Pigments Nanocomposites

Click here to load reader

  • date post

    03-Apr-2018
  • Category

    Documents

  • view

    221
  • download

    0

Embed Size (px)

Transcript of Pigments Nanocomposites

  • 7/28/2019 Pigments Nanocomposites

    1/28

    GlossGloss

    Specular Reflection(Mirror-like Reflection) Diffuse Reflection

    Gloss

    Gloss is determined by the difference between

  • 7/28/2019 Pigments Nanocomposites

    2/28

    Effect of Particle Shape &Effect of Particle Shape &Alignment on GlossAlignment on Gloss

    glossy flat

    alignment of pigments during drying

    glossy flat

  • 7/28/2019 Pigments Nanocomposites

    3/28

    60 Degree Gloss

    Talc / CaCO3

    Mica / CaCO3BaSO4 / CaCO3

    Epoxy / Cymel

    Control - CaCO3

    EG-44 / CaCO3

    Kaogloss 90 / CaCO3

    Vinyl Acrylic

    Acrylic

    Urethane Acrylic

    0.00 1.00 2.00 3.00 4.00 5.00 6.00

    Control - EVCL

    Gloss Value

  • 7/28/2019 Pigments Nanocomposites

    4/28

    85 Degree Gloss

    Dolomite / CaCO3

    Talc / CaCO3

    Mica / CaCO3

    BaSO4 / CaCO3

    Epoxy / Cymel

    Control - CaCO3

    EG-44 / CaCO3

    Kaogloss 90 / CaCO3

    Vinyl Acrylic

    Acrylic

    Urethane Acrylic

    0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

    Control - EVCL

    c

    Gloss Value

  • 7/28/2019 Pigments Nanocomposites

    5/28

    What is Nanotechnology? Nanotechnolo is the understandin and control of

    matter at dimensions of roughly 1 to 100 nanometers,where unique phenomena enable novel applications.- ,

    engineering and technology; nanotechnology involves

    imaging, measuring, modeling, and manipulatingma er a s eng sca e.

    (www.nano.gov)

    ASTM Subcommittee E56.01, Standard Terminology Relatingto Nanotechnology, 2008,http://www.astm.org/Standards/E2456.htm

  • 7/28/2019 Pigments Nanocomposites

    6/28

    Size and refractive index of particles are

    importantNanoparticles are smaller than the wavelength of

    visible light; reduces chance of light scattering

  • 7/28/2019 Pigments Nanocomposites

    7/28

    Surface Area

    Volume = 4/3**r3 Surface area = 4**r2

    1 gram of TiO2 Volume = 0.25 cm3

    ar c ediameter

    (nm)

    ar c esper gram

    ur acearea per

    gram (m2)

    ur aceArea /

    Volume

    200 6 x 1013 7.5 1.8 x 1012

    x . x

    2 6 x 1019 750 1.8 x 1020

  • 7/28/2019 Pigments Nanocomposites

    8/28

    u s ur ace roper esu s ur ace roper es

    Bulk properties are not scalable to nanoscale

  • 7/28/2019 Pigments Nanocomposites

    9/28

    Interfacial Material Content

    Particle Diameter

    nm

    Interfacial 0.03 0.04 0.05 0.06 0.10 0.22

    10 nm Interfacial Layer

    Dispersed particle volume fraction is 0.3 in all cases

  • 7/28/2019 Pigments Nanocomposites

    10/28

    Nanocomposite CharacteristicsExtensive interfacial area

    103 to 104 m2/ml

    Large number density of particles 106 to 108particles/m3

    Low percollation threshold

    ~0.1 2 volume%Short distance between particles

    ~0.1 2 volume%

    u mater a propert es not sca a e

    Optical clarity

  • 7/28/2019 Pigments Nanocomposites

    11/28

    Interfacial Material Pro erties

    o ymer mo ecu es a n er ace ur actants at water a r nter ace

  • 7/28/2019 Pigments Nanocomposites

    12/28

    Glass Transition in Nanocomposites Thermo-mechanical properties of LLDPE/SiO2 nanocomposites, E.

    ontou an . iaounsi is, o ymer, , , - g ncreases

    of 25 to 30oC observed with up to 10% nano silica

    -Nanocomposites, B. J . Ash, R. W. Siegel, and L. S. Schadler, J .Polym. Sci.: Part B: Polym. Phys., 42, 4371, 2004.Nano alumina /PMMA com osites. 25oC dro in T with less than 1% 38nm and0.5% 17 nm. Up to 10% further addition did not lead toadditional Tg reductions

  • 7/28/2019 Pigments Nanocomposites

    13/28

    Cla /Pol mer NanoCla /Pol mer Nano--com ositescom osites

    NanocompositesTo ota/Ube 1980s

    70% higher tensile

    modulus 125% higher flexural

    modulus

    temperature increased

    from 65 oC to 152 oC Epoxy / Layered Silicate (Vaia Materials Today, 2004)

  • 7/28/2019 Pigments Nanocomposites

    14/28

    Layered Structure of Vermiculite ClayLayered Structure of Vermiculite Clay

    X-ray diffraction pattern

    Pinnavaia, T.J., and Beall and G.W. (Ed.), Polymer-Clay Nanocomposites, Wiley (2000)

    Gao F., Materials Today, November 2004

    , . . , . ., ,

  • 7/28/2019 Pigments Nanocomposites

    15/28

    NanoNano--Clays: BenefitsClays: Benefits

    Barrier

    as, a er, e c.

    Anti-Corrosion

    Fire Retardancy

    Mechanical Pro erties

    Microcomposite

    Aspect Ratio

    25:1

    Aspect Ratio

    250:1

  • 7/28/2019 Pigments Nanocomposites

    16/28

    In-Situ Generation of Nanophases

    TEOS Hydrolysis/condensation

  • 7/28/2019 Pigments Nanocomposites

    17/28

    SolSol--Gel Hybrid NanoGel Hybrid Nano--CompositeComposite

    Si

    OCH3

    -OCH2CH2CHCH2H3COOCH3

    O

    OC HO

    + +

    Si

    OC2H5C2H5OO

    CO

    C

    O

    GPTMOS

    Inor anic / Or anic Nanocom osite

  • 7/28/2019 Pigments Nanocomposites

    18/28

    Nano articecles: Current Availabilit

    oat ng roperty anomater a

    Anti-microbial CuO ; TiO2 ; ZnO

    as arr er anoc ays

    Corrosion Nanoclays, boehmite

    Electrical Conductivity, Static Charge ITO, ATO, SnO2

    Fire Retardant Nanoclays

    IR-Absorption/Reflection ITO, ATO, TiO2, In2O3

    Magnetic Fe2O3

    Mechanical, Scratch Resistance Al2O3; SiO2; ZrO2

    Photocatal sis, self-cleanin TiO ; ZnO

    UV stability TiO2 ; ZnO; BaSO4; CeO2

  • 7/28/2019 Pigments Nanocomposites

    19/28

    Low Solids PU

    100

    80

    90

    ntion(20o)

    60

    70

    lossRete

    Alumina C

    Alumina D

    40

    50% Silica A

    . . . .

    Nanopart icle Content (Wt.%)

  • 7/28/2019 Pigments Nanocomposites

    20/28

    Lotus EffectLotus Effect

    Rainwater cleans lotus leaves because oftheir bumpy surface.

    , .,

    Barthlott et al., Annals of Botany (1997)

  • 7/28/2019 Pigments Nanocomposites

    21/28

    Contact AngleContact Angle WettingWetting

    - Contact Angle

    Zero Contact Angle

    & Spreading

  • 7/28/2019 Pigments Nanocomposites

    22/28

    Nano-Structuring MethodsTransformation of a Simple Plastic into a SuperhydrophobicSurface

    Erbil, Demirel, Avci, and Mert, Science, Vol 299, Issue 5611, 1377-1380 , 28 February 2003

    -. angle of 104 2. The i-PP film was prepared by melting at 200C between two glass

    slides and crystallizing at 100C. (B) The profile of a water drop on asuperhydrophobic i-PP coating on a glass slide that has a contact angle of 160. The i-

    PP was dissolved in a 60% p-xylene/40% MEK mixture by volume at an initialconcentration of 20 mg/ml at 100C. The solvent mixture was evaporated at 70C in a

    vacuum oven. The morphology of the i-PP coating is shown in Fig. 4.

    . . an i-PP coatingobtained using the

    nonsolvent MEK as

    described in Fig. 1B

  • 7/28/2019 Pigments Nanocomposites

    23/28

    Photocatalytic TiO2 Nanoparticle

    pp ca on

    -

    Antibacterial Activity

    Super hydrophilicity Anti-fogging activity

  • 7/28/2019 Pigments Nanocomposites

    24/28

    Inorganic-Organic Hybrid Latex Polymers

    BASF COL.9 Nano-binder (Example) Herbol German Fa ade coatin

    Major US Paint Manufacturer

    -

    Composition: Nano-silica embedded in polymer

    latex article durin s nthesis

    Avoids dispersion by formulator

    Minimum interference with polymer particle

    coalescence

  • 7/28/2019 Pigments Nanocomposites

    25/28

  • 7/28/2019 Pigments Nanocomposites

    26/28

  • 7/28/2019 Pigments Nanocomposites

    27/28

  • 7/28/2019 Pigments Nanocomposites

    28/28