Physics of Semiconductors 7th 2016.5 - University...

27
Physics of Semiconductors 7 th 2016.5.30 Shingo Katsumoto Institute for Solid State Physics, University of Tokyo

Transcript of Physics of Semiconductors 7th 2016.5 - University...

Page 1: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Physics of Semiconductors 7th 2016.5.30

Shingo Katsumoto Institute for Solid State Physics,

University of Tokyo

Page 2: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Syllabus

1. Classical transport, Transport in pn junctions 2. Junction transistors, field effect transistors 3. Hetero-junctions and quantum structures Quantum wells, wires and dots 4. Coherent quantum transport Landauer-Buttiker formalism Interference devices 5. Single-electron effects Charges and spins in quantum dots 6. Quantum Hall effect 7. Spin physics, spintronics, topological insulators

Page 3: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Lecture notes http://kats.issp.u-tokyo.ac.jp/kats/

http://kats.issp.u-tokyo.ac.jp/kats/semicon3/

Page 4: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Outline today

Classical Transport Boltzmann equation Drift current, diffusion current Drude formula, Einstein relation Electromagnetic effect (Hall effect) Heat transport Thermal conductivity Thermoelectric effect Transport in pn junctions Thermal equilibrium Current-voltage characteristics Response to illumination (minority carrier injection)

Page 5: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Classical transport: Boltzmann equation (1)

𝒓

𝒑

(𝒓,𝒑) 6-dimensional phase space

Distribution function 𝑓(𝒓,𝒑, 𝑡)

𝑑𝒓

𝑑𝒑

Page 6: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Classical transport: Boltzmann equation (2)

Boltzmann equation:

Collision term

Relaxation time approximation:

≈ 0 (stable state) around thermal equilibrium

Expansion to the first order of dt

Relaxation time

Page 7: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Currents: Particle flows(fluxes)

𝒑: Anisotropic distribution = Current

Diffusion current Drift current

Drift current:

Page 8: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Drift current for Fermi-degenerated system

𝑓(𝑘)

𝑘

𝑘𝑥

𝑘𝑦

−𝑘𝐹

Page 9: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Drude formula

Maxwell distribution: 𝑓0 ≈ 𝐴exp −𝐸/𝑘𝐵𝑇

: Drude formula for metals

: Drude formula

Page 10: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Diffusion current, Einstein relation

Relaxation time approximation:

: Diffusion constant

Einstein relation

Page 11: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Heat transport, thermoelectric effect Heat flux density:

Thermal conductivity:

Seebeck effect:

A B B

A B B

: Seebeck coefficient

Page 12: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Heat transport, thermoelectric effect (2)

A B

Peltier effect J J

Electric current J : continuous

Heating at A-B interface QAB

Heat flux Q : discontinuous

: Peltier coefficient

Thomson effect

:Thomson coefficient

A J J x

Material specific

Page 13: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Kelvin (Thomson) relations

A B B

𝑇 𝑇 + Δ𝑇

Quasi-static

𝑇𝑚 𝑇𝑚

𝑉𝐴𝐵

:First law

:Second law

: Kelvin relations

Unit charge

Page 14: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Seebeck coefficient as material constant

Material specific

Δ𝑇 A

B

Thermocouple

Page 15: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Boltzmann equation and thermoelectric constants

Replace with 𝑓0

Page 16: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Boltzmann equation and thermoelectric constants (2)

𝑗𝑥 = 0 Drift current Diffusion current :balance

Page 17: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Peltier device

Page 18: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Ch.2 Transport in pn junctions

Page 19: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Transport in pn junctions

Equilibrium

pn junction : spatially non-uniform

Diffusion current: Entropy increase

Drift current: Internal energy decrease

Balance: Minimize Free energy

Page 20: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

pn junction thermodynamics

Consider electrons

+ +

+ + +

donors

e−

e−

e− e−

e−

Vacuum for electrons

diffusion

− − − − −

+ + + + +

voltage (polarization) → energy cost

𝐹 = 𝑈 − 𝑇𝑇

Voltage (internal energy cost) Diffusion (entropy)

Minimization of 𝐹 → Built-in (diffusion) voltage 𝑉𝑏𝑏

Page 21: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Built-in potential

Page 22: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Einstein relation

mobility

Rigid band model:

Page 23: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Current-Voltage characteristics equilibrium

External voltage V

Page 24: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Current-Voltage characteristics (2)

𝑛 𝑥 = 𝑁𝑐exp −𝐸𝑐 𝑥 − 𝜇𝑒(𝑥)

𝑘B𝑇

𝜇𝑒 𝑥 = 𝐸𝑐 𝑥 + 𝑘B𝑇ln𝑛(𝑥)𝑁𝑐

quasi-Fermi level

Diffusion equation

Minority carrier diffusion length

𝐿𝑒 = 𝐷𝑒𝜏𝑒 , 𝐿ℎ = 𝐷ℎ𝜏𝑒

generation

𝑛𝑝 𝑥 = 𝛿𝑛0exp𝑥 + 𝑤𝑝𝐿𝑒

+ 𝑛𝑝0

𝐸F𝑛 − 𝐸F𝑝 = 𝑒𝑉

𝑗 𝑉 ≈ 𝑒𝑛𝑏2𝐷𝑒𝐿𝑒𝑁𝐴

+𝐷ℎ𝐿ℎ𝑁𝐷

exp𝑒𝑉𝑘B𝑇

− 1

Page 25: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Response to illumination

G(x) =G constant

𝑛𝑝 𝑥 = 𝛿𝑛0exp𝑥 + 𝑤𝑝𝐿𝑒

+ 𝑛𝑝0 + 𝐺𝜏𝑒

𝛿𝑛0 = 𝑛𝑝0 exp𝑒𝑉𝑘𝐵𝑇

− 1 − 𝐺𝜏𝑒

𝑗 = 𝑗0 exp𝑒𝑉𝑘𝐵𝑇

− 1 − 𝑒𝐺 𝐿𝑒 + 𝐿ℎ

jm Short circuit current

Vm

fill factor 𝐹𝐹 = 𝑉𝑚 𝑗𝑚𝑉oc 𝑗sc

− +

Majority carrier → ignore increase in density Minority carrier → huge increase in density

Page 26: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Spin Seebeck effect

2016/5/30 26

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Nature 455, 778 (2008).

Page 27: Physics of Semiconductors 7th 2016.5 - University …kats.issp.u-tokyo.ac.jp/kats/semicon3/ppt/semicon-1.pdfPhysics of Semiconductors 7th 2016.5.30 Shingo Katsumoto Institute for Solid

Spin Seebeck effect

2016/5/30 27