Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10....

39
Pierre Bouilhol Accessing Slab processes through numerical models Valentina Magni Jeroen van Hunen Ben. Maunder

Transcript of Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10....

Page 1: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Pierre Bouilhol

Accessing Slab processes

through numerical models

Valentina Magni Jeroen van Hunen

Ben. Maunder

Page 2: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Continents Subduction / Arcs Oceans

Slab / Wedge

processes

Long Term RECYCLING

ARC Building

Page 3: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Geological RECORD:

Essential

But Snapshots

Slab / Wedge

processes

Alpine Slab

Debret et al. JMG 2013

Himalayan Eclogites

Page 4: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Geological RECORD:

Essential

But Snapshots

Slab / Wedge

processes

PTt paths

Mechanisms of Fluid

extraction

Compositions

Complexity of interface Alpine Slab

Debret et al. JMG 2013

Page 5: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

5 mm

Experiments:

Essential

But Snapshots

(and tiny…)

Slab / Wedge

processes

Himalayan Eclogites

Phase stability

Flaw laws

Kd’s / Fluid

Compositions

1 cm

ETH website Courtesy C.B. Till

Page 6: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Numerical MODELS:

Essential

Incomplete

Slab / Wedge

processes

Fluid Flow

Re-hydration / melting

patterns

As too complex otherwise

Tackling problems 1 by 1

Wilson et al. 2014

Page 7: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Slab / Wedge

processes

Gerya & Yuen 2003

Rheology

Slab behaviour

Fate of solid fluxes

Numerical MODELS:

Essential

Incomplete

As too complex otherwise

Tackling problems 1 by 1

Page 8: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Slab / Wedge

processes

van Keken et al. 2011

Thermodynamics

Petrology

H2O flux

Melting potential

Numerical MODELS:

Essential

Incomplete

As too complex otherwise

Tackling problems 1 by 1

Page 9: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Slab / Wedge

processes

Melt extraction ?

Primitive compositions

?

Numerical MODELS:

Essential

Incomplete

As too complex otherwise

Tackling problems 1 by 1

England & Katz 2009

Page 10: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Numerical MODELS:

Essential

Complex & Complete ?

Slab / Wedge

processes

Ringwood 1974

We have the tools:

Thermomech. codes

Thermodynamics

Numerical Community is building the bridge

Still need to represent reality

So for now stuck to a

1 to 1 problem to fit geological record.

Page 11: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Application to Hot Subduction

Hot subduction:

Atypical signature of arc melts (so called “Adakitic”)

Attributed to Slab melting (mafic crust) as a popular

interpretation but really means Grt involved…

Southern Andes

Defant &

Drummond 1990

Page 12: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

1

2

Dehydration melting ? Saturated melting ?

1 2

Need to be able to track dehydration vs melting

In a consistent way

SAT-Closed

unSAT-Open 1

2

Hot Subduction = slab melting ?

Page 13: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Y

X1

X2

Tm 1350°C

30°

Bouilhol, Magni et al. EPSL 2015 Magni, Bouilhol et al. G3 2014

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field.

At each timestep: Assemblage is recalculated f(P-T-X) X being single or multi-component !

Model Set-up

Page 14: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Tm 1350°C

30°

A-B = C-D-H2O

Y

X1

X2

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field.

At each timestep: Assemblage is recalculated f(P-T-X)

X for now is H2O

Model Set-up

Page 15: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

A-B = C-D-H2O

Y E-F + H2O = E2-F

X1

X2

Tm 1350°C

30°

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Model Set-up

Passive tracers that move with the velocity field.

At each timestep: Assemblage is recalculated f(P-T-X)

X for now is H2O

Page 16: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

A-B = C-D-H2O

Y E-F + H2O = E2-F+ H2O

X1

X2

Tm 1350°C

30°

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Model Set-up

Allows to model Dehydration &

Re-hydration reactions

Melting conditions

Reactions / Compositions

Passive tracers that move with the velocity field.

At each timestep: Assemblage is recalculated f(P-T-X)

X for now is H2O

Page 17: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Tm 1350°C

30°

Crust (LTBC) H2O 2 wt%

DMM H2O XX wt%

dry DMM

6 k

m

9 k

m

Slab

CNFMASH system Mantle

wedge

PM

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field.

At each timestep: Assemblage is recalculated f(P-T-X).

Model Set-up

Allows to model Dehydration &

Re-hydration reactions

Melting conditions

Reactions / Compositions

Page 18: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Crust (LTBC) H2O 2 wt%

DMM H2O XX wt%

dry DMM

6 k

m

9 k

m

Slab

CNFMASH system

Mantle

wedge

PM

A dynamic solidus

Tm 1350°C

30°

CRUST: Water vs melting

Page 19: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Crust (LTBC) H2O 2 wt%

DMM H2O XX wt%

dry DMM

6 k

m

9 k

m

Slab

CNFMASH system

Mantle

wedge

PM

Tm 1350°C

30°

CRUST: Water vs melting

A dynamic solidus

Page 20: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Tm 1350°C

30°

MANTLE: Water vs melting

Crust (LTBC) H2O 2 wt%

DMM H2O XX wt%

dry DMM

6 k

m

9 k

m

Slab

CNFMASH system

Mantle

wedge

PM

A dynamic solidus

Page 21: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Tm 1350°C

30°

Crust (LTBC) H2O 2 wt%

DMM H2O XX wt%

dry DMM

6 k

m

9 k

m

Slab

CNFMASH system

Mantle

wedge

PM

MANTLE: Water vs melting

A dynamic solidus

Page 22: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

A petrological subduction zone model

For each PT condition we have the equilibrium

phase proportion and composition

Page 23: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

40 Ma; 30°Slab

Atg-Chl

DMM

SOLIDUS

Stuffed with H2O (2 – 4 wt%)

Bouilhol et al. EPSL 2015

Page 24: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Shallow Depth:

Crust dehydration

Mantle wedge hydration

Amph-out

Talc-out

Mantle wedge dehydration

& Melting

Peridotite + H2O

Page 25: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Atg Out

Chl Out

Dry Eclogite

(Cpx+Grt)

+ H2O

At Depth:

Crust dehydration

Slab mantle dehydration

Law-out

Ph-A DHMS

Supercrit. Liq.

Fate (?)

Page 26: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Parametric

study: What controls

dehydration

patterns ?

Overriding plate : Oceanic

Age : 80-5Ma

Velocity: 10 – 2.5 cm/yr

Mantle temperature:

1550 - 1350

DMM H2O% f(age)

Page 27: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Fast = shallow dehydration

but also deeper release

VELOCITY IS KEY FOR

MANTLE melting potential

Magni et al. G3 2014

ONSET

of CRUSTAL

Dehydration

END

of CRUSTAL

Dehydration

Page 28: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

H2O recycling

Magni et al. G3 2014

Page 29: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Some conclusions from these models:

Plate velocity controls slab top temperature

Controls devolatilization and the location of melting

Important parameter for recycling.

unSAT-Open

Page 30: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Dehydration achieved before the solidus is reached

Important mantle wedge melting at shallow depth

Dehydration melting ? Subduction of a “dry mantle lithosphere” 5 Ma Slab

Bouilhol et al. EPSL 2015

Stuffed with H2O (2 wt%)

Page 31: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Water assisted melting

Crust melting through water advection only

Cpx + Grt +H2O ± q/coe Melt

Subduction of a “wet mantle lithosphere” 5 Ma Slab

Important mantle wedge melting at shallow depth

Stuffed with H2O (2 – 4 wt%)

Page 32: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Hot subduction

Young Slab = Hot subduction = Early dehydration

Early dehydration = Different mantle melts

Overriding lithosphere control ( HP fractionation / re-melting)

5 Ma Slab

Fate of Crustal melts ? Pyroxenites ???

Page 33: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Some conclusions from these models:

The amount of H2O subducted is equally important as

the temperature architecture of the system

Plate velocity controls slab temperature

Controls devolatilization and the location of melting

Slab melting is feasible for young slabs

Only if enough water (is there enough ?)

But Amph-peridotite ± H2O melting would dominate

Implication for making the C-Crust / Early earth SZ

Important parameter for recycling.

Page 34: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Next steps:

Need Slab dynamics

Tm 1350°C

30°

Page 35: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Next steps:

Need Slab dynamics

B. Maunder PhD: Testing mafic crust delamination.

For now: f(σ / T) soon f([H2O/Melt])

Page 36: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Numerical MODELS:

Essential

Complex & Complete ?

Slab / Wedge

processes

Ringwood 1974

YES

Getting there

By bringing in all the

necessary ingredients

(Rheology, petrology,

fluid low …)

We/You

are developing…

Page 37: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Need Fluid / Melt dependent rheology

WITH Melt extraction

Need a proper H2O Mantle melt model

(now OK for crust/ NOT great for H2O mantle)

Melt model + Melt/Fluid dynamics

accessing primary melt composition / reaction

throughout the wedge, until it reach the crust, and feed

back mechanism on the dynamic of the system…

Next steps :

Page 38: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition
Page 39: Pierre Bouilhol - GeoPRISMSgeoprisms.org/wpdemo/wp-content/uploads/2015/07/Bouilhol... · 2015. 10. 23. · A dynamic solidus . A petrological subduction zone model For each PT condition

Bouilhol et al. 2011