Physical Metallurgy of Steel

179
    S    t    e    e     l    s

Transcript of Physical Metallurgy of Steel

  • 8/8/2019 Physical Metallurgy of Steel

    1/179

    Steels

  • 8/8/2019 Physical Metallurgy of Steel

    2/179

    Thispageintentionallyleftblank

    Steels

    MicrostructureandPro

    perties

    Thirdedition

    H.K.D.H.Bhadeshia

    ProfessorofPhysicalMetallu

    rgy

    UniversityofCambridge

    and

    A

    djunctProfessorofComputationalMetallurgy

    Gra

    duatelnstituteofFerrousTechnolo

    gy,POSTECH

    and

    SirRobertHoneycom

    be

    EmeritusGoldsmithsProfessorofMetallurgy

    UniversityofCambridge

    AMSTERDAMBOSTONHEIDELBERGLONDONNEWY

    ORKOXFORD

    PARISSANDIEGOSANFRANCISCOSINGAPORE

    SYDNEYTOKYO

    Butterworth-HeinemannisanimprintofElsevier

  • 8/8/2019 Physical Metallurgy of Steel

    3/179

  • 8/8/2019 Physical Metallurgy of Steel

    4/179

    vi

    CONTENTS

    4.3

    Theeffectofalloyingelementsonthekineticsofthe

    /transformation

    77

    4.4

    Structuralchangesresultingfromalloyingadditions

    84

    4.5

    Transformationdiagram

    sforalloysteels

    91

    Furtherreading

    92

    5

    Formationofmartensite

    95

    5.1

    Introduction

    95

    5.2

    Generalcharacteristics

    95

    5.3

    Thecrystalstructureofmartensite

    100

    5.4

    Thecrystallographyofm

    artensitictransformations

    103

    5.5

    Themorphologyofferrousmartensites

    106

    5.6

    Kineticsoftransformationtomartensite

    112

    5.7

    Thestrengthofmartensite

    120

    5.8

    Shapememoryeffect

    126

    Furtherreading

    127

    6

    Thebainitereaction

    129

    6.1

    Introduction

    129

    6.2

    Upperbainite(temperaturerange550400C)

    129

    6.3

    Lowerbainite(temperaturerange400250C)

    132

    6.4

    Theshapechange

    135

    6.5

    Carboninbainite

    135

    6.6

    Kinetics

    139

    6.7

    Thetransitionfromuppertolowerbainite

    143

    6.8

    Granularbainite

    144

    6.9

    Temperingofbainite

    145

    6.10

    Roleofalloyingelemen

    ts

    146

    6.11

    Useofbainiticsteels

    147

    6.12

    Nanostructuredbainite

    152

    Furtherreading

    154

    7

    Acicularferrite

    155

    7.1

    Introduction

    155

    7.2

    Microstructure

    155

    7.3

    Mechanismoftransform

    ation

    157

    7.4

    Theinclusionsashetero

    geneousnucleationsites

    161

    7.5

    Nucleationofacicularferrite

    162

    7.6

    Summary

    164

    Furtherreading

    164

    8

    Theheattreatmentofsteels:h

    ardenability

    167

    8.1

    Introduction

    167

    8.2

    UseofTTTandcontinu

    ouscoolingdiagrams

    168

    CONTENTS

    vii

    8.3

    H

    ardenabilitytesting

    170

    8.4

    E

    ffectofgrainsizeandchemicalcomposition

    onhardenability

    176

    8.5

    H

    ardenabilityandheattreatment

    177

    8.6

    Q

    uenchingstressesandquenchcracking

    179

    Further

    reading

    181

    9

    Thetemperingofmartensite

    183

    9.1

    In

    troduction

    183

    9.2

    Temperingofplaincarbonsteels

    184

    9.3

    M

    echanicalpropertiesoftemperedplain

    carbonsteels

    190

    9.4

    Temperingofalloysteels

    191

    9.5

    M

    aragingsteels

    207

    Further

    reading

    207

    10

    Thermom

    echanicaltreatmentofsteels

    209

    10.1

    In

    troduction

    209

    10.2

    C

    ontrolledrollingoflow-a

    lloysteels

    210

    10.3

    D

    ual-p

    hasesteels

    220

    10.4

    TRIP-assistedsteels

    223

    10.5

    TWIPsteels

    229

    10.6

    In

    dustrialsteelssubjectedtothermomechanicaltreatments

    231

    Furtherr

    eading

    233

    11

    Theembrittlementandfractureofsteels

    235

    11.1

    In

    troduction

    235

    11.2

    C

    leavagefractureinironandsteel

    235

    11.3

    Factorsinfluencingtheonsetofcleavage

    fracture

    237

    11.4

    C

    riterionfortheductile/brittletransition

    240

    11.5

    Practicalaspectsofbrittlefracture

    243

    11.6

    D

    uctileorfibrousfracture

    245

    11.7

    In

    tergranularembrittlement

    252

    Furtherr

    eading

    258

    12

    Stainless

    steel

    259

    12.1

    In

    troduction

    259

    12.2

    Theironc

    hromiumn

    ickelsystem

    259

    12.3

    C

    hromiumcarbideinCrNiausteniticsteels

    264

    12.4

    Precipitationofniobiumandtitaniumcarbides

    267

    12.5

    N

    itridesinausteniticsteels

    270

    12.6

    In

    termetallicprecipitationinaustenite

    270

    12.7

    A

    usteniticsteelsinpracticalapplications

    273

  • 8/8/2019 Physical Metallurgy of Steel

    5/179

    viii

    CONTENTS

    12.8

    Duplexandferriticstainlesssteels

    274

    12.9

    Mechanicallyalloyed

    stainlesssteels

    278

    12.1

    0

    Thetransformationofmetastableaustenite

    281

    Furtherreading

    286

    13

    Weldmicrostructures

    287

    13.1

    Introduction

    287

    13.2

    Thefusionzone

    287

    13.3

    TheHAZ

    298

    Furtherreading

    306

    14

    Modellingofmicrostructureandproperties

    307

    14.1

    Introduction

    307

    14.2

    Example1:alloydesign

    high-s

    trengthbainiticsteel

    309

    14.3

    Example2:mechanicalpropertiesofmixedmicrostructures

    315

    14.4

    Methods

    321

    14.5

    Kinetics

    326

    14.6

    Finiteelementmethod

    329

    14.7

    Neuralnetworks

    330

    14.8

    Definingcharacteristicsofmodels

    333

    Furtherreading

    334

    Index

    335

    PREFACETOTHEFIRST

    EDITION

    Inthisbook,

    Ihaveattemptedtooutlinetheprincipleswhichdeterminethe

    microstructuresofsteelsandthroughthesethemechanicalproperties.

    Ata

    timewhenourmetallographictechniquesarereachingalmosttoatomicresolu-

    tion,i

    tisessentialtoemphasizestructureonthefinestscale,especiallybecause

    mechanicalpropertiesaresensitivetochangesatthislevel.Whilethisisnota

    bookonthese

    lectionofsteelsfordifferentuses,Ihave

    triedtoincludesufficient

    informationtodescribehowbroadcategoriesofstee

    lsfulfilpracticalrequire-

    ments

    .However,themainthrustofthebookistoexamineanalyticallyhow

    the

    /phase

    transformationisutilized

    ,andtoexplainthemanyeffectsthat

    non-metallicandmetallicalloyingelementshave,bo

    thonthistransformation

    andonotherphenomena.

    Thisbookiswrittenwiththeneedsofmetallurgist

    s,materialsscientistsand

    engineersinm

    ind

    ,andshouldbeusefulnotonlyinthelateryearsofthefirst

    degreeanddiplomacoursesbutalsoinpostgraduatecourses.

    Anelementary

    knowledgeof

    materialsscience,

    metallography,crystallographyandphysicsis

    assumed.

    Iamindebtedtoseveralcolleaguesfortheirinteres

    tinthisbook

    ,particularly

    DrD

    .V

    .Edm

    onds,whokindlyreadthemanuscript

    ,DrP.R

    .Howell,DrB

    .

    MuddleandD

    rH

    .K.D.H.B

    hadeshia

    ,whomadehelpfulcommentsonvarious

    sections,andn

    umerousothernumbersofmyresearch

    groupwhohaveprovided

    illustrations.I

    wishalsotothankmycolleaguesindifferentcountriesfortheir

    kindpermissi

    ontousediagramsfromtheirwork.I

    amalsoverygratefulto

    MrS.D

    .Charterforhiscarefulpreparationofthel

    inediagrams.Finally

    ,my

    warmestthan

    ksgotoMrsDianaWalkerandMissR

    osemaryLeachfortheir

    carefulanddedicatedtypingofthemanuscript.

    RWKH

    Cambridge

    1980

    ix

  • 8/8/2019 Physical Metallurgy of Steel

    6/179

    PREFACETOTHESECONDEDITION

    Thisneweditionretainsthebasicframeworkoftheoriginalbook;howeve

    r,the

    opportunityhasbeentakentointro

    duceseveraladditionalchaptersdealing

    with

    areaswhichhaveemergedorincr

    easedinsignificancesincethebookwasfirst

    publishedin1981

    .Thereisnowaseparatechapteronacicularferritewhic

    hhas

    becomeadesirablestructureinsomesteels

    .Thecontrolofmicrostructuresdur-

    ingweldingisundoubtedlyacrucialtopicwhichnowrequiresachapter,while

    themodellingofmicrostructurestoachieveoptimumpropertieshasemerged

    asanimportantapproachjustifyin

    gtheinclusionofafurthernewchapter

    .The

    opportunityhasalsobeentaken

    toincludeacompletelyrevisedchapteron

    bainitetransformations.

    Theoverallaimofthebookremainstointroducestudentstotheprinciples

    determiningthemicrostructuresofsteels

    ,andthroughthese,themecha

    nical

    propertiesandbehaviourinservice.Steelsremainthemostimportantg

    roup

    ofmetallicalloys,p

    ossessingaverywiderangeofmicrostructuresandmechan-

    icalproperties,

    whichwillensure

    theircontinuedextensiveusefarintothe

    foreseeablefuture.

    RW

    KH

    HKDHB

    Camb

    ridge

    1995

    x

    PREFACETOTHETHIRD

    EDITION

    Steelhasthe

    abilitytoadapttochangingrequireme

    nts

    .Thiscomesfromthe

    myriadsofwaysinwhichitsstructurecanbeinfluencedbyprocessingand

    alloying.This

    iswhyitisthestandardagainstwhichemergingmaterialsare

    compared.Ad

    dedtothisisthecommercialsuccess,withoutputatrecordlevels

    andaproductionefficiencywhichisuncanny.Itisple

    asingtoseehow,a

    llover

    theworld

    ,iro

    nanditsalloyscontributetoimprovingthequalityoflifeofso

    manyhumanbeings.T

    hetechnologyissogoodthatmostofthesepeoplerightly

    takeitforgra

    nted

    .

    Thisneweditioncapturesdevelopmentssince1995,e.g.,t

    heextremelyfine-

    grainedalloys

    ,steelswiththeabilitytoabnormallyelongateandtheproperties

    ofminuteparticlesofiron.Q

    uestionsareposedastothetheoreticallimittothe

    finestcrystals

    thatcanbemanufacturedonalargescale.Inaddition,t

    hereare

    majorrevisionsintheexplanationsofmicrostructur

    e,strengthening,kinetics

    andmodelling.

    Theorigina

    laimofthisbook

    ,tointroducestudentsandtechnologiststothe

    principlesdeterminingthemicrostructureandpropertiesofironanditsalloys,

    hasremained

    theguidingprincipleinthenewedition

    .

    HKDHB

    RWKH

    Cambridge

    2006

    xi

  • 8/8/2019 Physical Metallurgy of Steel

    7/179

    Supportingmaterialaccompanyingthisbook

    Afullsetofaccompanyingexerc

    isesandworkedsolutionsforthisbook

    are

    availableforteachingpurposes.

    Pleasevisithttp://www.t

    extbook

    s.elsevier.c

    omandfollowtheregistration

    instructionstoaccessthismaterial,

    whichisintendedforusebylecturers

    andtutors.

    Thecompilationofquestionshasbeendesignedtostimulatethestuden

    tto

    explorethesubjectwithintheco

    ntextofthebook

    .

    Eachquestionisaccompaniedb

    yacompleteanswer,w

    iththeexceptionof

    theproposedsetoftopicsforessays.Mostofthequestionsandanswersh

    ave

    beendevelopedasaconsequenc

    eofmanyyearsofteachingandhaveb

    een

    testedonavarietyofundergraduates.

    1

    IRONANDITSINTERS

    TITIAL

    SOLIDSOLUTIONS

    1.1INTROD

    UCTION

    Steelisfreque

    ntlythegold-s

    tandardagainstwhichemergingstructuralmater-

    ialsarecompared.W

    hatisoftennotrealizedisthatthisisamovingstandard

    ,

    withnotoriou

    slyregularandexcitingdiscoveriesbeingmadeinthecontextof

    ironanditsalloys.T

    hisiswhysteelremainsthemostsuccessfulandcost-e

    ffective

    ofallmateria

    ls,

    withmorethanabilliontonnesbeingconsumedannuallyin

    improvingthe

    qualityoflife

    .Thisbookattemptstoex

    plainwhysteelscontinue

    totakethispr

    e-eminentposition,a

    ndexaminesindet

    ailthephenomenawhose

    exploitatione

    nablesthedesiredpropertiestobeachieved

    .

    Onereaso

    nfortheoverwhelmingdominanceofsteelsistheendlessvariety

    ofmicrostruct

    uresandpropertiesthatcanbegeneratedbysolid-s

    tatetransform-

    ationandpro

    cessing.Therefore,

    instudyingsteels,itisusefultoconsiderthe

    behaviourofpureironfirst,thentheironcarbonalloys,

    andfinallythemany

    complexitiesthatarisewhenfurthersolutesareadded

    .

    Pureironisnotaneasymaterialtoproduce.I

    thasneverthelessbeenmade

    withatotalimpuritycontentlessthan60partsper

    million(ppm),ofwhich

    10ppmisacc

    ountedforbynon-metallicimpurities

    suchascarbon,

    oxygen,

    sulphurandp

    hosphorus,withtheremainderreprese

    ntingmetallicimpurities.

    Ironofthispuritycanbeextremelyweakwhenreas

    onablysizedsamplesare

    tested:theresolvedshearstressofasinglecrystalatroomtemperaturecanbeas

    lowas10MN

    m

    2,w

    hiletheyieldstressofapolycrystallinesampleatthesame

    temperaturec

    anbewellbelow50MNm

    2.H

    owever,theshearstrengthofsmall

    singlecrystals

    hasbeenobservedtoexceed19

    ,000MN

    m

    2whenthesizeofthe

    sampleisreducedtoabout2m.T

    hisisbecausethe

    chancesoffindingcrystal

    defectssucha

    sdislocationsbecomesmallasthesize

    ofthecrystalisreduced

    .

    Thetheoreticalshearstrengthofaperfectcrystalofiro

    nisestimatedtobeabout

    21,0

    00MNm

    2,e

    quivalenttoatensilestrengthofabout11

    ,000MNm

    2.

    1

  • 8/8/2019 Physical Metallurgy of Steel

    8/179

  • 8/8/2019 Physical Metallurgy of Steel

    9/179

  • 8/8/2019 Physical Metallurgy of Steel

    10/179

  • 8/8/2019 Physical Metallurgy of Steel

    11/179

    8

    CHAPTER1

    IRONAND

    ITSINTERSTITIALSOLIDSOLUTIONS

    Fig.1.5Schematicillustrationofthemechanismsoftransformation.Theparentcrystalcon-

    tainstwokindsofatoms.Thefiguresontherightrepresentpartiallytransformedsample

    swith

    theparentandproductunitcellsoutline

    dinbold.

    shearcomponentsoftheshapedeformation,l

    eavingonlytheeffectsofvo

    lume

    change.

    Inalloys,

    thediffusionprocessmayalsoleadtotheredistributionof

    solutesbetweenthephasesinamannerconsistentwithareductionintheoverall

    freeenergy.

    Allthephasetransformationsinsteelscanbediscussedintheco

    ntext

    ofthesetwomechanisms(Fig

    .1.6

    ).Thedetailsarepresentedinsubseq

    uent

    chapters.

    1.4CARBONANDNITROGEN

    INSOLUTIONIN-AND-IRON

    1.4.1Solubilityofcarbonandnitrogenin-and-iron

    Theadditionofcarbontoironis

    sufficienttoformasteel.However,steelis

    agenerictermwhichcoversaverylargerangeofcomplexcompositions

    .The

    1.4CARBONANDNITROGENINSOLUTIONIN

    -AND-IRON

    9

    Fig.1.6Summaryofthevarietyofphasesgeneratedbythe

    decompositionofaustenite.

    Thetermparaequilibriumreferstothecasewherecarbonpa

    rtitionsbutthesubstitutional

    atomsdonotdiffuse.Thesubstitutionalsolutetoironatomratioisthereforeunchangedby

    transformation.

    presenceofevenasmallconcentrationofcarbon,e.

    g.0.10.2weightpercent

    (wt%);approximately0

    .51.0

    atomicpercent(at%),

    hasagreatstrengthening

    effectonferriticiron,

    afactknowntosmithsover2500yearsagosinceiron

    heatedinac

    harcoalfirecanreadilyabsorbcarbon

    bysolid-s

    tatediffusion.

    However,

    the

    detailedprocessesbywhichtheabsorptionofcarbonintoiron

    convertsarelativelysoftmetalintoaverystrongan

    doftentoughalloyhave

    onlyrecentlybeenfullyexplored

    .

    Theatomicsizesofcarbonandnitrogen(Table1.2)aresufficientlysmall

    relativetotha

    tofirontoallowtheseelementstoenterthe-and-ironlattices

    asinterstitialsoluteatoms.Incontrast,themetallicalloyingelementssuchas

    manganese,n

    ickelandchromiumhavemuchlarger

    atoms,i.e.nearerinsize

  • 8/8/2019 Physical Metallurgy of Steel

    12/179

  • 8/8/2019 Physical Metallurgy of Steel

    13/179

  • 8/8/2019 Physical Metallurgy of Steel

    14/179

  • 8/8/2019 Physical Metallurgy of Steel

    15/179

  • 8/8/2019 Physical Metallurgy of Steel

    16/179

  • 8/8/2019 Physical Metallurgy of Steel

    17/179

  • 8/8/2019 Physical Metallurgy of Steel

    18/179

    22

    CHAPTER2THESTREN

    GTHENINGOFIRONANDITSALLOYS

    Fig.2.4(a)Schematicdiagramofyieldp

    henomenaasshowninatensiletest,(b)Luders

    bands

    indeformedsteelspecimens(Hall,YieldPointPhenomenainMetalsandAlloys,Macmillan,London,

    1970),(c)Ludersbandsinanotchedsteelspecimen.

    2.3SOLIDSOLUTIONSTRENGTHENINGBYINTERSTITIALS

    23

    onreloadinganewyieldpointisobserved(D).Thisr

    eturnoftheyieldpointis

    referredtoas

    strainageing.

    2.3.2Theroleofinterstitialelementsinyieldphe

    nomena

    Thesharpupp

    erandloweryieldpointinironiseliminatedbyannealinginwet

    hydrogen,w

    hichreducesthecarbonandnitrogentoverylowlevels

    .However,

    substantialstrainageingcanoccuratcarbonlevelsa

    round0.002wt%

    ,andas

    littleas0.001

    0.002wt%Ncanresultinseverestrain

    ageing.Nitrogenismore

    effectiveinth

    isrespectthancarbon,

    becauseitsresidualsolubilitynearroom

    temperaturei

    ssubstantiallygreaterthanthatofcarbon(Table1.3)

    .

    CottrellandBilbyfirstshowedthatinterstitialatomssuchascarbonand

    nitrogenwouldinteractstronglywiththestrainfields

    ofdislocations.Theinter-

    stitialatomsh

    avestrainfieldsaroundthem,b

    utwhen

    suchatomsmovewithin

    thedislocationstrainfields,thereshouldbeanover

    allreductioninthetotal

    strainenergy.Thisleadstotheformationofinterstitialconcentrationsoratmos-

    pheresinthe

    vicinityofdislocations,whichinanextremecasecanamountto

    linesofinterstitialatomsalongthecoresofthedisloc

    ations(condensedatmos-

    pheres),e.g.inedgedislocationsattheregionofthestrainfieldwherethereis

    maximumdilation(Figs2.5a

    ,b).Thebindingenergy

    betweenadislocationin

    ironandacarbonatomisabout0

    .5eV.C

    onsequentlydislocationscanbelocked

    inpositionby

    stringsofcarbonatomsalongthedislocations,thussubstantially

    raisingthestresswhichwouldbenecessarytocaus

    edislocationmovement.

    Aparticulara

    ttractionofthistheoryisthatonlyave

    rysmallconcentrationof

    interstitialato

    msisneededtoproducelockingalongthewholelengthofall

    dislocationlin

    esinannealediron.

    Foratypicaldislocationdensityof10

    8lines

    cm

    2inannealediron,a

    carbonconcentrationof10

    6wt%wouldbesufficient

    toprovideoneinterstitialcarbonatomperatomicplanealongallthedisloca-

    tionlinespres

    ent,i.e.tosaturatethedislocations.Con

    sequently,thistheorycan

    explaintheobservationofyieldphenomenaatvery

    lowcarbonandnitrogen

    concentration

    s.

    Theforma

    tionofinterstitialatmospheresatdislocationsrequiresdiffusion

    ofthesolute.A

    sbothcarbonandnitrogendiffuseverymuchmorerapidlyiniron

    Fig.2.5Interstitialatomsinthevicinityofanedgedisloca

    tion(a)randomatmosphere

    (b)condensed.

  • 8/8/2019 Physical Metallurgy of Steel

    19/179

  • 8/8/2019 Physical Metallurgy of Steel

    20/179

  • 8/8/2019 Physical Metallurgy of Steel

    21/179

    28

    CHAPTER2THESTREN

    GTHENINGOFIRONANDITSALLOYS

    Fig.2.7Solidsolutionstrengtheningof

    -ironcrystalsbysubstitutionalsolutes.Ratio

    ofthe

    criticalresolvedshearstress0toshea

    rmodulus

    asafunctionofatomicconcent

    ration

    (Takeuchi,JournalofthePhysicalSocietyof

    Japan27,929,1969).

    ironbyHallandPetch,

    ledtotheHallPetchrelationshipbetweenthe

    yield

    stressy

    andthegraindiameterd,

    y=0+kyd

    ,

    (2.9

    )

    where0andk

    yareconstants

    .Thistypeofrelationshipholdsforawideva

    riety

    ofironsandsteelsaswellasform

    anynon-ferrousmetalsandalloys.A

    ty

    pical

    setofresultsformildsteelisgiveninFig

    .2.7,wherethelinearrelationship

    betweeny

    andd

    isclearlyshownforthethreetesttemperatures.

    2.5GRAINSIZE

    29

    Fig.2.8Depen

    denceoftheloweryieldstressofmildsteelo

    ngrainsize(Petch,inFracture

    (edsAverbachetal.),JohnWiley,USA,1959).

    Theconsta

    nt

    0iscalledthefrictionstress

    .Itistheinterceptonthestressaxis

    ,

    representingthestressrequiredtomovefreedislocationsalongtheslipplanes

    inthebcccry

    stals,andcanberegardedastheyield

    stressofasinglecrystal

    (d

    =

    0).Th

    isstressisparticularlysensitivetotempe

    rature(Fig

    .2.7

    )andcom-

    position.T

    hekytermrepresentstheslopeofthey

    d

    plotwhichhasbeen

    foundnottob

    esensitivetotemperature(Fig

    .2.8

    ),compositionandstrainrate

    .

    InlinewiththeCottrellB

    ilbytheoryoftheyield

    pointinvolvingthebreak

    awayofdisloc

    ationsfrominterstitialcarbonatmospheres,ky

    hasbeenreferred

    toastheunpinningparameter.H

    owever,t

    heinsensitivityofk

    ytotemperature

    suggeststhatunpinningrarelyoccurs,a

    ndemphasizesthetheorythatnewdis-

    locationsare

    generatedattheyieldpoint.Thisisconsistentwiththetheories

    explainingtheyieldpointintermsofthemovementofnewdislocations,the

    velocitiesofw

    hicharestressdependent(Section2.3.2)

    .

    Thegrainsizeeffectontheyieldstresscanthereforebeexplainedbyassum-

    ingthatadislocationsourceoperateswithinacrystalcausingdislocationsto

    moveandeventuallytopile-upatthegrainboundary.Thepile-upcausesa

    stresstobegeneratedintheadjacentgrain,

    which,whenitreachesacritical

  • 8/8/2019 Physical Metallurgy of Steel

    22/179

  • 8/8/2019 Physical Metallurgy of Steel

    23/179

  • 8/8/2019 Physical Metallurgy of Steel

    24/179

  • 8/8/2019 Physical Metallurgy of Steel

    25/179

  • 8/8/2019 Physical Metallurgy of Steel

    26/179

  • 8/8/2019 Physical Metallurgy of Steel

    27/179

  • 8/8/2019 Physical Metallurgy of Steel

    28/179

  • 8/8/2019 Physical Metallurgy of Steel

    29/179

  • 8/8/2019 Physical Metallurgy of Steel

    30/179

  • 8/8/2019 Physical Metallurgy of Steel

    31/179

    48

    CHAPTER3

    IRONCARBON

    EQUILIBRIUMANDPLAINCARBONSTEE

    LS

    (a)

    (b)

    Fig.3.6Phasediagramanditsrelationsh

    iptotheconcentrationprofileattheferrite/austenite

    interfaceduringdiffusion-controlledgrowth.

    Oncombiningtheseexpressionstoeliminatezweget:

    z t=

    D C(cc)2

    2z(c

    c)(c

    c).

    Itfollowsthat:

    z=

    (cc)

    [2(c

    c)(c

    c)]1 2

    D

    Ct.

    (3.2

    )

    Considernowaternarysteel,sayF

    eMnC.I

    twouldbenecessarytosatisfytwo

    equationsoftheformofEquation

    (3.1

    ),simultaneously,foreachofthesolutes:

    (c

    C

    cC)v=D CcC

    (c

    Mnc

    M

    n)v=D M

    ncM

    n

    .

    (3.3

    )

    BecauseD CD M

    n,t

    heseequatio

    nscannotingeneralbesimultaneously

    satis-

    fiedforthetie-linepassingthrough

    thealloycompositioncC

    ,cMn.I

    tis

    ,how

    ever,

    possibletochooseothertielineswhichsatisfyequation(3

    .3).Ifthetie-lineis

    suchthatcC

    =cC(e

    .g.

    linecdfor

    alloyAofFig

    .3.7a),thencCwillbecome

    verysmall,thedrivingforceforcarbondiffusionineffectbeingreduced,so

    that

    thefluxofcarbonatomsisforcedtoslowdowntoarateconsistentwiththe

    diffusionofmanganese.Ferritefo

    rmingbythismechanismissaidtogro

    wby

    aPartitioning,LocalEquilibrium

    (orPLE)mechanism,i

    nrecognitiono

    fthe

    factthatc

    Mn

    candiffersignificantlyfromcM

    n,g

    ivingconsiderablepartitioning

    andlong-rangediffusionofmanganeseintotheaustenite.

    Analternativechoiceoftie-linecouldallowc

    Mn

    cMn

    (e.g.

    linecdfor

    alloyBofFig

    .3.7b),sothatcM

    n

    isdrasticallyincreasedsinceonlyverysmall

    amountsofMnarepartitionedintotheaustenite.Thefluxofmanganesea

    toms

    attheinterfacecorrespondinglyincreasesandmanganesediffusioncan

    then

    keeppacewiththatofcarbon,sa

    tisfyingthemassconservationconditio

    nsof

    Equation(3

    .3).Thegrowthofferr

    iteinthismannerissaidtooccurbyaN

    egli-

    giblePartitioning,LocalEquilibrium(orNPLE)mechanism,i

    nrecognitionof

    3.4THEKINETICSOFTHE

    TRANSFO

    RMATION

    49

    (a) (b)

    Fig.3.7Schem

    aticisothermalsectionsoftheFeMnCsystem,illustratingferritegrowth

    occurringwithlocalequilibriumatthe/

    interface.(a)Growthatlowsupersaturations

    (PLE)withbulkredistributionofmanganese,(b)growthathigh

    supersaturations(NPLE)with

    negligiblepartitioningofmanganeseduringtransformation.Th

    ebulkalloycompositionsare

    designatedbyth

    esymbolineachcase.

    thefactthatthemanganesecontentoftheferriteapp

    roximatelyequalscM

    n,s

    o

    thatlittleifan

    ymanganesepartitionsintoaustenite.

    WhatcircumstancesdeterminewhethergrowthfollowsthePLEorNPLE

    mode?Figure3.8showstheFeMnCphasedia

    gram,

    nowdividedinto

    domainswhereeitherPLEorNPLEispossiblebu

    tnotboth

    .Thedomains

    areobtained

    bydrawingright-handedtrianglesoneachtie-lineinthe+

    phasefieldan

    djoiningupallthevertices.

    Forexample

    ,ifanattemptismade

  • 8/8/2019 Physical Metallurgy of Steel

    32/179

    50

    CHAPTER3

    IRONCARBON

    EQUILIBRIUMANDPLAINCARBONSTEE

    LS

    Fig.3.8Regionsofthetwo-phasefield

    whereeitherPLEorNPLEmodesoftransform

    ation

    arepossible.

    Fig.3.9Apara-equilibriumphasediagram.

    todefineNPLEconditionsinthe

    PLEdomain,

    thenthetie-linedeterm

    ining

    interfacecompositionswillincor

    rectlyshowthatbothausteniteandferrite

    containlesscarbonthancC

    ,acircumstancewhichisphysicallyimpossible

    .

    Para-equilibriumisaconstrainedequilibrium.

    Itoccursattempera

    tures

    wherethediffusionofsubstitution

    alsolutesisnotpossiblewithinthetime

    scale

    oftheexperiment.Nevertheless,interstitialsmayremainhighlymobile.Thus,

    inasteel,manganesedoesnotpartitionbetweentheferriteandaustenite,but

    subjecttothatconstraint,thecarbonredistributesuntilithasthesamechemical

    potentialinbothphases.

    Therefore,t

    hetielinesintheph

    asediagram(Fig

    .3.9

    )areallvirtuallyparallel

    tothecarbonaxis

    ,sinceMndoesnotpartitionbetweenferriteandausten

    ite.

    Inanisothermalsectionofthe

    ternaryphasediagram,t

    hepara-equilib

    rium

    phaseboundariesmustliewithinth

    eequilibriumphaseboundariesasillustrated

    inFig

    .3.1

    0.

    3.4THEKINETICSOFTHE

    TRANSFO

    RMATION

    51

    (a)

    (b)

    Fig.3.10Thepara-equilibriumphasefieldlieswithintheequilibriumfield.Thetielines

    illustratedarefo

    requilibrium.

    Fig.3.11(a)Plo

    toftheparabolicthickeningprocessdescribedbyEquation(3.1).(b)Interfacial

    energiesattheadvancingedgeofaferriteallotriomorph(afterHillert,JernkontoretsAnnaler

    141,757,1957).

    Sincethe

    thicknessofanallotriomorphincrease

    sparabolicallywithtime

    (Fig

    .3.11a),t

    hegrowthratedecreasesastheferrite

    thickens.Thisisbecause

    increasingquantitiesofcarbonarerejectedintotheausteniteastheferrite

    thickens,mak

    ingthediffusionofcarbonawayfrom

    thetransformationfront

    moredifficult.

    Zener,and

    laterHillert,i

    nvestigatedtheoreticallytheedgewisegrowthofan

    allotriomorph

    withcurvedends(Fig

    .3.1

    1b)assuming

    thattherateiscontrolled

    bythediffusionofcarbonintheaustenite.Theplateshapeensuresthatthe

    carbonrejectedbythegrowingferriteisdistributed

    tothesidesoftheplates.

    Thecarbonco

    ncentrationprofileaheadoftheplatetipthereforeremainscon-

    stantasthep

    latelengthens.Consequently,unliketh

    ethickeningprocess,

    the

    allotriomorph

    icferritelengthensataconstantrateG

    L:

    GL=D C

    (c

    c)

    4r(cc)sin

    ,

    (3.4

    )

  • 8/8/2019 Physical Metallurgy of Steel

    33/179

  • 8/8/2019 Physical Metallurgy of Steel

    34/179

  • 8/8/2019 Physical Metallurgy of Steel

    35/179

    56

    CHAPTER3

    IRONCARBON

    EQUILIBRIUMANDPLAINCARBONSTEE

    LS

    Fig.3.16Fe13Mn0.8Cpartlytransfo

    rmedat600C.Austeniteisretainedinconjunction

    withferriteandcementite:(a)nucleatio

    nofapearlitenoduleongrainboundarycementite,

    (b)interfaceofnodulewithaustenite.Th

    in-foilelectronmicrographs(courtesyofDippe

    naar).

    Hillertandco-workerswereabletoshowbysuitableheattreatments

    that

    pearlitedidnucleateinthisway,whileonthelow-energyinterfaces

    Wid-

    manstttengrowthofferrite(or

    cementite)wasusuallyobserved.

    Electron

    microscopyobservationshaveconfirmedthatthepearliteinterfacewithau

    sten-

    iteisanincoherentone.Figure3.1

    6bshowsatypicalinterfaceona13Mn0.8

    C

    wt%

    steel,wheretheuntransformedaustenitehasbeenretainedatroom

    temperature.

    Thespacingofthelamellaein

    pearliteisasensitiveparameterwhich

    ,ina

    particularsteel,islargerthehigher

    thetransformationtemperature.T

    hespacing

    wasfirstmeasuredsystematicallyforanumberofsteelsbyMehlandco-workers,

    whodemonstratedthatthespacing

    decreasedasthedegreeofundercooling

    ,T

    ,

    belowtheeutectoidtemperatureincreased

    .Zenerprovidedthefirsttheoretical

    analysisoftheseobservationsbyc

    onsideringavolumeofpearlite(Fig

    .3.1

    7)of

    depthandinterlamellarspacingS

    0growingunidirectionallyinthex-direction.

    Ifgrowthisallowedtooccurbydxthenthevolumeofaustenitetransforme

    dper

    lamellarspacingisS0dx

    ,where

    isthedensity

    .ThefreeenergyG

    ,available

    toformthisvolumeofpearliteis:

    G=H

    T

    eTT

    e

    S

    0dx

    ,

    (3.6

    )

    where

    Te=eutectoidtemperature

    T=

    transformationtemperature

    H=

    latent

    heatoftransformation.

    3.5THEAUSTENITEPEARLITEREACT

    ION

    57

    Fig.3.17Apea

    rlitegrowthmodel.

    Theforma

    tionofthisnewvolumeofpearlitecause

    sanincreaseininterfacial

    energybyvirt

    ueofthenewferriteandcementiteinte

    rfacesformed.T

    herefore:

    increaseininterfacialarea=

    2

    dx,

    and

    increaseininterfaceenergy=

    2dx,

    (3.7

    )

    where

    isinterfacialenergyperunitarea.

    Growthofthelamellaecanonlyoccuriftheincreasesinsurfaceenergyis

    lessthanthedecreaseinenergyresultingfromthetransformation.

    Therefore,

    thecondition

    forgrowthcanbefoundfromEquation

    s(3

    .4)and(3

    .5):

    H

    T

    eTT

    e

    S0=

    2.

    (3.8

    )

    Thisisaverysimpletreatmentwhichneglectsanystrainenergyterm.A

    lsothe

    freeenergychangeisfoundfromtheenthalpychangeperunitmass,andit

  • 8/8/2019 Physical Metallurgy of Steel

    36/179

  • 8/8/2019 Physical Metallurgy of Steel

    37/179

  • 8/8/2019 Physical Metallurgy of Steel

    38/179

  • 8/8/2019 Physical Metallurgy of Steel

    39/179

    64

    CHAPTER3

    IRONCARBON

    EQUILIBRIUMANDPLAINCARBONSTEE

    LS

    Fig.3.21HultgrenextrapolationofphaseboundariesinFeCdiagram(Mehland

    Hagel,

    ProgressinMetalPhysics6,74,1956).

    However,t

    heseearlytheories

    havenowbeensupplantedbyothersdueto

    Hillert,C

    ahnandHagel,K

    irkaldy

    andLundquistwhichhavebeendeveloped

    toastagewherethesimpleironcarbidesystemhasbeentreatedinaso

    phis-

    ticatedway,

    andtheroleofalloyingelementsalsoexplained.

    Whilediffusion

    ofcarboninaustenitehasagainb

    eenassumedtobetherate-controlling

    pro-

    cess,s

    ometreatmentshaveassumedthatboundarydiffusionisratecontro

    lling.

    Hillertusingthislatterapproach,

    andassumingthattheaustenitehasper

    iodic

    compositionaldifferencesalongtheinterface,

    dependingonwhetheraferrite

    orcarbidelamellaisinthevicinity,arrivedatthefollowingrelationship:

    G=

    12AD

    bS

    2 0

    (c2c1)

    SS(cc)

    1 S2 0

    1

    ScS0

    ,

    (

    3.15)

    where

    Db=

    interphaseboundarydiffusioncoefficient

    =

    thicknessofinterphaseboundary

    A=constant

    c1andc2=concentrationspreviouslyreferredto

    ,fromtheHultgren

    extrapolation

    c=concentrationofcar

    bonincementite

    c=concentrationofcar

    boninferrite

    3.5THEAUSTENITEPEARLITEREACT

    ION

    65

    S0=

    interlamellarspacingofthepearlite

    Sc=

    spacingatzerogrowthrateand

    SandS=

    widthsoftheferriteandcementitelam

    ellae.

    Theequat

    ionissimilarinformtoequationsinv

    olvingvolumediffusion,

    exceptthatit

    involvesanS2 0termratherthanS0

    .Alsothepresentmodelmust

    involvesome

    volumediffusionintheausteniteahead

    oftheinterfacetoallow

    thedifference

    sinaustenitecompositionattheinterfa

    cetodevelop.

    3.5.5Thestrengthofpearlite

    Thestrength

    ofpearlitewouldbeexpectedtoincreaseastheinterlamellar

    spacingisdecreased.E

    arlyworkbyGensamerandcolleaguesshowedthatthe

    yieldstressof

    aeutectoidplaincarbonsteel,i.e.fully

    pearlitic

    ,variedinversely

    asthelogarit

    hmofthemeanfreeferritepathinthepearlite.Later,Hugo

    andWoodhea

    dused3wt%nickelsteelstoobtainau

    niformpearliticstructure

    throughoutth

    etestpieces.Theyconfirmedthattheinterlamellarspacingwas

    inverselyproportionaltothedegreeofundercooling

    .Itwasshownthatboth

    theyieldstren

    gthandtheultimatetensilestress(UTS)couldbelinearlyrelated

    tothereciprocalofthesquarerootoftheinterlamella

    rspacingorofthedegree

    ofundercooling.Figure3.22givesresultsfora3Ni0

    .67Cwt%

    eutectoidsteel

    wherethislin

    earrelationshipisillustrated

    .Steelso

    flowercarboncontents

    ,

    Fig.3.22Effectofdegreeofundercoolingonthestrengthofapearliticnickelsteel0.67C,

    0.49Mn,2.92Niw

    t%(HugoandWoodhead,JournaloftheIronandSteelInstitute186,174,1957).

  • 8/8/2019 Physical Metallurgy of Steel

    40/179

  • 8/8/2019 Physical Metallurgy of Steel

    41/179

  • 8/8/2019 Physical Metallurgy of Steel

    42/179

  • 8/8/2019 Physical Metallurgy of Steel

    43/179

  • 8/8/2019 Physical Metallurgy of Steel

    44/179

    74

    CHAPTER4

    EFFECTSOF

    ALLOYINGELEMENTSONFECALLOYS

    Fig.4.2Twobasicphasediagrams:(a)

    Hnegative,H>

    H,favoured;(b)Hpo

    sitive,

    H

    1200C

    Fine-grainedaustenite

    1200C>T

    P>

    Ac3

    Partiallyaustenitizedzone

    Ac3>

    TP>

    Ac1

    Temperedregions

    Ac1>

    TP

    Fig.13.14AcomparisonoftheTTTcur

    vesforthe

    transformation,andforthereverse

    transformation.GrepresentsthedrivingforcefortransformationandDisthediffusion

    coefficient.

    austenitegrainscoarsenrapidlyasTP

    isapproached.I

    nsteelswhicharemic

    roal-

    loyed

    ,itmaynecessaryforthegrainboundarypinningparticles(e

    .g.

    niobium

    carbonitrides)todissolvebeforesu

    bstantialgraincoarseningoccurs.I

    nany

    case,

    oncethecoarseningbegins,itproceedsveryrapidlybecausetheeffectof

    tem-

    peratureincreasesexponentiallyd

    uringheating.Theaustenitegraingrowthcan

    beexpressedconvenientlyinthe

    formofgraingrowthdiagrams(Fig

    .13

    .15b)

    whichcontaincontoursofequalgr

    ainsizeasafunctionofthepeaktemperature

    andt8

    5.

    Theimportanceofthecoarse-grainedaustenitezoneisinthemecha

    nical

    propertieswhichdevelopastheau

    stenitetransformsduringthecoolingpartof

    thethermalcycle.Thecoarsegrain

    structureleadstoanincreaseinharden

    abil-

    ity,becauseitbecomeseasiertoav

    oidintermediatetransformationproducts,so

    thatuntemperedmartensiteorotherhardphasescanformduringcooling

    .The

    weldingprocessintroducesatomichydrogenintotheweldmetal,w

    hichisable

    todiffuserapidlyintotheHAZ

    .H

    ardmicrostructuresareparticularlysuscepti-

    bletoembrittlementbyhydrogen,t

    hefractureoccurringshortlyafterthe

    weld

    13.3THEHAZ

    305

    Fig.13.15(a)

    TheTTTandCHTdiagramsforthebeginningofaustenitegrowthina

    Fe0.15C0.5Si

    1.5Mnwt%alloy(courtesyofSuzuki).(b)Schematicaustenitegraingrowth

    diagramforamicroalloyedsteelweldedusingapreheatof200C(afterAshbyandEasterling,

    1982).

    hascooledto

    roomtemperature.T

    hishydrogen-inducedphenomenoniscalled

    cold-cracking

    .ThisiswhytheCEofthesteelhast

    obekeptlowenoughto

    preventthehardnessinthecoarse-grainedregionfrombecomingunacceptably

    large.

    13.3.4Fine-g

    rainedaustenitezone

    Thisregionistypifiedbyaustenitegrainssome204

    0

    minsize.T

    hegrainstruc-

    tureandhard

    enabilityare,therefore,

    notverydifferentfromthoseassociated

    withcontrol-rollingoperationsduringthemanufactureofthesteel.Thefine

  • 8/8/2019 Physical Metallurgy of Steel

    160/179

  • 8/8/2019 Physical Metallurgy of Steel

    161/179

  • 8/8/2019 Physical Metallurgy of Steel

    162/179

  • 8/8/2019 Physical Metallurgy of Steel

    163/179

  • 8/8/2019 Physical Metallurgy of Steel

    164/179

    314

    CHAPTER14

    MODELLING

    OFMICROSTRUCTUREANDPROPERTIES

    Fig.14.5(a)Experimentallydeterminedimpacttransitioncurvesshowinghowthetoughness

    improvesastheamountofblockyausteniteisreduced.(b)CalculatedT 0curvesforthe

    FeC,

    FeMnSiCandFeNiSiCsteels.

    Manganeseisseentohavealarge

    effectindepressingtheT 0temperature.An

    examinationofTable14

    .2showsth

    atonepossibilityistoreplaceallofthe

    man-

    ganesewithnickel.T

    hus,foraFe4Ni2Si0.4Cwt%(3

    .69Ni,3.85Siat%)

    alloy,

    asimilarcalculationshowsthat

    T072sothat:

    T 0(K)

    970

    80xc

    72.

    (

    14.9

    )

    Theremarkableimprovementin

    toughnessachievedbydoingthis

    ,without

    anysacrificeofstrength

    ,isillustratedinFig

    .14

    .5,

    alongwiththeT 0curves

    ascalculatedabove.

    14.3EXAMPL

    E2:MECHANICALPROPERTIESOFMIXED

    MICROSTRUCTURES315

    Table14.2ValuesofTMandTNMforavarietyofsubstitutional

    solutes(Aaronsonetal.,T

    ransitionsoftheMetallurgicalSocietyofAIME

    236,753780,1966)

    Allo

    yingelement

    TM

    /Kperat%

    TNM

    /Kperat%

    Si

    3

    0

    Mn

    37

    .5

    39

    .5

    Ni

    6

    18

    Mo

    26

    17

    Cr

    19

    18

    V

    44

    32

    Co

    19.5

    16

    Al

    8

    15

    Cu

    4.5

    11

    .5

    14.2.3Theprecisionofthemodel

    Themodeldis

    cussedabovehashelpedinachievingthe

    desiredgoalofimproved

    toughness,eventhoughthemethodusedisinfactcru

    de.TheT 0curvesarenot

    reallylinearfu

    nctionsofcarbon,a

    ndtheinteractionso

    fcarbonwiththesubstitu-

    tionalsolutes

    arenotaccountedfor.Rigorousmethodsareavailableandcould

    beusedwhenconsideringahigherdegreeofoptimizationofsteelchemistry.The

    modelalsodo

    esnotincorporatekinetics.Thiscould

    beamajordisadvantage

    becauseinco

    mmercialpractice,microstructuresare

    usuallygeneratedusing

    complexnon-

    isothermalheattreatments

    .

    Referring

    toFig

    .14

    .1,

    itisobviousthattheexplo

    itationoftheseconcepts

    wouldrequire

    severaliterationstoimproveprecision

    ,andtoadaptthemodel

    forcomplexi

    ndustrialprocessing.Theseexamplesillustratetheessentialsof

    themodelling

    technique.Modelscanbeconstructed

    instages,w

    ithsignificant

    advancesbein

    gmadeateachstage,eventhoughtheu

    ltimateproblemmaynot

    besolvedcom

    pletely

    .Thesesuccessesateachstageof

    themodelcanbeusedto

    justifyfurther

    developmentuntilapointofdiminishingreturnsisreached.

    14.3EXAMP

    LE2:MECHANICALPROPERTIESOFMIXED

    MICRO

    STRUCTURES

    Apeculiarfea

    tureofmixedmicrostructuresofbainite

    andtemperedmartensite

    ,

    isthatthestr

    engthisfoundtogothroughapeaka

    sthevolumefractionof

    martensitede

    creases(Fig

    .14

    .6).Thisisagainstintuitioninthatmartensiteis

    usuallyconsid

    eredtobethestrongestmicrostructureinsteels

    ,inwhichcasethe

    strengthshoulddecreasecontinuouslyasthefraction

    ofmartensiteisreduced

    .

    However,q

    ua

    ntitativemodelling,byhelpingtoreveal

    themechanismsinvolved,

    canexplainth

    isanomalousbehaviour.

  • 8/8/2019 Physical Metallurgy of Steel

    165/179

  • 8/8/2019 Physical Metallurgy of Steel

    166/179

  • 8/8/2019 Physical Metallurgy of Steel

    167/179

  • 8/8/2019 Physical Metallurgy of Steel

    168/179

  • 8/8/2019 Physical Metallurgy of Steel

    169/179

    324

    CHAPTER14

    MODELLING

    OFMICROSTRUCTUREANDPROPERTIES

    Therearemanythermodynamicmethodswhichexpressthechemicalpoten-

    tialasafunctionofthemixingofsolutesinaphase.Mostofthesemethod

    sare

    eithertoosimpleorsocomplexthattheycannoteasilybegeneralized.T

    here-

    fore,

    inthecomputercalculations,thedeviationofthefreeenergyofm

    ixing

    fromthatofanidealsolution,1

    i.e.t

    heexcessGibbsfreeenergy,i

    swritten

    asan

    empiricalpolynomialequation:

    eGAB=xAxB

    iLAB

    ,i(xAxB)i

    ,

    whereLiaremeasuredinteraction

    coefficients

    ,inthiscaseforabinarysolu

    tion.

    Foraternarysolution:

    eGABC=xAx

    B iLAB

    ,i(xAxB)i

    ,

    +x

    BxC

    iLBC

    ,i(xBxC)i

    ,

    +x

    CxA

    iLCA

    ,i(xCxA)i.

    Theadvantageofthiskindofap

    olynomialbecomesclear,

    sincetherel

    ation

    reducestothebinaryproblemwhe

    noneofthecomponentsissettobeidentical

    toanother,e.g.BC

    .Themethod

    canbeextendedtodealwithanynumb

    erof

    components

    ,withthegreatadvantagethatfewcoefficientshavetobecha

    nged

    whenthedataduetoonecompon

    entareimproved

    .Itisthereforeadopt

    edin

    manyofthephasediagramcalculationprogramsavailablecommercially.

    Althoughthermodynamicsisusuallyassociatedwiththestateofequilib-

    rium,t

    hecalculationmethodcanalsobeusedtoestimateconstrainedequilibria,

    e.g.para-equilibrium(Chapter3)anddiffusionlesstransformation(Chapter5)

    .

    Figure14

    .12illustratescalculatedisothermalFeCrCphasediagramsfor

    both

    theequilibriumandpara-equilibriumstatesnoticethedramaticchangewhen

    substitutionalsolutesarenotallow

    edtopartitionbetweenthephases.

    Thereisanothersubtleapplicationofthermodynamicsinthedesignofs

    teels,

    dealingwithsteady-stateprocessesinwhichthesystemisnotatequilib

    rium

    butanappropriateobservermaynotperceivechange.A

    nexampleisdiffusion

    acrossaconstantgradient;neitherthefluxnortheconcentrationatanypoint

    changeswithtime,andyetthefr

    eeenergyofthesystemisdecreasing

    since

    diffusionoccurstominimizefreeenergy.T

    herateatwhichenergyisdissipated

    istheproductofthetemperatureandtherateofentropyproduction(i.e.

    T

    ):

    T=JX

    ,

    1Anidealsolutionisoneinwhichtheatomsmixatrandomatalltemperatures.

    Fig.14.12IsothermalsectionoftheFeCrCsystem.Thebody-centredcubicphaseisferrite

    andMstandsfor

    amixtureofironandchromiumatomsinavarietyofcarbidephases(courtesy

    ofJ.Robson).

  • 8/8/2019 Physical Metallurgy of Steel

    170/179

  • 8/8/2019 Physical Metallurgy of Steel

    171/179

    328

    CHAPTER14

    MODELLING

    OFMICROSTRUCTUREANDPROPERTIES

    Thefreeenergyperatomisthenwrittenforthewholeofthe(heterogeneous)

    phasefieldasasinglefunctionala

    ndtheevolutionofmicrostructurewith

    time

    isassumedtobeproportionaltothevariationofthisfunctionalwithrespectto

    theorderparameter.

    Themethodhasbeenextremelysuccessfulindealingwithspinodalreac

    tions

    andinthemodellingofsolidification,

    butitsutilitywithrespecttosolid-s

    tate

    reactionsofthekindimportant

    insteelshasyettobedemonstrated

    .The

    definitionofthewidthoftheinte

    rfaceandassociatedcoefficients

    ,andh

    and-

    lingnucleationaretwodifficultieswhichrequirefittingtoexperimental

    data.

    Ontheotherhand

    ,effectssuchastheoverlapofdiffusionfieldsarena

    tural

    outcomes.

    14.5.1Finitedifferencemethod

    Thefinitedifferenceisadiscret

    eanalogueofaderivative.

    Consider

    one-

    dimensionaldiffusioninaconcentrationgradientalongacoordinatez

    (Fig

    .14.14).Theconcentrationprofileisdividedintoslices,e

    achofthicknessh.

    Thematterenteringaunitareaofthefaceatainatimeincrement

    isgiven

    approximatelybyJa=D

    (C1

    C0

    )/h.ThatleavingthefaceatbisJb=D

    (C2C

    1)/h

    .IfC 1isthenewconcentrationinslice1,thenthenetgaininsolute

    is(C 1C

    1)hsothat:

    C 1C

    1=

    Dh2

    (C0

    2C

    1+C

    2).

    (

    14.2

    )

    Thisallowstheconcentrationata

    pointtobecalculatedasafunctionofthatat

    thetwoneighbouringpoints

    .Bysu

    ccessivelyapplyingthisrelationateach

    slice,

    andadvancingthetime,t

    heentireconcentrationprofilecanbeestimatedas

    afunctionoftime.

    Fig.14.14Finitedifferencerepresentationofdiffusion.

    14.6FINITEELEMENTMETHOD

    329

    Theappro

    ximationisthattheconcentrationgrad

    ientwithineachslicehas

    beenassumed

    tobeconstant.Thisapproximationwillbebetterforsmallerval-

    uesofh

    ,butattheexpenseofcomputationtime.Theaccuracycanbeassessedby

    changinghandseeingwhetheritmakesasignificantdifferencetothecalculated

    profile

    .

    14.6FINITE

    ELEMENTMETHOD

    Inthis

    ,contin

    uousfunctionsarereplacedbypiecew

    iseapproximations.The

    consequenceofapplyingforcetoabodyrepresented

    asasetofspringsisillus-

    tratedhere,a

    ssumingthattheforceFineachspringvarieslinearlywiththe

    displacement

    ,w

    iththeconstantofproportionalityla

    belledthestiffnessk

    .The

    bodyisatrestatequilibrium,s

    oforthecaseillustrate

    dinFig

    .14

    .15a

    ,F1=F

    2

    sothat:

    F

    1F

    2

    =kk

    k

    k12,

    TheforcesatthenodesofthespringsillustratedinFi

    g.14

    .15baretherefore

    F

    1F

    20

    =

    k

    1k

    1

    0

    k

    1

    k1

    0

    0

    0

    0 123

    0 F

    2F

    3

    = 0

    0

    0

    0

    k2

    k2

    0

    k

    2

    k2 123

    , (

    a)

    (b)

    Fig.14.15Forcesonsprings.

  • 8/8/2019 Physical Metallurgy of Steel

    172/179

  • 8/8/2019 Physical Metallurgy of Steel

    173/179

  • 8/8/2019 Physical Metallurgy of Steel

    174/179

  • 8/8/2019 Physical Metallurgy of Steel

    175/179

  • 8/8/2019 Physical Metallurgy of Steel

    176/179

  • 8/8/2019 Physical Metallurgy of Steel

    177/179

  • 8/8/2019 Physical Metallurgy of Steel

    178/179

  • 8/8/2019 Physical Metallurgy of Steel

    179/179