Pierre Bergeron - Los Alamos National Laboratory

83
White Dwarf Atmospheres Pierre Bergeron Université de Montréal Sirius B

Transcript of Pierre Bergeron - Los Alamos National Laboratory

Page 1: Pierre Bergeron - Los Alamos National Laboratory

White Dwarf Atmospheres

Pierre BergeronUniversité de Montréal

Sirius B

Page 4: Pierre Bergeron - Los Alamos National Laboratory

Input parameters

• Effective temperature (Teff)

• Surface gravity (log g)

• Atmospheric composition (NHe/NH, Z)

• Rotation

• Magnetic field

• Mass loss

Page 5: Pierre Bergeron - Los Alamos National Laboratory

« If the Sun did not have a magnetic field, it would be as boring a star asmost astronomers believe it to be »

(attributed to R.B. Leighton)

Page 6: Pierre Bergeron - Los Alamos National Laboratory

center surface

Basic structure

Page 7: Pierre Bergeron - Los Alamos National Laboratory

center surface

Basic structure

Gilles

Fontaine

Page 8: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

H conv

He conv

P/g 270 km for the Sun

Page 9: Pierre Bergeron - Los Alamos National Laboratory

What are white dwarfs showing us ?

80% are DA stars 20% are «non-DA stars»

Page 10: Pierre Bergeron - Los Alamos National Laboratory
Page 11: Pierre Bergeron - Los Alamos National Laboratory

DB

DA

Page 12: Pierre Bergeron - Los Alamos National Laboratory

DB

DA

Gravitational settling

Page 13: Pierre Bergeron - Los Alamos National Laboratory
Page 14: Pierre Bergeron - Los Alamos National Laboratory
Page 15: Pierre Bergeron - Los Alamos National Laboratory
Page 16: Pierre Bergeron - Los Alamos National Laboratory
Page 17: Pierre Bergeron - Los Alamos National Laboratory
Page 18: Pierre Bergeron - Los Alamos National Laboratory
Page 19: Pierre Bergeron - Los Alamos National Laboratory
Page 20: Pierre Bergeron - Los Alamos National Laboratory

Magnetic White Dwarfs

Page 21: Pierre Bergeron - Los Alamos National Laboratory

Basic Atmospheric Equations

H : Radiation (Eddington) Flux

Page 22: Pierre Bergeron - Los Alamos National Laboratory

Opacity calculations cross-section + population calculations

bound-bound transition

bound-free transition

free-free transition

scattering

Page 23: Pierre Bergeron - Los Alamos National Laboratory

Population calculations

• Local Thermal Equilibrium (LTE) Saha / Boltzmann

• Non-local Thermal Equilibrium (NLTE) Statistical equilibrium equation

• Equation of state (ideal gas, but not always…)

Page 24: Pierre Bergeron - Los Alamos National Laboratory

H b-f

H f-f

H–

H+2 f-f

e-scat

Page 25: Pierre Bergeron - Los Alamos National Laboratory

+ hydrogen lines

(Stark broadening)

Page 26: Pierre Bergeron - Los Alamos National Laboratory

H–

H+2 f-f

H b-f

H2– f-f

H f-f

Page 27: Pierre Bergeron - Los Alamos National Laboratory

H– b-f / f-f

H2– f-f

H2 collision

induced opacity

Page 28: Pierre Bergeron - Los Alamos National Laboratory

Temperature structure Emergent (Eddington) flux

Boundary conditions for stellar interior models

Page 29: Pierre Bergeron - Los Alamos National Laboratory
Page 30: Pierre Bergeron - Los Alamos National Laboratory

Measuring atmospheric parameters using model atmospheres :Spectroscopic technique

NLTE

convective

Page 31: Pierre Bergeron - Los Alamos National Laboratory

Flux calibration is difficult…

Page 32: Pierre Bergeron - Los Alamos National Laboratory

Flux calibration is difficult…

Page 33: Pierre Bergeron - Los Alamos National Laboratory

Balmer line profiles are sensitive to both Teff and log g

Page 34: Pierre Bergeron - Los Alamos National Laboratory

Balmer line profiles are sensitive to both Teff and log g

Stark broadening

atomic level destruction

Page 35: Pierre Bergeron - Los Alamos National Laboratory

i

Hummer-Mihalas occupation probability formalism

j

i

j

Page 36: Pierre Bergeron - Los Alamos National Laboratory

i

Hummer-Mihalas occupation probability formalism

j

i

j

photoexcitation(bound-bound opacity)

i

j

i

photoionisation(bound-free opacity)

κ

e−

wj

wj ››

wj ‹‹

occupationprobability

Page 37: Pierre Bergeron - Los Alamos National Laboratory

i

Hummer-Mihalas occupation probability formalism

j

i

j

photoexcitation(bound-bound opacity)

i

j

i

photoionisation(bound-free opacity)

κ

e−

wj

wj ››

wj ‹‹

occupationprobability

Page 38: Pierre Bergeron - Los Alamos National Laboratory

Spectroscopic technique used for measuring Teff and log gσ(Teff) = 1.2 % Teff σ(log g) = 0.038 dex

Page 39: Pierre Bergeron - Los Alamos National Laboratory

log g converted into mass using the mass-radius relation for WDs(mechanical structure provided by degenerate electrons)

log g ~ 8

Smallerradii !

Page 40: Pierre Bergeron - Los Alamos National Laboratory

log g converted into mass using the mass-radius relation for WDs

Page 41: Pierre Bergeron - Los Alamos National Laboratory

Mass and log g distributions of 770 DA stars

Page 42: Pierre Bergeron - Los Alamos National Laboratory

Chandrasekhar mass ~ 1.36 M⊙

Page 43: Pierre Bergeron - Los Alamos National Laboratory

Chandrasekhar mass ~ 1.36 M⊙

electronsbecome

relativistic

Page 44: Pierre Bergeron - Los Alamos National Laboratory

ZZ Ceti stars + photometrically constant white dwarfs

Page 45: Pierre Bergeron - Los Alamos National Laboratory

Mass distribution as a function of Teff

DA stars from the SDSS / DR4

high-log g problem

Page 46: Pierre Bergeron - Los Alamos National Laboratory

Mass distribution as a function of Teff

DA stars from the SDSS / DR4

high-log g problem

Page 47: Pierre Bergeron - Los Alamos National Laboratory
Page 48: Pierre Bergeron - Los Alamos National Laboratory
Page 49: Pierre Bergeron - Los Alamos National Laboratory

Application to DB (helium-line) white dwarfs

Page 50: Pierre Bergeron - Los Alamos National Laboratory
Page 51: Pierre Bergeron - Los Alamos National Laboratory

Application to DQ (carbon-line) white dwarfs

Page 52: Pierre Bergeron - Los Alamos National Laboratory

Application to DZ (metal-line) white dwarfs

Page 53: Pierre Bergeron - Los Alamos National Laboratory

Application to hot DO (helium-line)

white dwarfs

Page 54: Pierre Bergeron - Los Alamos National Laboratory

Application to DC (featureless!) white dwarfs

Page 55: Pierre Bergeron - Los Alamos National Laboratory

Stellar flux integrated over filter bandpasses (magnitudes)

Page 56: Pierre Bergeron - Los Alamos National Laboratory

http://www.astro.umontreal.ca/~bergeron/CoolingModels/

Page 57: Pierre Bergeron - Los Alamos National Laboratory

http://www.astro.umontreal.ca/~bergeron/CoolingModels/

For Dummies

Page 58: Pierre Bergeron - Los Alamos National Laboratory

Photometric method

fλ = π (R/D)2 4Hλ

Hλ = Hλ(Teff , log g)

D = 1 / π

g = GM / R2

M-R relation for WDs

Page 59: Pierre Bergeron - Los Alamos National Laboratory
Page 60: Pierre Bergeron - Los Alamos National Laboratory

Hybrid spectroscopic and photometric approach

Page 61: Pierre Bergeron - Los Alamos National Laboratory

Application to «ultracool» white dwarfs

H2 collision-induced absorption (CIA)

Page 62: Pierre Bergeron - Los Alamos National Laboratory
Page 63: Pierre Bergeron - Los Alamos National Laboratory

DB gap

Cooling time →

G. Fontaine & F. Wesemael (1987, 2nd conf. on Faint Blue Stars)

Page 64: Pierre Bergeron - Los Alamos National Laboratory

DB gap

Cooling time →

Evidence for the spectral evolution of white dwarfs

H → HeHe → H

G. Fontaine & F. Wesemael (1987, 2nd conf. on Faint Blue Stars)

Page 65: Pierre Bergeron - Los Alamos National Laboratory
Page 66: Pierre Bergeron - Los Alamos National Laboratory

He

H

Photosphere

Page 67: Pierre Bergeron - Los Alamos National Laboratory

He

H

DO DA

Photosphere

Requires only10-16 M

of

hydrogen

Page 68: Pierre Bergeron - Los Alamos National Laboratory
Page 69: Pierre Bergeron - Los Alamos National Laboratory
Page 70: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

HeII conv

HeI conv

Page 71: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

HeII conv

HeI convH

He

Convective dilution DA DB

Page 72: Pierre Bergeron - Los Alamos National Laboratory
Page 73: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

H conv

Page 74: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

H conv

H

He

Convective mixing DA ???

Page 75: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

H conv

H

He

Convective mixing DA ???

Page 76: Pierre Bergeron - Los Alamos National Laboratory

Photosphere

H conv

H

He

Convective mixing DA ???

Page 77: Pierre Bergeron - Los Alamos National Laboratory

Origin of carbon in DQ stars

Page 78: Pierre Bergeron - Los Alamos National Laboratory

Helium convection zone

Page 79: Pierre Bergeron - Los Alamos National Laboratory

Helium convection zone

Carbon core (diffusion tail)

Page 80: Pierre Bergeron - Los Alamos National Laboratory

Helium convection zone

Carbon core (diffusion tail)

Carbon in DQ stars is being dredged up from the core

Page 81: Pierre Bergeron - Los Alamos National Laboratory

The Z in DZ stars !

Page 82: Pierre Bergeron - Los Alamos National Laboratory
Page 83: Pierre Bergeron - Los Alamos National Laboratory