Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the...

download Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment's Release

of 46

Transcript of Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the...

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    1/46

    PIANC E-Magazine n 142, January/janvier 2011

    ON COURSEPIANC E-Magazine142 2011

    JANUARY

    JANVIER

    Cruise Shipping Policy-2008,an Initiative of the Government of India

    for Recreational Navigation

    Sensit ivity of PIANC Ship SquatFormulas in Unrestricted Channels

    Simulation of the Dredged Sediments Releasewith a Two-Phase Flow Model

    News from the Navigation Community

    The World Association for Waterborne Transport InfrastructureAssociation Mondiale pour les infrastructures de Transport Maritimes et Fluviales

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    2/46

    PIANC E-Magazine n 142, January/janvier 2011

    PIANCS PLATINUM PARTNERS

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    3/46

    PIANC E-Magazine n 142, January/janvier 2011

    PIANC

    Responsible Editor / Editeur responsable :

    Mr. Louis VAN SCHELBoulevard du Roi Albert II 20, B 3

    B-1000 Bruxelles

    ISBN: 978-2-87223-170-6 EAN: 9782872231706

    All copyrights reserved Tous droits de reproduction rservs

    ON COURSEPIANC E-Magazine

    Setting the Course Garder le cap

    142 2011JANUARYJANVIER

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    4/46

    PIANC E-Magazine n 142, January/janvier 2011

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    5/46

    PIANC E-Magazine n 142, January/janvier 2011

    TABLE OF CONTENTS

    Message of the President

    Rakesh Srivastava, Cruise Shipping Policy-2008, anInitiative of the Government of India for RecreationalNavigation.

    Michael J. Briggs, Sensitivity of PIANC Ship SquatFormulas in Unrestricted Channels.

    Sylvain Guillou, Julien Chauchat,Damien Pham Van Bang, Duc Hau Nguyen,

    Kim Dan Nguyen, Simulation of the DredgedSediments Release with a Two-Phase Flow Model

    News from the navigation community

    TABLE DES MATIERES

    Message du Prsident

    Rakesh Srivastava, La croisire en Inde - 2008,

    une initiative du gouvernement de lInde

    concernant la navigation de plaisance

    Michael J. Briggs, Sensibilit des formules

    de lAIPCN de surenfoncement de navires

    dans les chenaux non restreints.

    Sylvain Guillou, Julien Chauchat,

    Damien Pham Van Bang, Duc Hau Nguyen,

    Kim Dan Nguyen, Simulation du clapage desdiment avec un modle deux phases

    Des nouvelles du monde de la navigation

    E-MAGAZINE N 142 - 2011

    4

    7

    13

    25

    35

    3

    Cover picture: A Houseboat in the Backwaters of theVirgin Islands of Kerala

    Photo de couverture: Un bateau-maison dans les

    eaux intrieures des Iles Vierges de Kerala

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    6/46

    PIANC E-Magazine n 142, January/janvier 2011 4

    MESSAGE OF THE PRESIDENT

    Dear Member,

    First of all, on behalf of PIANC HQ and management, I wish you and yourloved ones a very happy and successful New Year!

    2011 will be undoubtedly become a remarkable year in PIANCs 126-year history. To start with: whenyou are reading this message, you will be looking at a screen, as from now on, PIANC is publishing100% digital publications. The new hardware, such as iPad and the like, are allowing us to read docu-ments whenever and wherever we prefer to do so in the most convenient way. I hope you will appre-ciate this change in policy, which for a technical association that pretends to be leading the way, isdenitely not inappropriate.

    This years AGA will be the stage for the rst presidential elections in PIANCs history. Four candidates,presented by Belgium, France, the UK and the USA, will be competing to become the new President.I am condent that the First Delegates of our Qualifying Members will make the best choice after all

    candidates will have presented their policy plans to the AGA.

    To ensure continuity in the management, Louis Van Schel has offered to continue as Secretary-Generalfor a new mandate until a full-time employed Secretary-General will be recruited. We will continue ourendeavours to attract new Qualifying Members and we hope that the club of Platinum Partners will beenlarged in the near future.

    Looking at the programme for this year, I would like to highlight some events:

    - We will participate in the International Transport Forum in Leipzig in May to promote IWT as anenvironment-friendly mode of transport.

    - In September, New Orleans will be the scene for another Smart Rivers Conference.

    - The preparation of our contribution to next years World Water Forum in Marseille, in which ourFrench Section is taking the lead.

    - The preparation of PIANC-COPEDEC VIII, to be held in Chennai, India in February 2012.

    Once again, I wish all of you a marvellous 2011.

    Sincerely yours,

    Eric Van den EedePresident

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    7/46

    PIANC E-Magazine n 142, January/janvier 20115

    MESSAGE DU PRSIDENT

    Cher membre,

    Tout dabord, de la part du secrtariat gnral et de la direction de lAIPCN, je souhaite une bonne anne

    vous et vos chers!

    Lanne 2011 deviendra sans aucun doute une anne remarquable dans lhistoire de 126 ans de lAIPCN. En

    premier lieu: vous lisez ce message sur un cran, comme dsormais, lAIPCN ne publie que des publications

    digitales. Le nouveau hardware, comme iPad et consorts, nous permet de lire des documents o et quand

    nous prfrons dune manire le plus confortable. Jespre que vous apprciez ce changement en politique,

    ce qui cadre bien dans la philosophie dune association technique qui prtend faire autorit.

    LAGA de cette anne servira de scne o se droulera la premire lection prsidentielle dans lhistoire

    de lAIPCN. Quatre candidats, avancs par la Belgique, la France, le Royaume-Uni et les Etats-Unis, con-courront pour devenir le nouveau prsident. Je suis convaincu que les premiers dlgus de nos membres

    qualis feront le meilleur choix aprs que les candidats auront prsent leurs plans stipulant la politique

    suivre lAGA.

    An de garantir la continuit sur le plan de la direction, Louis Van Schel a propos de prolonger son mandat

    de secrtaire gnral jusqu ce quun secrtaire gnral plein temps soit engag. Nous poursuivrons nos

    efforts pour attirer de nouveaux membres qualis et nous esprons que le club des Partenaires Platinum

    stendra dans un proche avenir.

    En jetant un coup dil au programme pour cette anne, jaimerais mettre laccent sur les vnements sui-

    vants:

    - Au mois de mai, nous participerons l International Transport Forum Leipzig, an de promouvoir

    le transport par voie navigable intrieure en tant que moyen de transport cologique.

    - En septembre, la Nouvelle-Orlans sera hte dune nouvelle dition de la Confrence Smart Rivers.

    - La prparation de notre contribution au prochain Forum Mondial de lEau Marseille, auquel la section

    franaise reprsentera notre association.

    - La prparation de PIANC-COPEDEC VIII, qui aura lieu Chennai, en Inde en fvrier 2012.

    De nouveau, je vous souhaite une merveilleuse anne 2011.

    Bien vous,

    Eric Van den Eede

    Prsident

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    8/46

    PIANC E-Magazine n 142, January/janvier 2011 6

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    9/46

    PIANC E-Magazine n 142, January/janvier 2011

    CRUISE SHIPPING POLICY-2008AN INITIATIVE OF THE GOVERNMENT OF INDIA

    FOR RECREATIONAL NAVIGATION

    KEY WORDS

    cruise shipping, infrastructure for cruise shipping,marina, berth, rail and road connectivity

    MOTS-CLEFS

    croisire, infrastructure pour la croisire, marina,accostage, connections par rail et route

    1. INTRODUCTION

    Cruise shipping is one of the most dynamic andfastest growing components of the leisure industryworldwide. It is fast emerging as a new market-

    able commodity/product, growing at the rate of12% per annum globally, however still marginalin India.

    2. INDIA, A NEW DESTINATIONOF CRUISE SHIPPING

    India with its vast and beautiful coastline (7,500km), virgin forests and undisturbed idyllic islands,rich historical and cultural heritage, can be a fabu-

    lous tourist destination for cruise tourists. With theIndian economy developing at a steady pace ofaround 8 %, its middle class growing in number

    and increasingly possessing disposable incomes,which could be spent on leisure activities, the Indi-ans could also take on cruise shipping in a big way.

    India has 13 major ports and 178 minor ports along

    the coastline, spread over 7,500 km. The majorports are under the administrative control of theCentral Government, the minor ports under the con-trol of State Governments. The major ports handle70 % of the total cargo of the country. These portsare Kolkata, Paradip, Visakhapatnam, Ennore,Chennai, Tuticorin on the East Coast and Kandla,Mormugao, Mumbai, Jawaharlal Nehru Port, NewMangalore, Cochin on the West Coast and the newmajor port, Port Blair Port, is located in the Anda-man and Nicobar islands in the Bay of Bengal.

    3. REQUIREMENTS OFCRUISE SHIPPING

    Cruise shipping is an international industry and itscontribution to the countrys economy is governedby the industry structure infrastructure and policypackage in place. Various relevant componentsare:

    (i) The stated policy on cruise shipping cover-

    ing various aspects(ii) Well-developed port infrastructure, cruiseterminals, etc.

    by

    7

    RAKESH SRIVASTAVA

    Joint Secretary (Ports), Government of IndiaFirst Delegate of India & Vice-President of PIANC

    R. No. 411, Ministry of ShippingTransport Bhavan, Parliament StreetNew Delhi-110001

    India

    Tel.: +91 11 23711873Fax: +91 11 23328549E-mail:js [email protected]

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    10/46

    PIANC E-Magazine n 142, January/janvier 2011

    (iii) Availability of cruise liners(iv) Conducive scal regime

    (v) Hassle free immigration and transit facilities(vi) Marketing strategy(vii) Connectivity to onshore destinations by vari-

    ous modes (road, rail, air and IWT)(viii) Duty-free bunkering(ix) Institutional framework for a holistic devel-

    opment of cruise shipping

    The objectives of the Indian Cruise Shipping Poli-cy formulated in 2008 were:

    (i) To develop India as a destination, as well as

    a source market with state-of-the-art infra-structure and appropriate marketing strata.

    (ii) To increase the number of cruise ship callsand passenger arrivals in a sustainablemanner.

    (iii) To achieve a target of at least one millioncruise passengers landings per year.

    (iv) To strengthen inter-sectorial linkages, whe-reby cruise liners source the requisite sup-plies of goods and services from local Indiansuppliers.

    (v) To consolidate existing ports of call, exploreother ports and suitable anchoring sites onthe Indian coast with a view to making addi-tional cruise ship calls to other areas of the

    country.(vi) To put into operation appropriate promotion-

    al programmes that would effectively con-vert cruise passengers to long stay visitors.(vii) To maximise the benets from the cruise in-

    dustry consistent with the protection of theenvironment.

    (viii) To ensure that the cruise shipping industryin India becomes internationally competitivewith other destinations and contributes tothe economy in terms of generation of for-eign exchange, income, employment andbusiness opportunities.

    (ix) To attract the right segment of foreign tour-

    ists to cruise shipping in India.(x) To popularise cruise shipping with Indian

    tourists.(xi) To enhance an absorptive capacity of the

    country by developing existing and new visi-tor attractions, including event attractions inline with Indias efforts to improve the tour-ism product.

    The Government of India has proposed to takethe following initiatives under the Cruise ShippingPolicy:

    1) Well-developed port infrastructure and con-nectivity.

    8

    Fig. 1: Schematic Map of the Indian Coastline with its Major Ports

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    11/46

    PIANC E-Magazine n 142, January/janvier 20119

    2) Phased programmes will be evolved for thedevelopment of facilities at ports for cruiseshipping.

    3) The ports will avail of the nancial assis-tance, which is available under the schemeof the Department of Tourism for the fundingof tourism projects, wherein assistance upto 25 % of the project cost, subject to a ceil-ing of Rs. 50 million (approximately USD 11million) is provided by the Ministry.

    4) Notwithstanding the above, if any major/nonmajor port is able to attract a BOT operatorto invest in infrastructure facilities, the port isencouraged to develop such facility.

    5) Necessary infrastructure like rail and road

    connectivity, IWT connectivity, air connectiv-ity and metro connectivity will be developed.Individual ports identied in this policy will

    plan to develop suitable infrastructure. How-ever, the cruise shipping policy will providecomfort to future investors for committing re-sources, etc.

    6) Ports shall raise nancial resources to de-velop cruise terminals/infrastructure, in or-der to have more calls from cruise liners.

    7) Private agencies interested in developing

    cruise terminals shall also be encouraged todo so at cruise destinations. Central Govern-ment/State Government/UT Administrationsshall provide nancial resources and other

    incentives for promoting cruise tourism.8) Efforts shall be made for the development of

    marinas for yachts and small boats at all im-portant coastal tourist destinations like Goa,Cochin, Chennai, etc., based on a BOT/PPP-model wherever possible.

    The following environmental issues to be ad-

    dressed for sustainable development have beenidentied for implementation:

    The cruise liners will be mandatorily asked tocomply with all requirements of the Marine Pollu-tion (MARPOL) Convention and its annexes andto follow the guidelines of the Indian Maritime Ad-ministration to ensure inter alia the following:

    a) No waste (sewage waste, solid waste,waste/contaminated water or used oil) willbe released or dumped into the sea or onislands during the cruise ship tour in Indianwaters.

    b) Any boat or smaller vessel taking tourists

    to an island destination in India will ensurethat no litter or waste is thrown overboard orleft littering the island. All waste originating

    from the mother ship will be disposed off ina manner stipulated by the Maritime Admin-istration.

    c) No oily or contaminated bilge water will bereleased in Indian territorial waters, exceptin emergency situations where the vessel istaking on water to the extent that the safetyof the vessel or those aboard will be threat-ened.

    4. COCHIN PORT CRUISE SHIP

    DESTINATIONCochin Port is a major port under the administra-tive control of the Central Government, i.e. theFederal Government of India. The port is locatedin the coastal State of Kerala. Kerala, in SouthernIndia, is blessed with a natural beauty and undis-turbed idyllic islands, as well as rich historical andcultural heritage. Cochin Port has initiated the fol-lowing steps for the development of cruise ship-ping in the port:

    a) Cochin Port considers cruise as a majorbusiness prospect. The port administrationis committed to make Cochin Port a leadingcruise destination on the Indian coast, offer-ing services of international standards.

    b) The Port has constituted a dedicated cruisecell available round the clock to service theexacting requirements of the cruise ves-sels. It offers a single window solution tothe needs of cruise operators and travellersalike. A concessional tariff for cruise vesselsis also in force.

    c) The proposal for locating an internationalstandard golf course within the port prem-ises is on the anvil. The work related to theCochin International Transhipment Terminal

    a world class transhipment hub wouldbe paving the way for international qualityservice at the Port. The port premises re-ect the true ambience of the coastal stateof Kerala.

    d) While at Cochin, besides relishing the pris-tine, natural opulence of Gods own country

    and savouring the traditional Kerala cuisine,the travellers can also carry home a varietyof oriental exotica as mementos from theshopping arcade in and around Cochin.

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    12/46

    PIANC E-Magazine n 142, January/janvier 2011

    Cochin Port has been receiving cruise vesselsfrom all over the world. Some of the cruise ves-sels that called at Cochin Port in the recent years

    are:

    (i) Minerva(ii) Queen Elizabeth II(iii) Legend of Seas(iv) Song of Flower(v) Renaissance VII(vi) Renaissance VIII(vii) Rotterdam Vi(viii) Island Princess(ix) Arkona

    (x) Sea Godess(xi) Maxim Gorky(xii) Vislamor(xiii) Sage Ross(xiv) Crystal Symphony(xv) Europa(xvi) Silver Cloud(xvii) Marco Polo(xviii) Royal Star(xix) Star Flyer(xx) Silver wind(xxi) Clilia II

    (xxii) Victoria(xxiii) Oriana

    The following major ports are potential ports forthe development of cruise shipping in India. It isproposed to develop facilities for berthing of cruise

    ships and to develop facilities for national and in-ternational tourists.

    (i) Mumbai(ii) Mormugao(iii) Port Blair(iv) New Mangalore(v) Chennai

    10

    Fig. 2: A Houseboat in the Backwaters of the Virgin Islands of Kerala

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    13/46

    PIANC E-Magazine n 142, January/janvier 201111

    Cruise shipping, the most dynamic and fastest

    growing industry, is seen as a potential area fordevelopment by India. The Government of Indiahas promulgated the Policy for promoting CruiseShipping on the coastline spread over 7,500 km.The necessary infrastructure, such as the devel-opment of marinas and berthing facilities, road andrail connectivity, etc. are taken up through Public

    Private Partnership projects. The environmental

    issues related to cruise shipping have also beenidentied for implementation. The major ports un-der the Government of India, namely Cochin Port,Chennai Port, Mumbai Port, Mormugao Port, NewMangalore Port and Port Blair are developing fa-cilities for cruise shipping, in order to attract do-mestic and foreign tourists.

    SUMMARY

    La croisire tant lactivit la plus dynamique et plus forte croissance est considre commeune opportunit de dveloppement pour lInde. Legouvernement indien a promulgu une Politiquede promotion de la croisire sur la cte qui stendsur 7500 km. Les infrastructures ncessaires com-prenant le dveloppement de marinas, douvragesdaccostage, de connections par rail et route, etc.sont entreprises sous la forme de projets de parte-

    nariat Public Priv. Les enjeux environnemen-taux des activits de croisire ont t identis

    pour mise en uvre. Les ports principaux souslautorit du gouvernement indien, cest--dire lesports de Cochin, de Chennai, de Mumbai, de Mor-mugao, le nouveau port de Mangalore et de PortBlair dveloppent des quipements de croisirepour attirer les touristes nationaux et trangers.

    RSUM

    Da die Kreuzfahrtschifffahrt eine dynamischeund schnell wachsende Industrie ist, wird sie inIndien als potenzielles Entwicklungsgebiet ang-esehen. Die indische Regierung hat die Politik zurFrderung der Kreuzfahrtschifffahrt entlang derber 7.500 km langen Kstenlinie per Gesetz be-kannt gegeben. Die notwendige Infrastruktur inklu-sive Entwicklung von Hfen, Anlegevorrichtungen,Straen- und Schienen-Anschlussmglichkeiten

    etc. wird durch Public Private-Partnership-Projekte

    aufgebaut. Die Aspekte der Umweltvertrglichkeit,die mit der Kreuzfahrtschifffahrt verbunden sind,wurden ebenfalls zur Umsetzung festgelegt. Diegroen Hfen unter indischer Regierung, nmlichder Hafen von Cochin, von Chennai, von Mum-bai, von Mormugoa, von New Mangalore und vonBlair, bauen ihre Einrichtungen fr Kreuzfahrtsch-iffe aus, um einheimische und auslndische Tour-isten anzulocken.

    ZUSAMMENFASSUNG

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    14/46

    PIANC E-Magazine n 142, January/janvier 2011 12

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    15/46

    PIANC E-Magazine n 142, January/janvier 201113

    SENSITIVITY OF PIANC SHIP SQUAT FORMULASIN UNRESTRICTED CHANNELS

    KEY WORDS

    ship squat, PIANC empirical formulas, under-keelclearance, deep draft navigation, sensitivity study,unrestricted entrance channels

    MOTS-CLEFS

    surenfoncement de navire, formules empiriques

    de lAIPCN, clair sous quille, navigation avec ungrand tirant deau, tude de sensibilit, chenauxdaccs non restreints

    1. INTRODUCTION

    PIANC has many empirical formulas for predict-ing ship squat in entrance channels. Some of themost widely used are by Barrass (2004), Eryuzluet al. (1994), Huuska (1976), Rmisch (1989) andYoshimura (1986). These formulas are based onlimited laboratory and eld measurements, but are

    used for the newer generation of larger tankers,containerships and bulk carriers. Most are func-tions of a limited number of ship and channel pa-rameters in an effort to minimise the number of freeparameters and increase the ease of use. Typicalship parameters include ship speed V

    k(knots),

    block coefcient CBand ship dimensions of length

    between perpendiculars Lpp

    , beam Band draughtT. Ship speed is speed relative to the water andis one of the most important parameters, as onecan usually slow down to reduce squat. Channel

    parameters include water depth h, type of channelcross-section A

    c, side slope n and bottom chan-

    nel width W. Channel types are unrestricted (U)

    or open channels, restricted (R) or dredged witha trench and canal (C) with sides that extend tothe surface. Symbols are dened in Appendix B.

    No one formula works best for all types of ves-sels in all types of channels. Thus, it is necessaryto examine the squat predictions with more thanone formula and compare the results based on thetype of ship, channel and formula constraints.

    When performing a design analysis for ship squat,many ship and channel parameters are not knownwith certainty. Channel cross-sections and dimen-sions can vary considerably along the length ofthe channel and are usually not as simple as thethree idealised shapes. The C

    Bis often just a best

    estimate based on the ship displacement and di-mensions, since ship builders do not usually re-lease this proprietary information.

    In this paper, a sensitivity analysis for the ve

    PIANC squat formulas listed above is performedon the effect of ship speed, draught, block coef-cient and water depth for an unrestricted or open

    channel cross-section. These squat results arepresented for full load conditions for the post-Pan-amax Susan Maerskcontainership in an entrancechannel similar to the Port of Savannah. Addition-al sensitivity comparisons for restricted and canalchannel types were presented by Briggs (2009).

    The rst section in this paper describes the Port ofSavannah entrance channel and the Susan Maersk

    containership. The next section describes thePIANC empirical squat formulas. Details of these for-mulas are contained in Appendix A. The sensitivity

    by

    MICHAEL J. BRIGGS

    PhD, PE, D.CE, D.OE, Research Hydraulic Engineer

    Coastal and Hydraulics LaboratoryU.S. Army Engineer Research and Development Center3909 Halls Ferry Rd, CEERD-HN-HHVicksburg, MS 39180

    USA

    E-mail: [email protected]

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    16/46

    PIANC E-Magazine n 142, January/janvier 2011

    study organisation and constraints are describedin the next section. Finally, results and discussionare presented in the last section.

    2. SHIP AND CHANNELPARAMETERS

    2.1 Port of Savannah, Georgia

    The Port of Savannah, Georgia, is planning for fu-ture accommodation of newer and larger designvessels. The outer reach of this entrance channelis subject to waves, has a length of 14 nm and awidth varying from 173 to 240 m. It is planned toincrease the existing depth from 13.4 m to 15.2 mMLLW. Harbour pilots will continue to take advan-tage of the 1.1 m high tide and overdredge allow-ance, as necessary, to accommodate larger draftships. The offshore 5.8 nm section can be repre-sented as an unrestricted channel cross-section.

    2.2 Susan Maersk Containership

    The design ship for this port is the post-PanamaxSusan Maersk containership (Figure 1). It was

    completed in 1997 with a TEU capacity of 8,680and a length overall L

    OAof 347 m. The fully-loaded

    ship has an Lpp

    = 331.64 m, B= 42.8 m, T= 14.48m and C

    B= 0.65. Typical ship speeds V

    kcan be as

    fast as 14 kts in the outer channel. Design under-keel clearance (UKC) is 1.2 m in the outer chan-nel. Note that UKC as used in this paper meansgross under-keel clearance and is equivalent tothe project depth minus the ship draught.

    Figure 1: Susan Maersk containership[www.Containerinfo]

    3. PIANC SQUAT FORMULAS

    In 1997, PIANC Working Group 30 (WG30) in-

    cluded eleven empirical squat formulas in theirdesign guidance for deep draft channels. In 2005,PIANC WG49 was formed to update the WG30report on Horizontal and Vertical Dimensions ofFairways. WG49 consists of representatives fromtwelve countries and is in the process of updat-ing this guidance. Current thinking is to reduce thenumber of these squat formulas to seven that arethe most user friendly and popular in the deepdraft navigation community. Five of these squatformulas are evaluated in this paper. They includethose of Barrass (2004), Eryuzlu et al. (1994),Huuska (1976), Rmisch (1989) and Yoshimura(1986). Briggs (2006) programmed these formulasin a FORTRAN program and Briggs et al. (2010)provided updates based on the WG49 recommen-dations.

    Historically, maximum squat SMax

    occurred at thebow (S

    b), especially for full-form ships such as

    tankers. For newer, more slender ne-form ships,

    such as containerships and passenger liners,S

    Maxsometimes occurs at the stern (Ss). All of the

    PIANC formulas give predictions of SMax at thebow or stern, but only the Rmisch method givespredictions for S

    s for all channel types. Barrass

    gives Ssfor unrestricted channels and for canals

    and restricted channels, depending on the valueof C

    B. According to Barrass, the value of C

    Bdeter-

    mines whether the maximum squat is at the bowor stern. Barrass notes that full-form ships withC

    B> 0.7 tend to squat by the bow and ne-form

    ships with CB< 0.7 tend to squat by the stern. The

    CB= 0.7 is an even-keel situation with maximum

    squat the same at both bow and stern. Rmischhas an equivalent rule of thumb on the location ofmaximum squat, since he proposes that a ship willsquat by the bow if C

    B> 0.1 L

    pp/B. For the Susan

    Maersk, this would occur for CB> 0.77. Therefore,

    one might expect the Susan Maersk to squat bythe stern since her C

    B is less than 0.70 to 0.77

    in these sensitivity comparisons. Of course, forchannel design, one is mainly interested in themaximum squat and not necessarily whether it isat the bow or stern. Thus, researchers often useall of the formulas and report maximum squat.

    The formulas for an unrestricted channel applica-tion are contained in Appendix A. Barrass is on his

    14

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    17/46

    PIANC E-Magazine n 142, January/janvier 201115

    fourth iteration of ship squat formulas. The one inthis paper [Barrass 2004 ; Barrass 2002] is con-sidered his third version and is called B3 for sim-

    plicity. His formulas are relatively straight-forwardand easy to use. Stocks et al. (2002) found thatthe B3-formulas gave the best results for New andTraditional Lakers in the unrestricted portions ofthe St Lawrence Seaway. The Eryuzlu et al. (1994)squat formula is based on laboratory experiments.Although it has some serious constraints (i.e. C

    B>

    0.8), it is used exclusively by the Canadian CoastGuard (2001). Therefore, it is included here eventhough the C

    Bconstraint is technically exceeded.

    It is referred to as E2. The Huuska (1976) andGuliev (1971) squat formula is referred to as theHG formula. The HG is identical to the ICORELSformula in unrestricted channels and is used ex-clusively in German waterways of this type. TheSpanish Recommendations for Maritime Works[Puertos del Estado, 1999] and the Finnish Mari-time Administration [FMA 2005, Sirkia 2007] usethe HG for all three channel types. Rmisch (1989)developed his squat formulas from physical modelexperiments. His empirical formulas (referred toas R1) are some of the most difcult to use, but

    seem to give good predictions for bow and stern

    squat. Finally, the Yoshimura formula [Yoshimura,1986 ; Overseas Coastal Area Development Insti-tute, 2002] was developed as part of Japans De-sign Standard for Fairways in Japan. It was laterenhanced by Ohtsu et al. (2006) to include predic-tions for R and C channels.

    4. SENSITIVITY ANALYSIS

    The goal of the sensitivity analysis was to quan-tify the effect of signicant input parameters on

    the squat predictions for the PIANC empiricalformulas in an unrestricted channel. Table 1 liststhe ship and channel parameters that are in thePIANC formulas. An interesting observation iswhat is not explicitly included in some of the for-mulas, even though they are used for all ship andchannel types. For instance, (a) B3 has no depen-dence on L

    pp, (b) E2 has no dependence on L

    pp

    or CB, (c) R1 has no dependence on C

    Bfor stern

    squat and (d) Y2 has no dependence on B. All butB3 are functions of gravity g.

    Based on ship, channel and squat formulas, threesensitivity analysis parameters were selected forstudy. Table 2 on the next page lists these param-eters and ranges. The U channel is one of thesimplest and is applicable for all of the PIANC for-mulas. A channel can be modelled as a U channeleven if it is not ideally an unrestricted channel. Iftrench height h

    Tis small enough (i.e.h

    T/h~ 0.0)

    and channel width W(i.e. W/B> 8 to 10) and side

    slope n(i.e. n> 20 to 50) are large enough, thena U channel is appropriate for this channel reach.The Base Case values are used as the standardfor comparison since they match many of the shipand channel characteristics.

    Table 1: Relevant Input Parameters in PIANC Squat Formulas

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    18/46

    PIANC E-Magazine n 142, January/janvier 2011

    Table 2: Sensitivity Analysis Parameters

    The range of CB was selected to match typical

    standard deviations of CBfor containerships [Oht-

    su et al., 2006]. The CB= 0.05 is equivalent to

    an 8 % change in CB. Since it is known that most

    containerships squat by the stern, the maximumvalue of C

    B= 0.70 was selected to stay within the

    Barrass threshold. The depth-to-draught ratiosh/Trepresent typical values of UKC for entrancechannels, with h/T= 1.20 an accepted value forefcient navigation. Note that the h/T= 1.1, 1.2and 1.3 correspond with UKC = 1.5, 2.9 and 4.3 mrespectively. The h/T= 0.10 is equivalent to an8 % change in h/T. The range of ship speeds V

    k

    includes typical containership speeds in entrancechannels. The V

    k= 5 kts represents a 50 %

    change in ship speed from the Base Case.

    As stated previously according to Barrass andRmisch, ships with CB< 0.7 to 0.77 will tend to

    squat by the stern. Therefore, the stern Sssquat

    predictions of B3 and R1 were always larger than

    the bow predictions and were used in this study incomparison with the other three formulas.

    5. RESULTSThe results section is divided into presentationsand discussions of predicted maximum squat S

    Max

    for each of the ve PIANC formulas. Results in

    this section are for analysis of CB, h/Tand V

    kin a

    U channel. Figure 2 shows the range of SMax

    foreach of the Base Case predictions (C

    B= 0.65 and

    h/T= 1.20) as a function of Vk. Although V

    k= 5

    kts, a ner increment of 1 kt was used in the plots

    to show the ner detail and resolution due to ship

    speed although some plots only show symbolsfor every other point to minimise clutter. The Bar-rass predictions were the largest and Rmisch thesmallest, with the other three in the middle. TheS

    Max varies from a low of about 0.1 m to a high

    value of almost 1.5 m. This example is typical ofthe squat formulas as there is usually a lot of vari-ation in the predictions. Thus, it is recommendedto examine the squat predictions with more thanone formula and compare the results based on thetype of ship and formula constraints.

    5.1 Barrass (B3)

    Figure 3 shows the effect of CB on the Barrass

    stern squat Ss,B3

    at h/T= 1.20 for the range of ship

    16

    Figure 2: Base Case Maximum Squat for Susan Maersk Containership

    in Unrestricted Channel, CB= 0.65, h/T = 1.2

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    19/46

    PIANC E-Magazine n 142, January/janvier 201117

    speeds. Even though shown at h/T= 1.20, the B3predictions are not affected by h/T, as they are thesame for all h/T(see Appendix A). This is due to

    the fact that the h/Tratio is not explicitly includedin the B3 formula. Both hand Tare included in theS blockage factor, but the values of Sare not al-lowed to exceed the threshold values of 0.1 S

    0.25. Table 3 lists the percentage variation in Ss,B3

    from the Base Case value at CB= 0.65 for each

    ship speed.

    5.2 Eryuzlu (E2)

    Figure 4 shows the effect of h/Ton the Eryuzlu

    squat SE2at CB= 0.65 for the range of ship speeds.Again, although shown for CB= 0.65, the E2 is not

    dependent on CBso it is the same for any C

    B. This

    is due to the fact that it is not explicitly included inthe E2 formula (see Appendix A). The percentagevariation in S

    E2from the Base Case value at h/T=

    1.2 is again listed in Table 3.

    Figure 4: Effect of h/T on Eryuzlu Squat in Unrestricted Channel, all CB

    Figure 3: Effect of CBon Barrass Stern Squat in Unrestricted Channel, all h/T

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    20/46

    PIANC E-Magazine n 142, January/janvier 2011

    5.3 Huuska (HG)

    Unlike the B3 and E2 predictions, the Huuska/

    Guliev squat SHGpredictions are functions of bothC

    B and h/T. Figure 5 has ve curves that illus-

    trate these effects on the SHG

    for the range of shipspeeds. The inner three curves 2, 3 and 4 show

    the inuence of CBfor a xed h/T= 1.2 (red lines

    and square symbols). The outer three curves 1,3 and 5 (solid lines and symbols) illustrate the ef-

    fect of h/Tat a xed CB= 0.65. Table 3 lists thepercentage variation in SHG

    predictions for all shipspeeds relative to the Base Case values at C

    B=

    0.65 and h/T= 1.2.

    18

    Table 3: Sensitivity Results for Unrestricted Channel

    Figure 5: Effect of CBand h/T on Huuska Squat in Unrestricted Channel

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    21/46

    PIANC E-Magazine n 142, January/janvier 201119

    5.4 Rmisch

    Rmisch stern squat Ss,R1

    is a function of h/Tonly

    and is shown in Figure 6. This gure is similar toFigure 4 for Eryuzlu, with three curves shown forC

    B= 0.65. The percentage vari-ation in S

    s,R1pre-

    dictions for all ship speeds relative to the BaseCase values at C

    B= 0.65 are listed in Table 3.

    5.5 Yoshimura (Y2)

    The Yoshimura squat SY2

    is a function of both CB

    and h/T, same as Huuska/Guliev. Figure 7 is simi-lar to Figure 5, with 5 curves for SY2

    . Curves 2, 3and 4 show the variation in S

    Y2as a function of C

    B

    for a xed h/T= 1.2. The effect of h/Tis again illus-trated by curves 1, 3 and 5 with the solid lines andsymbols. Table 3 lists the percentage variation inS

    Y2relative to the Base Case values at C

    B=0.65

    for all three ship speeds.

    Figure 6: Effect of h/T on Rmisch Stern Squat in Unrestricted Channel, all CB

    Figure 7: Effect of CBand h/T on Yoshimura Squat in Unrestricted Channel

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    22/46

    PIANC E-Magazine n 142, January/janvier 2011

    6. DISCUSSION

    The Barrass predictions are not affected by h/T

    since this parameter is not explicitly included in hisformula. The effect of changes in C

    Bon predicted

    stern squat is approximately 1 to 1. The predictedstern squat increased or decreased by 8 % as C

    B

    increased or decreased by 8 % (i.e. CB= 0.05).

    The Eryuzlu squat predictions are not dependenton C

    B. The effect of 8 % changes in h/T(i.e. h/T

    = 0.1) is approximately 1 to 1 on the squat predic-tions. A decrease of 8 % in h/T results in an in-crease in squat of approximately 8 % and a similardecrease in squat for an increase in h/T.

    The Huuska/Guliev squat predictions are functionsof C

    Band h/T. Again, changes in C

    Bresult in near

    1 to 1 changes in predictions. An 8 % decrease orincrease in C

    Bdecreases or increases squat pre-

    dictions by approximately 8 % for all three shipspeeds. Changes in h/Tare slightly larger for xedC

    B= 0.65. A decrease in h/Tto 1.1 for shallower

    depths causes an increase in predicted squat of8 to 12 % for the three ship speeds. Similarly, anincrease in h/Tto 1.3 for deeper channels gives

    a decrease in squat of 8 to 10 % as a function ofship speed.

    The Rmisch stern squat predictions are not af-fected by C

    B, since C

    Bis not included in his stern

    formula. Decreases in channel depth to h/T= 1.1results in 0 to 14 % increases in stern squat pre-dictions as ship speed increases from 5 to 15 kts.Increasing UKC to h/T= 1.3 results in decreasesin stern squat of 3 to 11 %.

    The Yoshimura squat predictions are affected byboth C

    Band h/T. Again, changes in C

    Bpro-duce

    nearly identical changes (i.e. 1:1) in squat predic-tions. A decrease of 8 % in C

    Bfrom 0.65 to 0.60

    results in decreases of 8 to 9 %. Similarly, an in-crease of 8 % to C

    B= 0.70, causes an increase in

    predicted squat of 8 to 9 %. Decreasing the chan-nel depth by 8 % to h/T= 1.1 causes an increasein squat predictions of approximately 7 % for thethree ship speeds. Likewise, increases in depthto h/T= 1.3 leads to reductions of 4 to 8 % for allship speeds.

    In summary, all ve squat formulas give reason-able predictions, but the user needs to be aware

    of the effects of uncertainties in the input variables.No one formula seems to give consistently betterestimates than the other. Many countries and re-

    searchers have favourites that they are comfort-able with using. My recommendation is to use anaverage of all ve with knowledge of maximum

    squat predictions and possible constraint viola-tions due to type of channel or ship.

    7. ACKNOWLEDGEMENTS

    The author wishes to acknowledge the Head-quarters and the US Army Corps of Engineersfor authorising the publication of this paper. The

    squat formulas in this paper are updates from thePIANC WG30 report that will be reported anddocumented in the new WG49 report. Particularthanks go to Wilbur Wiggins (CESAW) and CaptSteven Carmel (Maersk Shipping) for supplyinginformation on the Savannah entrance channeland Susan Maersk containership.

    8. REFERENCES

    Barrass, C. B. (2002): Ship Squat A Guide forMasters, Private report, www.ship-squat.com.

    Barrass, C.B. (2004): Thirty-Two Years of Re-search into Ship Squat, Squat Workshop 2004,Elseth/Oldenburg, Germany.

    Barrass, C. B. (2007): Ship Squat and Interactionfor Masters, Private Report, www.ship-squat.com.

    Briggs, M.J. (2006): Ship Squat Predictions forShip/Tow Simulator, Coastal and Hydrau-lics En-gineering Technical Note CHETN-I-72, U.S. Army

    Engineer Research and Develop-ment Center,Vicksburg, MS, http://chl.wes.army.mil/library/publications/chetn/.

    Briggs, M.J. (2009): Sensitivity Study of PIANCShip Squat Formulas, International Conference onShip Manoeuvring in Shallow and Conned Water:

    Bank Effects, Antwerp, Belgium, May 13-15, 57-67.

    Briggs, M.J., Vantorre, M., Uliczka, K. and Debail-lon, P. (2010): Chapter 26: Prediction of Squat forUnderkeel Clearance, Handbook of Coastal andOcean Engineering, World Scientic Publishers,

    Singapore, 723-774.

    20

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    23/46

    PIANC E-Magazine n 142, January/janvier 201121

    Canadian Coast Guard (2001): Safe Waterways(A Users Guide to the Design, Maintenance andSafe Use of Waterways), Part 1(a) Guidelines for

    the Safe Design of Commercial Shipping Chan-nels, Software User Manual Version 3.0, Wa-terways Development Division, Fisheries andOceans Canada.

    Eryzlu, N.E., Cao, Y.L. and DAgnolo, F. (1994):Underkeel Requirements for Large Vessels inShallow Waterways, Proceedings of the 28th In-ternational Navigation Congress, PIANC, Paper SII-2, Sevilla, Spain, 17-25.

    FMA (Finnish Maritime Administration) (2005):The Channel Depth Practice in Finland, Bulletin,Waterways Division, Helsinki, Finland.

    Guliev, U.M. (1971): On Squat Calculations forVessels Going in Shallow Water and ThroughChannels, PIANC Bulletin 1971, Vol. 1, No. 7, 17-20.

    Huuska, O. (1976): On the Evaluation of Under-keel Clearances in Finnish Waterways, HelsinkiUniversity of Technology, Ship Hydrodynamics

    Laboratory, Otaniemi, Report No. 9.

    ICORELS (International Commission for the Re-ception of Large Ships) (1980): Report of WorkingGroup IV, PIANC Bulletin No. 35, Supplement.

    Ohtsu, K., Yoshimura, Y., Hirano, M., Tsugane,M. and Takahashi, H. (2006): Design Standardfor Fairway in Next Generation, Asia NavigationConference, No. 26.

    Overseas Coastal Area Development Institute ofJapan (2002): Technical Standards and Com-mentaries for Port and Harbour Facilities in Ja-pan.

    PIANC (1997): Approach Channels: A Guide forDesign, Final Report of the Joint PIANC-IAPHWorking Group II-30 in cooperation with IMPA andIALA, Supplement to Bulletin No. 95.

    Puertos del Estado (1999): Recommendations forMaritime Works (Spain) ROM 3.1-99: De-signing

    Maritime Conguration of Ports, Approach Chan-nels and Floatation Areas, CEDEX, Spain.

    Rmisch, K. (1989): Empfehlungen zur Bemes-sung von Hafeneinfahrten, Wasserbauliche Mit-teilungen der Technischen Universitt Dresden,

    Heft 1, 39-63.

    Srkia, E. (2007): Economical Efciency to be

    Achieved with a Regulatory Change Only withConsideration for Navigational Risks, PIANCMagazine, 129, 23-34.

    Stocks, D.T., Dagget, L.L. and Page, Y. (2002):Maximization of Ship Draft in the St. LawrenceSeaway Volume I: Squat Study, Prepared forTransportation Development Centre, TransportCanada.

    Uliczka, K. and Kondziella, B. (2006): DynamicResponse of Very Large Containerships in Ex-tremely Shallow Water, Proceedings 31st PIANCCongress, Estoril, Spain.

    Yoshimura, Y. (1986): Mathematical Model forthe Manoeuvring Ship Motion in Shallow Water,Journal of the Kansai Society of Naval Architects,Japan, No. 200.

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    24/46

    PIANC E-Magazine n 142, January/janvier 2011

    APPENDIX A:PIANC SHIP SQUAT FORMULAS

    This appendix describes the ve PIANC empiricalsquat formulas of Barrass, Eryuzlu, Huuska/Gu-liev, Rmisch and Yoshimura. Symbols are listedand dened in Appendix B. More detailed descrip-tions with constraints for channel and ship pa-rameters are described in PIANC (1997), Briggs(2006), Briggs (2009) and Briggs et al. (2010).The new PIANC WG49 report is planned for pub-lication in 2011.

    A1. Barrass (B3)

    Barrasss formula for maximum squat SMax,B3

    in anunrestricted channel is a function of the block co-efcient C

    B, ship speed V

    k in knots and channel

    blockage coefcient K. It is dened as

    (1)

    If CB> 0.7, it is equal to the bow squat S

    b,B3. If C

    B

    0.7, it is equal to the stern squat Ss,B3

    . His channelcoefcient Kis based on analysis of over 600 lab-oratory and prototype measurements for all threechannel types [Barrass, 2007] and is dened as

    (2)

    The limits on Kare designed so that K= 1 for Uchannels. The blockage factor Sis a measure ofthe cross-sectional areas of the shipA

    sand chan-

    nelAcand is dened as

    (3)

    If S< 0.1 for U channels, the value of Kis set to1.0. This insures the limits required above for K.

    Finally, Barrass dened the squat at the other end

    of the ship for unrestricted channels when the shipis initially at even keel at zero speed as

    (4)

    A2. Eryuzlu et al. (E2)

    The Eryuzlu et al. formula for squat SE2

    in an unre-

    stricted channel is dened as

    (5)

    The value of the channel width correction factor Kb

    = 1 for unrestricted channels.

    A3. Huuska/Guliev (HG)

    The Huuska/Guliev squat SHG

    is given by

    (6)

    The dimensionless Depth Froude NumberFnh

    isdened in Appendix B. The dimensionless correc-tion factor K

    sis used for restricted channels and

    canals to quantify ship blockage. It goes to Ks= 1

    for unrestricted channels. The Huuska/Guliev for-mula is identical to the ICORELS (1980) formulafor unrestricted channels.

    A4. Rmisch (R1)

    The Rmisch squat formulas for bow Sb,R1

    andstern squat S

    s,R1 in an unrestricted channel are

    given by

    (7)

    The factors in this equation are correction factorsfor ship speed C

    V, ship shape C

    Fand squat at criti-

    cal speed KTdened as

    (8)

    (9)

    (10)

    22

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    25/46

    PIANC E-Magazine n 142, January/janvier 201123

    Finally, critical ship speed Vcris a function of chan-

    nel conguration dened as

    (11)

    A5. Yoshimura (Y2)

    The Yoshimura maximum squat SY2

    is dened as

    (12)

    APPENDIX B: SYMBOLSThe following symbols are used in this paper:

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    26/46

    PIANC E-Magazine n 142, January/janvier 2011 24

    A sensitivity analysis on the effect of input param-

    eters on PIANC empirical squat predictions wasconducted. Five of the most popular PIANC for-mulas, including Barrass, Eryuzlu, Huuska/Guliev,Rmisch and Yoshimura were investigated forunrestricted or open channels. Input parametersincluded ship speed V

    k, block coefcient C

    B and

    channel depth to ship draught h/T. The fully-load-ed post-Panamax Susan Maersk containershipwas used as the example ship. Channel param-eters were selected based on reasonable rangesthat would occur in the entrance channel of the

    Port of Savannah, Georgia. A total of 27 cases

    were run in this sensitivity study. All ve squat for-mulas give reasonable predictions, but the usershould be aware of the effects of uncertaintiesin the input variables. No one formula seems togive consistently better estimates than the others.Many countries and researchers have favouritesthat they are more comfortable using. The au-thors preference is to use an average of all ve

    with knowledge of maximum squat predictionsand possible constraint violations due to type ofchannel or ship.

    SUMMARY

    Une analyse de sensibilit sur leffet des para-mtres dentre sur les prdictions empiriques desurenfoncement de lAIPCN a t ralise. Cinqdes formules de lAIPCN les plus populaires in-cluant Barrass, Eryuzlu, Huuska/Guliev, Rmischet Yoshimura ont t testes pour des chenauxnon restreints ou ouverts. Les paramtresdentre comprenant la vitesse du navire V

    k, le

    coefcient de bloc CB et le rapport profondeur

    du chenal sur le tirant deau du navire h/T. Leporte-conteneurs post-Panamax Susan Maerskpleine charge a t pris comme navire exemple.Les paramtres du chenal ont t retenus dansdes gammes de valeurs raisonnables reprsen-tatives du chenal daccs du port de Savannah

    en Gorgie. 27 congurations au total ont t ap-pliques dans ltude de sensibilit. Toutes lescinq formules de surenfoncement donnent desprdictions raisonnables, mais lutilisateur devraittre conscient des effets des incertitudes dansles variables dentre. Aucune formule ne sembledonner coup sr une meilleure estimation queles autres. De nombreux pays et chercheurs ontleurs favorites quils utilisent plus aisment. La

    pratique prfrentielle de lauteur est de calculerune moyenne des cinq, en gardant consciencedes prdictions de surenfoncement maximumet des possibles en-torses leurs contraintesdapplication dues au type de chenal ou de navire.

    RSUM

    Eine Sensitivittsanalyse ber den Einuss der

    Eingangsparameter auf die empirischen Squat-Vorhersagen gem der PIANC wurde durch-

    gefhrt. Fnf der beliebtesten PIANC Formelneinschlielich der von Barrass, Eryuzlu, Huuska/Guliev, Romisch und Yoshimura wurden fr un-begrenzte oder offene Kanle untersucht. DieEingangsparameter beinhalteten die Schiffs-ge-schwindigkeit V

    k, den Blockkoefzienten C

    Bsowie

    das Verhltnis von Kanaltiefe zum Tiefgang desSchiffes h/T. Das voll beladene Post-PanamaxContainerschiff Susan Maersk wurde als Schiffs-beispiel verwendet. Die Kanalparameter wurdenbasierend auf Bereichen, die im Zufahrtskanal

    zum Hafen von Savannah, Georgia, auftreten

    wrden, ausgewhlt. Inge-samt wurden 27 Fllein dieser Sensitivittsstudie behandelt. Alle fnfSquat-Formeln ergaben vernnftige Vorhersa-

    gen, allerdings sollten Anwender sich ber denEinuss der Eingangsparameter bewusst sein.

    Es gibt keine einzelne Formel, die durchgngigbessere Vorhersagen liefert als die anderen. VieleLnder und Forscher haben Favoriten, bei derenVerwendung sie sich am wohlsten fhlen. DerAutor zieht es vor, einen Durchschnitt aller fnfFormeln zu verwenden, mit dem Wissen ber dieMaximum-Squat-Vorhersagen und die mglichenVerletzungen der Gltigkeitsbereiche, verursachtdurch den Kanal- oder Schiffstyp.

    ZUSAMMENFASSUNG

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    27/46

    PIANC E-Magazine n 142, January/janvier 201125

    SIMULATION DU CLAPAGE DE SDIMENT AVEC UNMODLE DEUX PHASES

    MOTS-CLEFS

    clapage, transport sdimentaire, modlisation nu-mrique, modle deux phases, sable n

    KEY WORDS

    dredged sediment release, sediment transport,numerical simulation, two-phase ow model, ne

    sand

    1. INTRODUCTION

    La gestion des clapages (ou rejets en mer desproduits de dragage) constitue une problmatique

    environnementale et conomique importante pour

    les gestionnaires des voies navigables et des in-frastructures portuaires. Moins coteuses quunstockage terre, ces oprations peuvent induiredes nuisances sur lenvironnement notamment enprovoquant un accroissement local de la turbiditet en ensevelissant les habitats de la faune aqua-tique.

    Le phnomne de clapage comporte principale-ment trois phases [Boutin, 2000]: la phase dechute (soumise aux courants) ; limpact sur le fond

    et la gnration dun courant de densit ; la propa-gation des courants de densit et la dcantationdes sdiments.

    by

    SYLVAIN GUILLOU

    Laboratoire Universitaire desSciences Appliques deCherbourg (LUSAC) EA 4253,Universit de Caen, Site universitaire,BP78, 50130 Cherbourg - Octeville,France,Tel.: +33.2.33.01.40.32,Fax: +33.2.33.01.41.35,

    E-mail: [email protected]

    Corresponding author

    DAMIEN PHAM VAN BANG

    Universit Paris-Est, LSHV(Joint Research Unit EDF

    R&D-CETMEF-ENPC),6 quai Watier, BP 49,

    F-78401 Chatou,France,

    E-mail: [email protected]

    JULIEN CHAUCHAT

    Universit de Grenoble,LEGI, CNRS UMR 5519,BP 53,F-38041 Grenoble Cedex 9,France,E-mail :[email protected]

    DUC HAU NGUYEN

    Laboratoire Universitaire des SciencesAppliques de Cherbourg

    (LUSAC) EA 4253,Universit de Caen, Site universitaire,

    BP78,50130 Cherbourg - Octeville,

    France,E-mail: [email protected]

    KIM DAN NGUYEN

    Universit Paris-Est, LSHV(Joint Research Unit EDFR&D-CETMEF-ENPC),6 quai Watier,BP 49,F-78401 Chatou,France,

    E-mail: [email protected]

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    28/46

    PIANC E-Magazine n 142, January/janvier 2011 26

    Lobjet de ce travail est ltude du phnomne declapage par la simulation numrique. Des travauxantrieurs ont montr les limites lutilisation de

    codes bass sur lhypothse du scalaire passifdans cette conguration [Garapon et al., 2002].Ceci est li aux trs fortes concentrations du rejet.Dans des travaux plus rcents, Freson (2004) aprsent un modle bi-espce pour le problmedu clapage. Ce modle est bas sur une dg-nrescence du modle bi-phasique deux u-ides. Il considre le mlange eau-sdiment dansson ensemble et ne tient pas compte de la rholo-gie des sdiments cohsifs [Farout-Freson et al.,2006]. Si des rsultats satisfaisants ont t obte-nus pour la phase de chute, lapproche bi-espcesemble inapproprie pour dcrire limpact sur lefond, la gnration et la propagation des courantsde densit.

    Lutilisation de lapproche deux phases pourtraiter la problmatique hydrosdimentaire est ap-parue dans les annes 90 [Teisson et al., 1992 ;Nguyen et al., 2009 ; et rfrences incluses].Dans cette approche, le mlange eau/sdimentest dni comme constitu de deux phases: une

    phase continue, leau, et une phase disperse,

    les sdiments. Des quations de conservation dela masse et de la quantit de mouvements sontcrites pour chaque phase. Le domaine dtudestend du fond non rodable jusqu la surfacelibre. Cest--dire que les processus de transportdes particules en suspension, de sdimenta-tion, de tassement et de consolidation sont prisen compte de manire continue sans avoir considrer lrosion dune couche ou le remplis-sage dune autre. Le modle deux phases detransport sdimentaire que nous avons dvel-opp [Barbry et al., 2000 ; Nguyen et al., 2009 ;Chauchat et al., 2008] est un modle deux u-ides de ce type. Il est adapt aux milieux dens-es en diffrentiant les deux constituants et il in-clut les effets de la turbulence. Dans ce travail,ce modle est appliqu au cas du clapage. Laconguration exprimentale utilise par Villaret

    et al. (1997) et Villaret et al. (1998) a t retenu.

    2. MODELE A DEUX PHASES

    Dans lapproche deux phases Eulrienne-Eulri-

    enne (uide - particule solide) ou deux uides,on considre que les mouvements de chaquephase sont rgis respectivement par des qua-

    tions de conservation de la masse et de la quan-tit de mouvements. Nous rappelons ici quelqueslments concernant le modle utilis, mais le

    lecteur pourra trouver une description compltedu modle dans les rfrences suivantes: Barbryet al. (2000), Chauchat et Guillou (2008), Nguyenet al. (2009).

    2.1 Les quations de bases

    En notant k, lindice dsignant la phase uide ou

    la phase solide, les quations de conservationsont donnes:

    (1)

    o ak, u

    k, et r

    k, reprsentent respectivement la

    fraction volumique, le vecteur vitesse et la massevolumique de la phase k (k = fpour le uide, k = spour le solide). gest le vecteur acclration de lapesanteur etM

    kreprsente le transfert de quantit

    de mouvement entre les phases. pkest la pression

    de la phase k,tket t

    kreprsentent respectivement

    le tenseur des contraintes visqueuses et le ten-seur des contraintes de Reynolds pour la phasek. La somme des fractions volumiques est gale 1. Le tenseur des contraintes visqueuses est mo-dlis en fonction des tenseurs des taux de dfor-

    mation de chacune des phases (Dfet Ds) par larelation (2) [Lundgren, 1972] avec les coefcientsde viscosit m

    ff, m

    fs, m

    sfandm

    ssdonns par (3). Le

    caractre non Newtonien est pris en compte parlintroduction du facteur damplication b, qui estli la distance interparticulaire x, et dle diamtredes particules. Plus la distance interparticulaireest faible, plus le milieu est dense, et plus les fric-tions sont importantes. Nous utilisons la formula-tion (4) propose par Graham (1981), qui couvreles coulements de suspensions dilues dens-es. La distance interparticulaire est donne par larelation (5) en fonction de la fraction volumique dela phase solide et sa valeur maximale a

    s,max(Pour

    des particules non cohsives as,max

    = 0.625 ).

    g

    g

    Re

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    29/46

    PIANC E-Magazine n 142, January/janvier 201127

    (2)

    (3)

    (4)

    (5)

    (6)

    Le terme de transfert de quantit de mouvementsentre les phases est valu par la relation (6) enfonction de la pression et de la contrainte interfa-ciale p

    kiet t

    kiet de M

    kqui reprsente les diffr-

    entes forces agissant sur la phase kdont la forcede trane. p

    et t

    kisont respectivement la pres-

    sion et le tenseur de contrainte de cisaillement dela phase k linterface. Les pressions interfacialesdes deux phases ainsi que les tenseurs interfa-

    ciaux de contrainte tangentielle sont donnes parla relation (7). La pression de la phase solide estprise gale la pression interfaciale de la mmephase.

    (7)

    Le terme dchange entre les phases Mf

    = M

    s

    est la somme des forces sexerant sur la parti-

    cule solide. Ici seule la force volumique de trane(relation (8)) est retenue (Hsu et al., 2003). Elle

    sexprime en fonction de ur, la vitesse relative en-

    tre le uide et les particules, et de tfs

    , le temps derelaxation de la particule. Ce dernier terme cor-

    respond au temps dexistence dune diffrence devitesse entre la particule solide et le uide. Le co-efcient C

    Dest le coefcient de trane moyen. Il

    dpend du nombre de Reynolds sdimentaire Res

    et de la fonction de forme de la particule solide.Nous utilisons la formule de Haider et Levenspiel(1989).

    (8)

    La vitesse relative est dnie comme ur= u

    s- u

    f- u

    d

    o ud= u

    f sest la vitesse de drive qui reprsente

    la corrlation entre les uctuations de vitesse de la

    phase uide et la distribution spatiale instantane

    des particules. Cette vitesse reprsente une man-ifestation des effets de la turbulence. Plusieursmodles de turbulence ont t dvelopps dansle code de calcul. Ceux-ci ne sont pas dtaills ici,mais le lecteur trouvera une prsentation dtailldans Chauchat et Guillou (2008).

    2.2 Technique de rsolution numrique

    Nous utilisons les techniques dveloppes parGuillou et al. (2000) pour rsolution du systmedquations (1). Le modle est bidimensionnel ver-tical surface libre. La technique de maillage encoordonne est utilise pour suivre lvolution

    de la surface libre chaque instant. Les opra-teurs de drivs spatiaux sont discrtiss par latechnique des diffrences nies. Une technique

    de projection est utilise pour le dcouplage ducalcul de la vitesse de la phase uide et de la pres-sion. Les quations du modle sont discrtisesde manire implicite sur la verticale et explicitesur lhorizontale. La mthode GMRES est utilisepour linversion du systme matriciel de pression.Un positionnement dcal et entrelac des in-connues sur la grille de calcul est employ an

    dviter les oscillations numriques qui risquentde se produire lors de lutilisation de le techniquede projection [Guillou & Nguyen, 1999].

    g

    g g

    g

    g g g g

    g

    < >g

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    30/46

    PIANC E-Magazine n 142, January/janvier 2011

    3. CONFIGURATION DE LETUDE

    De nombreux essais de clapage ont t raliss

    dans le canal n 5 du LNHE-EDF (80 m x 1.5 m x1.5 m) par Boutin (2000), Villaret et al. (1997) etVillaret et al. (1998). Le but tait dtudier la phasede chute du rejet ainsi que la phase de courantde densit sur le fond, dans un uide au repos ou

    en mouvement. Les tests ont t raliss avec dusable, de la vase et des mlanges sablo-vaseux.Nous nous limitons ici au cas du sable. Nousprsentons succinctement les conditions expri-mentales utilises par Villaret et al. (1997) et Vil-laret et al. (1998) sur lesquelles les simulationssappuient.

    3.1 Configuration exprimentalede rfrence

    Le montage exprimental est constitu dun canalquip dun dispositif dinjection de sdiment plac 15 cm sous la surface libre et pilot par un PC. At = 0, un volume initial de mlange eau-sdiment une concentration dsire est lch dans leau.Une camra synchronise prend des clichs dupanache turbide gnr, pendant quun systme

    enregistre la concentration en plusieurs points ducanal. Le sable inject est de densit 2650 kg/m3,et de diamtre (D

    p) 90 ou 160 mm. La concentra-

    tion du rejet (Cr) varie de 350 450 g/l pour unvolume initial (Vr) de sdiments de 45 ou 60 litres.Les paramtres cls sont le temps de chute du re-

    jet (temps pour que le nuage de sdiment atteignele fond), le diamtre du rejet pendant la phase dechute, la hauteur du front pendant la phase detransport sur le fond. Lincertitude sur le temps dechute est de 0.5 seconde, tandis que celle pour le

    diamtre du rejet est de 5 cm.

    3.2 Paramtrage du modle etmthode danalyse

    Le domaine dtude couvre une zone de 4 mtres

    horizontalement centre sur le rejet et de 1 mtreen hauteur. Un maillage rgulier de 401 nudssur lhorizontale et de 41 nuds sur la verticale

    est utilis. Le pas de temps est x t=0,001s tandis que la concentration du rejet initial (Cr)est donne par le tableau 1. Un schma UPWINDpremier ordre est utilis pour les termes de con-vection. Les frontires latrales sont considresouvertes pour permettre au rejet de se propageret de ne pas gnrer de rexions. La surface li-bre est ge dans ces simulations. En conformit

    avec les conditions exprimentales, linjectiondu mlange eau-sdiment est effectue 15 cmsous la surface libre et pour un diamtre de 10cm. La concentration y est impose ainsi quunprol parabolique de vitesse de type Poiseuille

    dont la vitesse maximale (Winj

    ) est donne par lemodle analytique de Krishnappan (1975). Lesvaleurs sont donnes dans le tableau 1. On noteque les rsultats sont sensibles la manire deraliser linjection.

    4. RESULTATS

    La gure 1 prsente les rsultats de simulation

    diffrents instants pour lessai e6. Le rejet du m-

    lange eau - sdiment forte concentration induitla naissance de deux tourbillons contrarotatifs depart et dautre de laxe du rejet. Leau environ-nante se mlange au rejet. Lorsque le jet et lesdeux tourbillons entre en contact avec le fondla phase de chute se termine pour laisser place une phase de transport sur le fond. Les ph-nomnes observs exprimentalement sont bienreprsent qualitativement par le modle deuxphases. La conservation de la masse dans le do-maine en cours de calcul est trs bonne puisque

    lerreur relative est de lordre de 0,05 %.

    Les expriences ont permis de sortir les paramtressuivants: diamtre du rejet (Dr), hauteur oucote du rejet par rapport au fond (Hr), temps dechute (Tc), vitesse (Ufr) et hauteur (Hfr)du front

    28

    Tableau 1. Caractristiques des essais 100% sable sans courant ambiant

    [Villaret et al., 1997 ; Villaret et al., 1998].

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    31/46

    PIANC E-Magazine n 142, January/janvier 201129

    Figure 1. Isocontours de la concentration en sable et champs de vitesse simuls (cas de lessai e6)

    diffrents instants. Le temps de chute Tc = 1.8 s correspond linstant o lisocontour 0,5 g/l

    atteint le fond. On y observe la phase de chute (t = 1.10 s) et la phase de transport sur le fond

    (t = 3.92 s et t = 5.93 s).

    de concentration lors de la phase de progressionsur le fond. Comme Freson (2004) nous avonschoisi de considrer le rejet comme les zonesde concentrations suprieures ou gales C

    c

    = 0,5 g/l. Les paramtres prcdents sont donccalculs en considrant cette concentration decoupure. An de tenir compte de lincertitude de

    mesure, les rsultats exprimentaux sont tracsen min et max. La gure 2 montre lvolution de Hr

    et Drdurant la phase de chute pour les essais e6,e11 et e12. On constate que pour lessai e6, lesrsultats sont en bon accord avec lexprience.

    Pour les essais e11 et e12, une lgre surval-uation de Hrapparat tandis que Dr est lgre-ment sous-valu. La diminution du temps dechute et laugmentation du diamtre du rejet aveclaugmentation du volume et de la concentrationdu rejet sont bien reproduits (e6/e11). La diminu-tion du temps de chute et une trs faible augmen-tation du diamtre du rejet avec laugmentation dudiamtre des particules sont galement reproduits(e11/e12). Le tableau 2 montre que les rsultatsde simulation sont proches des donnes expri-mentales. Lerreur relative sur le diamtre de

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    32/46

    PIANC E-Magazine n 142, January/janvier 2011 30

    Tableau 2. Temps de chute (Tc) et diamtre de rejet (Dr) en n de chute, et Vitesse (Ufr)et hauteur (Hfr) du front du courant de densit durant la phase de transport sur le fond :

    rsultats des simulations (num) et valeurs exprimentales [Villaret et al., 1997].

    rejet est de lordre de 17 %. Le temps de chutesemble surestim pour les essais e11 et e12.Concernant la phase de transport sur le fond, la

    vitesse de propagation est assez bien estime.Comme sur lexprience, la vitesse du front aug-mente avec le volume et la concentration initiale(e6/e11). En revanche, linuence du diamtre des

    particules nest pas bien reproduit (e11/e12). Lescarts sont plus importants sur lpaisseur du front(Hfr). Ceci montre que la dynamique engendredans la phase de transport est trop importante. Ledpt dans la zone dimpact reste faible. La mo-dlisation des contraintes de cisaillement pourraittre une cause probable de ce dfaut.

    5. CONCLUSIONS

    Cette tude a montr que lapplication dun

    modle diphasique deux uides au cas du cla-

    page en eau calme de matriaux non-cohsif

    (sable) reproduisait de manire satisfaisante les

    rsultats exprimentaux. Certains biais (structure

    verticale du courant de turbidit) restent encore amliorer avant de passer ltape suivante du

    clapage en prsence dun courant ambiant (La

    gure 3 prsente des rsultats de calculs pr-

    liminaires dans ce cas) et surtout le clapage de

    matriaux sablo-vaseux. Une tude particulire

    du courant de densit devrait permettre de lever

    ces biais.

    6. REMERCIEMENTS

    Les auteurs remercient le CETMEF pour le -nancement de cette tude (contrat N 05 510006-000-228-6034) et le CRIHAN pour les moyens decalculs.

    Figure 2. Evolution temporelle de la position infrieure (Hr) et du diamtre (Dr) de rejet durant

    la phase de chute pour lessai e6 (gauche), lessai e11 (centre) et lessai e12 (droite) :simulation numrique ; exprience de Villaret et al. (1997)

    en intgrant la barre derreur.

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    33/46

    PIANC E-Magazine n 142, January/janvier 201131

    Figure 3. Isocontours de la concentration en sable et champs de vitesse simuls dansla conguration de lessai 11 avec un courant de 10 cm/s (essai e13) 1 s (a), 2,1 s (b) et 4 s (c).

    Limpact du courant sur la phase de chute est notable.

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    34/46

    PIANC E-Magazine n 142, January/janvier 2011 32

    7. RFRENCES

    Barbry, N., Guillou, S. et Nguyen, K.D. (2000):

    Une approche diphasique pour le calcul du trans-port sdimentaire en milieux estuariens , C.R.Acad. Sci., IIb, 328, pp 793799. doi:10.1016/S1620-7742(00)01264-2

    Boutin, R. (2000): Dragage et rejets en mer.Les produits de type vase , Presses de lENPC.2000, 307 p.

    Chauchat, J. et Guillou, S. (2008): On turbu-lence closures for two-phase sediment-ladenow models , J. Geophys. Res., 113, C11017.

    doi:10.1029/2007JC004708

    Chauchat, J., Guilou, S. et Nguyen, K.D. (2008): Utilisation des mesures rhomtriques pour lamodlisation diphasique du transport sdimen-taire , Rapport de contract N H054, Universitde Caen-CETMEF, 62 p.

    Freson, F.I. (2004): Simulation numrique duclapage en mer : Etude du champ proche-Chute etTransport sur le fond , Thse, Universit Techn.

    de Compigne, 316 p.

    Farout-Freson, I., Sergent, P., Lefranois, E. etDhatt, G. (2006): Modle numrique de clapage

    phase de chute , IXmes JNGCGC, Brest, pp179-186. doi:10.5150/jngcgc.2006.018-F

    Garapon, A., Villaret, C. et Boutin, R. (2002): 3Dnumerical modelling of sediment disposal , Pro-ceedings of the Physics of Estuarine. PECS, 13 p.

    Guillou, S. et Nguyen, K.D. (1999): An improvedtechnique for solving two-dimensional shallowwater problems , Int. J. Numer. Methods Fluids,29, pp 465483. doi:10.1002/(SICI)1097-0363-(19990228)29:43.0.CO;2-H

    Guillou, S., Barbry, N. et Nguyen, K.D. (2000): Calcul numrique des ondes de surface par unemthode de projection et un maillage eulrien ad-aptatif , C.R. Acad. Sci., IIb, 328, pp 875 881.doi:10.1016/S1620-7742(00)01268-X

    Graham, A.L. (1981): On the viscosity of sus-pensions of solid spheres , Appl. Sci. Res., 37,pp 275286. doi:10.1007/BF00951252

    Haider, A. et Levenspiel, O. (1989): Drag co-efcient and terminal velocity of spherical and

    non-spherical particles , Powder Technol., 58, pp

    6370. doi:10.1016/0032 5910(89)80008-7

    Hsu, T., Jenkins, J.T. et Liu, P.L.-F. (2003): On two-phase sediment transport: Dilute ow , J. Geophys.

    Res., 108(C3), 3057. doi:10.1029/2001JC001276

    Krishnappan, B.G. (1975): Dispersion of granu-lar material dumped in deep water , in Scientic

    series, Environment Canada, 55, 113 p.

    Lundgren, T. (1972): Slow ow through station-ary random beds and suspensions of spheres, J. Fluid Mech., 51, pp 273-299. doi:10.1017/S002211207200120X

    Nguyen, K.D., Guillou, S., Chauchat, J. et Bar-bry, N. (2009): A two-phase numerical modelfor suspended-sediment transport in estuaries ,Advances in Water Resources, 32, pp 1187-1196.doi:10.1016/j.advwatres.2009.04.001

    Teisson, C., Simonin, O., Galland, J.C. et Lau-rence, D. (1992): Turbulence and mud sedimen-

    tation: A Reynolds stress model and a two-phaseow model , in Proceedings of 23rd ICCE, ASCE,

    pp 2853-2866.

    Villaret, C., Lekien, M., Claude, B. et Vinet, V.(1997): Etude exprimentale de la dispersiondes rejets par clapage dun mlange de sable etde vase , He-42/97/072/a, LNHE, EDF.

    Villaret, C., Claude, B. et Du Rivau, J.D. (1998): Etude exprimentale de la dispersion des rejetspar clapage , He-42/98/065/a, LNHE, EDF.

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    35/46

    PIANC E-Magazine n 142, January/janvier 201133

    The port structures are often established in areaswhere water levels are fairly low, especially in es-tuaries. It is then necessary to perform dredging toallow ships accessing to the docks. The dredgedsediment is released over a predened deposit

    zone. Because of the concentration of the sedi-ment cloud appearing during the release, morethan 350 g/l at the beginning, there is an impacton the environment. The chemical composition ofwater is affected directly.

    After the release, the sediments settle under a

    cloud of very high concentration. This settling step

    is followed after impact on the bed by the formationof turbidity current. The purpose of this work is tostudy the phenomenon via numerical simulationsby using a two-phase model of sediment trans-port [Barbry et al., 2000 ; Chauchat et al., 2008 ;Nguyen et al., 2009]. It is based on the solving ofconservation and momentum equations for eachphase (water and particles) and then integratesthe interaction between the particles and the wa-ter. A comparison with the experimental congura-tion of Villaret et al. (1997, 1998), without current,shows that the different steps of the phenomenon

    are quite reproduce without turbulence modelling.

    SUMMARY

    La maintenance des chenaux de navigation

    et des zones portuaires implique la ralisationdoprations de dragage pour garantir une profon-deur deau sufsante. Les produits de dragages

    sont dposs en mer (opration de clapage) siles conditions dimmersion xes par la conven-tion dOslo sont satisfaites. Toutefois, le clapagede sdiments peut induire des nuisances surlenvironnement. Nous utilisons un modle de

    transport sdimentaire deux phases que nous

    avons dvelopp [Barbry et al., 2000 ; Nguyen etal., 2009 ; Chauchat et al., 2008] pour simuler lephnomne de clapage de sdiment n. La com-paraison des simulations aux rsultats exprimen-taux raliss en canal par Boutin (2000) et Villaretet al. (1997, 1998) montre le bon comportementdu modle pour dcrire les diffrentes phases dy-namiques de ce phnomne.

    RSUM

    Hafenanlagen werden oft in Gebieten errichtet,wo die Wassertiefen gering sind, insbesondere instuaren. Es ist dann notwendig, Ausbaggerung-sarbeiten durchzufhren, um Schiffen die Zufahrtzu ermglichen. Das ausgebaggerte Sedimentwird in einer vorher denierten Deponierung-szone freigesetzt. Wegen der Konzentration der

    Sedimentwolke, die sich whrend der Freisetzungbildet (zu Beginn mehr als 350g/l) entsteht einEinuss auf die Umwelt. Die chemische Zusam-mensetzung des Wassers wird direkt beeinusst.

    Nach der Freisetzung schlagen sich die Sedi-mente unter einer sehr hoch konzentrierten Wolkenieder. Auf diesen Schritt des Niederschlags folgtein Einuss auf die Sohle durch Bildung eines

    Suspensionsstroms.

    Der Zweck dieses Beitrags ist das Studium dies-es Phnomens mittels numerischer Simulationenunter Verwendung eines Zwei-Phasen-Modellsfr den Sedimenttransport (Barbry et al., 2000 ;Chauchat et al., 2008 ; Nguyen et al., 2009). Es

    basiert auf der Lsung der Erhaltungs- und Im-puls-Gleichungen fr jede Phase (Wasser undPartikel) und integriert dann die Interaktion zwis-chen Partikeln und Wasser. Ein Vergleich mitden experimentellen Kongurationen von Villaret

    et al. (1997, 1998), ohne Strmung, zeigt, dassdie verschiedenen Schritte des Phnomens rechtgut ohne Modellierung der Turbulenz reproduziertwerden knnen.

    ZUSAMMENFASSUNG

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    36/46

    PIANC E-Magazine n 142, January/janvier 2011 34

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    37/46

    PIANC E-Magazine n 142, January/janvier 201135

    NEWS FROM THE NAVIGATION COMMUNITY

    Barge to Business

    Full Steam Ahead for In-

    land Waterways

    (Press Release)

    Barge to Business, an exciting Euro-pean event about logistics and sup-ply chain management, focussed on

    inland waterway transport, took placefrom November 30 until Decem-

    ber 1, 2010 at Square in Brussels.This is the rst time inland navi-gation has showcased itself to thepublic in such a way, said HildeBollen of Promotie BinnenvaartVlaanderen (Promotion of InlandNavigation Flanders), who led theconference organising team of Euro-pean partners involved in PLATINA

    (the platform for the implementa-tion of NAIADES). Inland waterway

    transportation provides integratedsolutions and this conference wasjust such an integrated solution. Wesuccessfully showcased the fact thatwe are the perfect mode for all kindof products and goods, offer cuttingedge technology, are cost efcient

    and play an effective role in inte-grated logistics networks and supplychains.

    BELGIUM

    General view on the audience

    Siim Kallas, Etienne Schouppe and Karin De Schepper

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    38/46

    PIANC E-Magazine n 142, January/janvier 2011 36

    NEWS FROM THE NAVIGATION COMMUNITY

    Barge to Business was opened byEuropean Commission Vice-Presi-dent Siim Kallas, who reiterated theimmense possibilities inland water-way transport in Europe offers forsustainable supply chain manage-ment. He outlined his vision for a fu-ture transport network in Europe in

    which transport is a fully integratedand seamless system composed ofsafe and secure transport modes,high-quality services and infrastruc-ture, promoting innovation and thecompetence of our industry andcaring for its passengers, custom-ers and employed professionals.

    I am convinced that inland water-way transport can be a valuablepartner in logistics and supply chainsand make an environmental differ-

    ence. This conference is a uniqueopportunity to demonstrate exactlyhow. I look forward to the exchangeof experiences and ideas on inno-vative solutions, technologies andservices. I hope to see more eventslike Barge to Business in the fu-ture. I strongly believe that they cancontribute to raising the image andawareness of the inland shippingsector, said Kallas.

    Kallas also reected on the success

    of the NAIADES action plan and itsimplementation platform PLATINA.

    NAIADES has been in operationfor ve years and will guide Euro-pean inland shipping policy for thenext three years. Kallas announcedat the conference that his ofce isworking on a proposal for a pos-sible continuation programme.

    The unique event brought togethersome of the leading opinion makersin Europe both on the supply anddemand side to lead more than 30presentations and panel discussionshowcasing all that inland water-way transport has to offer logisticsand supply chain managers. Top-ics covered were wide ranging andvisionary, including innovative lo-gistics techniques, green fuels andvessels, population, commerce andculture, climate change, achieving

    sustainable logistics chains and in-formation technology.

    Emphasis was placed on the prac-tical, with existing waterway userssharing their experiences, chal-lenges and successes on the hottopics of logistics and green inno-vation. The speakers demonstratedthat the keys to driving growth anddecarbonisation are already avail-able. These recommendations fromthe eld provide indispensable input

    to inland navigation developmentpolicy in Europe and will ensure our

    success, said Karin De Schepper,General Secretary of Inland Navi-gation Europe, organiser of the in-formation market pillar.

    Simultaneously to the informa-tion pillar of Barge to Business, aunique business to business pillar

    called Riverdating was organisedunder the auspices of Voies navi-gables de France. This conceptoffered an opportunity for one-on-one meetings between the supplyand demand side, with the inlandnavigation community and logis-tics service providers showcasingtheir network to logistics and sup-ply chain managers. Suppliers andshippers were able to take advan-tage of pre-arranged appointmentsto get and offer tailor-made solu-

    tions to individual queries.

    Offering a combination of groupsessions and individual meetingsensured that attendants at the eventwere able to learn as much as theywanted to about inland navigationand its possibilities and developuseful partnerships in favor of mod-al shift over the two days sessions,said Philip Maug, Director of De-velopment at Voies Navigables deFrance, organiser of the Riverdat-

    ing pillar.

    Siim Kallas at the Opening Ceremony

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    39/46

    PIANC E-Magazine n 142, January/janvier 201137

    NEWS FROM THE NAVIGATION COMMUNITY

    Panel discussion on Multi-modal door to door: now or never.

    From left to right: Dario Aggio (Chairman Fluviomar), Guy Pasmans (Managing Director EuroportsContainers), Robert-Jan Zimmerman (General Manager Mercurius Shipping), Kris Verhulst (Senior Logistics

    Manager Procter & Gamble Western Europe), Panel discussion moderated byTheo Notteboom (Professor

    Maritime Transport and Logistics of the University of Antwerp)

    Panel discussion on North-South infrastructure development.

    From left to right: Gilbert Bredel (Managing Director Contargo France), Emmanuel Maes (General Manager

    Group De Cloedt), Gert Van Gestel (Logistics Manager Holcim Belgium), Bruno de Keyser (Panel

    Moderator), Eric van den Eede (General Manager Waterwegen en Zeekanaal and PIANC President),

    Patrick Lambert (Deputy Director General Voies Navigables de France) and Yvon Loyaerts (Director GeneralMobility and Waterways, Wallonian Ministry of Transport)

    More than 600 delegates from 22countries attended Barge to Busi-

    ness. Delegates included execu-tive managers, logistics managers,inland navigation experts, govern-ment policy makers and waterwayservice providers. Rivers and ca-nals do much more than transportgoods and people. They are cata-

    lysts for regional and environmen-tal development, they are actors

    in green energy production, wa-ter supply and ood defence andthey foster leisure and tourism.The water transport sector is partof ensuring a safe combination ofall of these functions, to create op-timized prots for society through

    waterways. All presentations andspeeches are available in podcast

    format on www.bargetobusiness.eusince December 2010.

    Caroline Smith

    Inland Navigation Europe (INE)

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    40/46

    PIANC E-Magazine n 142, January/janvier 2011 38

    NEWS FROM THE NAVIGATION COMMUNITY

    ICOPMAS 2010

    The 9th International Conference onCoasts, Ports and Marine Structures(ICOPMAS) took place in Tehran,Iran from November 29, 2010 to De-cember 1, 2010. Louis Van Schel,Secretary-General of PIANC, at-tended this event on behalf of theAssociation.

    With some 700 participants, theConference was a big success. Be-

    sides plenary sessions with interna-tional keynote speakers (amongstthem Louis Van Schel), there werealso three parallel sessions and asession with workshops. The overalltheme of the Conference was Ef-fects of Climate Change and Glob-al Warming on Coasts, Ports andMarine Structures. Other themesincluded Hydrodynamic and Ma-rine Engineering, Port and Coastal

    Management, Marine Structures,as well as Safety and Marine Envi-

    ronment. The sessions could alsobe followed on-line on the websiteand even through Bluetooth!

    For more information on ICOPMAS2010, please visit http://icopmas.pmo.ir/.

    Louis Van Schel

    Secretary-General PIANC

    IRAN

    PIANC Secretary-General

    Louis Van Schel

    The ICOPMAS Conference room

    PIANC got its own stand at the Conference

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    41/46

    PIANC E-Magazine n 142, January/janvier 2011

    PIANC-COPEDEC VIII Call for Sponsors

    The 8th PIANC-COPEDEC Confer-ence will take place in Chennai, Indiaon February 20-24, 2012. The eventis expected to attract more than 400delegates from around the globe, in-cluding port operators, developmentand investment companies, harbouragencies, port and terminal equip-ment suppliers, consulting rms, ma-

    rine contractors, dredging organisa-tions, environmental specialists andresearch laboratories. Besides theConference, an Exhibition will takeplace, which will form a central partof this prestigious event.

    Find out more information about theevent on the Conference website athttp://www.pianc-copedec2012.in/or on the PIANC website athttp://www.pianc.org/calendarcope-dec.php, in order to learn more aboutPIANC-COPEDEC VIII.

    NEWS FROM THE NAVIGATION COMMUNITY

    39

    INDIA

    BRAZIL

    Embraport ContainerTerminal

    Dubai Ports World, Odebrecht andCoimex will start the construction ofthe New Container Terminal in San-tos early 2011. The Port of Santos is

    the largest port in South America andthe new terminal is expected to move

    1.5 million containers a year.

    The project consists of 1,100 m quayequipped with STS cranes. The stor-age and handling container areas willbe constructed on swampy areas.Part of the yard area is supported onpiles.

    The quay is a deck on piles structure

    using pre-cast concrete piles up to 54m length. The complex also includes

    gates, road and rail reception, reeferscontainers area, customs and all nec-essary installations for the terminal.

    Odebrecht will be in charge of allconstruction and EXE Engenhariawill develop the detailed design andconstruction methods.

    Rubens da Costa Sabino Filho

    EXE Engenharia

  • 8/10/2019 Pianc_142jan2011_cruise Shipping Policy-2008_sensitivity of Pianc Ship Squat_simulation of the Dredged Sediment'

    42/46

    PIANC E-Magazine n 142, January/janvier 2011

    Port of Itaja Itaja,Santa Catarina

    The container terminal of the Port ofItaja, operated by APM Terminalswas seriously affected in Novem-ber 2008 by a ood that destroyed

    berths 1 and 2, along an extensionof 365 m.

    The Brazilian Government awardedthe contract for the reconstruction inFebruary 2009 to the Joint VentureTSCC (Triunfo/Serveng/Constrem-ac), who nished the works in Octo-ber 2010.

    For the supervision of the recon-struction activities, APM Terminalshired EXE Enge