T SEI 2345820 COMB4 + 100 % WIND ( Tran) 23458

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal force deu to lo

COMB 1 + LL ( For Max ML ) = COMB2COMB 1 + LL ( For Max MT )=COMB 3

Page 99: Pile Reaction and Pile Cap (4PG) - P142

Bending moments in Long direction

Sr.No. Load combination Unbalanced P1 OSD without LL + 50% L Sei 105642 OSD without LL + 50% T Sei 105643 OSD with one lane class A 115964 OSD with two lane class A 126295 DL + SIDL = COMB 1 2610

6 7683

7 26058 COMB 2 + WIND ( 100 % TRANS ) 76839 COMB 3 + WIND ( 100 % TRANS ) 2605

10 COMB 2 + WIND ( 65 %T - 35 % L ) 768311 COMB 3 + WIND ( 65 %T - 35 % L ) 260512 COMB 1 + Wind ( 100 % TRANS ) 261013 COMB 1 + Wind ( 65% T - 35 % L) 261014 COMB 1 +0.5 LL ( Max ML) + L Seismic 514715 COMB 1 +0.5 LL ( Max MT) + L Seismic 260816 COMB 1 +0.5 LL (Max ML) + T Seismic 514717 COMB 1 +0.5 LL ( Max MT) + T Seismic 260818 COMB 1 +4CLASSA + CF = COMB4 155019 COMB4 + T SEI 155020 COMB4 + 100 % WIND ( Tran) 1550

Unit : kN, m, kN-m

Bending moments in Trans direction

Sr.No. Load combination Unbalanced P1 OSD without LL + 50% L Sei 02 OSD without LL + 50% T Sei 03 OSD with one lane class A 35364 OSD with two lane class A 52665 DL + SIDL = COMB 1 0

6 3887

7 109598 COMB 2 + WIND ( 100 % TRANS ) 38879 COMB 3 + WIND ( 100 % TRANS ) 10959

10 COMB 2 + WIND ( 65 %T - 35 % L ) 388711 COMB 3 + WIND ( 65 %T - 35 % L ) 1095912 COMB 1 + Wind ( 100 % TRANS ) 013 COMB 1 + Wind ( 65% T - 35 % L) 014 COMB 1 +0.5 LL ( Max ML) + L Seismic 194415 COMB 1 +0.5 LL ( Max MT) + L Seismic 548016 COMB 1 +0.5 LL (Max ML) + T Seismic 194417 COMB 1 +0.5 LL ( Max MT) + T Seismic 548018 COMB 1 +4CLASSA + CF = COMB4 179119 COMB4 + T SEI 179120 COMB4 + 100 % WIND ( Tran) 1791

Unit : kN, m, kN-m

The forces arisng due to horizontal loads are as tabulated as given in next table.

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 100: Pile Reaction and Pile Cap (4PG) - P142

4.3.2 Forces due to horizontal loads

4.3.2.1 Bending moments in Longitudinal direction due to superstructure

Sr.No. Load combination1 OSD without LL + 50% L Sei 5282 OSD without LL + 50% T Sei 5283 OSD with one lane class A 5804 OSD with two lane class A 6315 DL + SIDL = COMB 1 290

6 543

7 3318 COMB 2 + WIND ( 100 % TRANS ) 5439 COMB 3 + WIND ( 100 % TRANS ) 331

10 COMB 2 + WIND ( 65 %T - 35 % L ) 54311 COMB 3 + WIND ( 65 %T - 35 % L ) 33112 COMB 1 + Wind ( 100 % TRANS ) 29013 COMB 1 + Wind ( 65% T - 35 % L) 29014 COMB 1 +0.5 LL ( Max ML) + L Seismic 89415 COMB 1 +0.5 LL ( Max MT) + L Seismic 85016 COMB 1 +0.5 LL (Max ML) + T Seismic 41617 COMB 1 +0.5 LL ( Max MT) + T Seismic 31018 COMB 1 +4CLASSA + CF = COMB4 29719 COMB4 + T SEI 29720 COMB4 + 100 % WIND ( Tran) 297

Unit : kN, m , kN-m

Bending moments in Transverse direction due to superstructure

Sr.No. Load combination1 OSD without LL + 50% L Sei 02 OSD without LL + 50% T Sei 3713 OSD with one lane class A 04 OSD with two lane class A 05 DL + SIDL = COMB 1 0

6 0

7 08(1) COMB 2 + WIND ( 100 % TRANS ) 103 SUPP8(2) COMB 2 + WIND ( 100 % TRANS ) 92 LL9(1) COMB 3 + WIND ( 100 % TRANS ) 103 SUPP9(2) COMB 3 + WIND ( 100 % TRANS ) 92 LL

10(1) COMB 2 + WIND ( 65 %T - 35 % L ) 67 SUPP10(2) COMB 2 + WIND ( 65 %T - 35 % L ) 59 LL11(1) COMB 3 + WIND ( 65 %T - 35 % L ) 67 SUPP11(2) 59 LL

12 COMB 1 + Wind ( 100 % TRANS ) 25613 COMB 1 + Wind ( 65% T - 35 % L) 16714 COMB 1 +0.5 LL ( Max ML) + L Seismic 015 COMB 1 +0.5 LL ( Max MT) + L Seismic 0

16(1) COMB 1 +0.5 LL (Max ML) + T Seismic 932 DL+SIDL16(2) COMB 1 +0.5 LL (Max ML) + T Seismic 128 (LL)

FL

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

FT

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 101: Pile Reaction and Pile Cap (4PG) - P142

17(1) COMB 1 +0.5 LL ( Max MT) + T Seismic 932 DL+SIDL17(2) COMB 1 +0.5 LL ( Max MT) + T Seismic 104 (LL)

18 COMB 1 +4CLASSA + CF = COMB4 14319(1) COMB4 + T SEI (DL+SIDL) 1075 DL+SIDL19(2) COMB4 + T SEI (LL) 27120(1) COMB1 + 100 % WIND ( Tran) (DL+SIDL) 10320(2) COMB1 + 100 % WIND ( Tran) (LL) 92

Unit : kN, m , kN-m

Transverse force due to centrifugal force on superstructure

Sr.No. Load combination

6 132.62

7 51.188 COMB 2 + WIND ( 100 % TRANS ) 132.629 COMB 3 + WIND ( 100 % TRANS ) 51.18

10 COMB 2 + WIND ( 65 %T - 35 % L ) 132.6211 COMB 2 + WIND ( 65 %T - 35 % L ) 51.1814 COMB 1 +0.5 LL ( Max ML) + L Seismic 66.3115 COMB 1 +0.5 LL ( Max MT) + L Seismic 25.5916 COMB 1 +0.5 LL (Max ML) + T Seismic 66.3117 COMB 1 +0.5 LL ( Max MT) + T Seismic 25.59

FT

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 102: Pile Reaction and Pile Cap (4PG) - P142

4.3.2.2 Bending moments in Longitudinal direction due to Substructure

Sr.No. Load combination1 OSD without LL + 50% L Sei

Pier cap 23.15Pier 28.02

2 OSD without LL + 50% T SeiPier cap

Pier 3 OSD with one lane class A

Pier capPier

4 OSD with two lane class APier cap

Pier 5 DL + SIDL = COMB 1

Pier capPier

6Pier cap

Pier 7

Pier capPier

8 COMB 2 + WIND ( 100 % TRANS )Pier cap

Pier 9 COMB 3 + WIND ( 100 % TRANS )

Pier capPier

10 COMB 2 + WIND ( 65 %T - 35 % L )Pier cap 1.77

Pier 4.1611 COMB 3 + WIND ( 65 %T - 35 % L )

Pier cap 1.77Pier 4.16

12 COMB 1 + Wind ( 100 % TRANS )Pier cap

Pier 13 COMB 1 + Wind ( 65% T - 35 % L)

Pier cap 4.41Pier 10.39

14 COMB 1 +0.5 LL ( Max ML) + L Seismic Pier cap 33.16

Pier 40.1415 COMB 1 +0.5 LL ( Max MT) + L Seismic

Pier cap 33.16Pier 40.14

16 COMB 1 +0.5 LL (Max ML) + T Seismic Pier cap 0.00

Pier 0.0017 COMB 1 +0.5 LL ( Max MT) + T Seismic

Pier cap 0.00Pier 0.00

4.3.2.3 Bending moments in Transverse direction due to SubstructureSr.No. Load combination

1 OSD without LL + 50% L SeiPier cap

FL

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

FT

Page 103: Pile Reaction and Pile Cap (4PG) - P142

Pier 2 OSD without LL + 50% T Sei

Pier cap 23.15Pier 28.02

3 OSD with one lane class APier cap

Pier 4 OSD with two lane class A

Pier capPier

5 DL + SIDL = COMB 1Pier cap

Pier 6

Pier capPier

7Pier cap

Pier 8 COMB 2 + WIND ( 100 % TRANS )

Pier cap 5.05Pier 11.89

9 COMB 3 + WIND ( 100 % TRANS )Pier cap 5.05

Pier 11.8910 COMB 2 + WIND ( 65 %T - 35 % L )

Pier cap 3.28Pier 8.20

11 COMB 3 + WIND ( 65 %T - 35 % L )Pier cap 3.28

Pier 8.2012 COMB 1 + Wind ( 100 % TRANS )

Pier cap 12.61Pier 29.70

13 COMB 1 + Wind ( 65% T - 35 % L)Pier cap 8.20

Pier 4.4114 COMB 1 +0.5 LL ( Max ML) + L Seismic

Pier capPier

15 COMB 1 +0.5 LL ( Max MT) + L Seismic Pier cap

Pier 16 COMB 1 +0.5 LL (Max ML) + T Seismic

Pier cap 33.16Pier 40.14

17 COMB 1 +0.5 LL ( Max MT) + T Seismic Pier cap 33.16

Pier 40.14Unit : kN, m , kN-m

4.4 Design Loads

As per design criteria, an pier impact load is to be added to the design forces as given below.

To these design loads collision loads as given in tender will be added.

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 104: Pile Reaction and Pile Cap (4PG) - P142

Forces in longitudinal direction = 150 x 3.5= 525 kN-m

Forces in transverse direction = 100 x 3.5= 350 kN-m

These forces shall be added to DL+SIDL load case only and overstressing shall be allowed asper load combination V

Sr.No. Load combination P1 OSD without LL + 50% L Sei 120202 OSD without LL + 50% T Sei 120203 OSD with one lane class A 130534 OSD with two lane class A 140855 DL + SIDL = COMB 1 19974

6 25046

7 241198 COMB 2 + WIND ( 100 % TRANS ) 250469 COMB 3 + WIND ( 100 % TRANS ) 24119

10 COMB 2 + WIND ( 65 %T - 35 % L ) 2504611 COMB 3 + WIND ( 65 %T - 35 % L ) 2411912 COMB 1 + Wind ( 100 % TRANS ) 1997413 COMB 1 + Wind ( 65% T - 35 % L) 1997414 COMB 1 +0.5 LL ( Max ML) + L Seismic 2251015 COMB 1 +0.5 LL ( Max MT) + L Seismic 2204616 COMB 1 +0.5 LL (Max ML) + T Seismic 2251017 COMB 1 +0.5 LL ( Max MT) + T Seismic 22046

Units : kN, kN-m

4.5 Design of Pier

The design of pier is done by Staad-Pro

COMB 1 + LL ( For Max ML ) = COMB2

COMB 1 + LL ( For Max MT )=COMB 3

Page 105: Pile Reaction and Pile Cap (4PG) - P142

C D0 00 00 00 0

3977 39773977 39772400 76293977 39772400 76293977 39772400 76293977 39773977 39773977 39773188 58033977 39773188 58036021 49336021 49336021 4933

Since the pier supports superstructure with expansion joints, all bearings are free in longitudinal

Clause 214.5.2 IRC 6 : 2000

7566

This design notes consists of Limit State check for Pier P264. The design of pile is already submitted in design notes no. 5661/E/DN-354. For vertical forces acting on pier ref. design notes no 5661/e/dn-354, the are enhanced by

Page 106: Pile Reaction and Pile Cap (4PG) - P142

Table 4 of IRC 6 : 2000

> 4.5

30.5

30.5

x 2.31

5.25525

Clause 212.6 of IRC 6: 2000

Page 107: Pile Reaction and Pile Cap (4PG) - P142

12.374

> 6.36

30.5

x 2.31

5.25525

12.374

Fh trans pier cap Fh trans pier

5.05 11.8912.61 29.70

Pier cap Pier35 % FL 65 % FT 35 % FL

1.77 7.73 4.164.41 19.30 10.39

Clause 212.7 of IRC 6: 2000

Page 108: Pile Reaction and Pile Cap (4PG) - P142

9.761

Page 109: Pile Reaction and Pile Cap (4PG) - P142

Centre of super structure

pier 9.497 m 10.992

2 m

10 m

13.587kNkNsec

m

x 658.7kNm

x 797.4kNm

Fixity at pile cap top

Page 110: Pile Reaction and Pile Cap (4PG) - P142

m

x 659kNm

x 797.4kNm

Clause 214.5 of IRC 6 : 2000

797

Page 111: Pile Reaction and Pile Cap (4PG) - P142

Clause 214.5 of IRC 6 : 2000

18518

2536

18518

2073

797

100 2760

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal

Page 112: Pile Reaction and Pile Cap (4PG) - P142

100 2760

Cap + Pier Total P1456 120201456 120201456 130531456 140851456 199741456 250461456 241191456 250461456 241191456 250461456 241191456 199741456 199741456 225101456 220461456 225101456 220461456 249141456 249141456 24914

The centrifugal force is calculated for various combinations. As per the tende documents. The special load/over load is a Traffic Jam load. i.e. Static load. Therefore in a particular combinations when super load is considered, centrifugal

Page 113: Pile Reaction and Pile Cap (4PG) - P142

e Long0.75 79230.75 79230.75 86970.75 94720.75 1958

0.75 5762

0.75 19540.75 57620.75 19540.75 57620.75 19540.75 19580.75 19580.75 38600.75 19560.75 38600.75 19560.75 11630.75 11630.75 1163

e Trans2 02 02 70732 105322 0

2 7774

2 219192 77742 219192 77742 219192 02 02 38872 109592 38872 109592 35822 35822 3582

Moment ML

Moment MT

Page 114: Pile Reaction and Pile Cap (4PG) - P142

LA9.497 50169.497 50169.497 55079.497 59979.497 2750

9.497 5159

9.497 31429.497 51599.497 31429.497 51599.497 31429.497 27509.497 27509.497 84879.497 80699.497 39559.497 29469.497 28179.497 28179.497 2817

LA0.000 0

10.992 40800.000 00.000 00.000 0

0.000 0

13.587 010.992 112713.587 124310.992 112713.587 124310.992 73313.587 80810.992 73313.587 80810.992 281610.992 183013.287 013.287 010.992 1024613.587 1735

Moment ML

Moment MT

Page 115: Pile Reaction and Pile Cap (4PG) - P142

10.992 1024613.587 1417

### 1943### 11818### 3678### 1127### 1243

LA

132.62 13.587 1802

51.18 13.587 695132.62 13.587 180251.18 13.587 695

132.62 13.587 180251.18 13.587 69566.31 13.587 90125.59 13.587 34866.31 13.587 90125.59 13.587 348

FT Moment M

Page 116: Pile Reaction and Pile Cap (4PG) - P142

LA

8.2 1903.6 101

8.23 14.543.59 14.95

8.23 14.543.59 14.95

8.23 36.323.59 37.35

8.23 272.793.59 144.25

8.23 272.793.59 144.25

8.23 0.003.59 0.00

8.23 0.003.59 0.00

LA

Moment ML

Moment MT

Page 117: Pile Reaction and Pile Cap (4PG) - P142

8.23 190.423.59 100.69

8.23 41.543.59 42.72

8.23 41.543.59 42.72

8.23 27.003.59 29.46

8.23 27.003.59 29.46

8.23 103.763.59 106.72

8.23 67.453.59 15.86

8.23 272.793.59 144.25

8.23 272.793.59 144.25

As per design criteria, an pier impact load is to be added to the design forces as given below.

Page 118: Pile Reaction and Pile Cap (4PG) - P142

3.5

3.5

These forces shall be added to DL+SIDL load case only and overstressing shall be allowed as

13230 012939 437114204 707315469 105325233 350

10921 9576

5096 2261410921 120315096 25069

10951 111745126 242114708 30274782 1914

12764 478810442 113077815 171864902 23388

ML MT