Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of...

49
Physical Biology Bio-322 4 credits, 3h per week

Transcript of Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of...

Page 1: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Physical Biology

Bio-322 4 credits, 3h per week

Page 2: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Physical Biology

•  What?

•  Why?

•  How?

Page 3: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks
Page 4: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Course Outline

1.  Introduction 2.  Molecular Biophysics 3.  Cellular biophysics 4.  Biophysical techniques 5. Experiments: mechanics of DNA,

mobility of biomolecules

Page 5: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Overview

Course timings: Mon 14-1500h Wed 14-1500h Fri 12-1300h Total time: 46 lectures (incl. Colloquia)

Page 6: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Evaluation

Exams (mid and end-semester): 50%

Assignments and internal assessment: 50%

Page 7: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Instructors

•  Chaitanya Athale •  G. Pavan Kumar •  Shiva Patil •  Saikrishna Kayarat

Page 8: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Plan

Page 9: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Crescograph

Page 10: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

J.C. Bose (1858-1937)

•  Wireless communication (1894/5) •  Plant growth measurement by

Crescograph (1919) •  Electric nature of plant sensory

conduction (Bose, J. C., Researches on Irritability of Plants, 1913.)

•  Cell membrane potential measurements

Page 11: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Modern Crescograph A: gold chain B: hook C: 5mg counter weight D: lever arm E: transformer core F: micrometer

Page 12: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Volkov A. G. et.al. Plant Physiol. 2008:146:694-702

Copyright © 2008. American Society of Plant Biologists. All rights reserved.

Plants Response to Electrical Stimulus

Page 13: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Closing of the trap with a 14-µC electrical stimulus.

Volkov A. G. et.al. Plant Physiol. 2008:146:694-702

Copyright © 2008. American Society of Plant Biologists. All rights reserved.

Page 14: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Biological Physics Mechanics Equilibrium Steady state Entropy Electrostatics Beams and structures Water Biological dynamics Molecular motors Electricity

Page 15: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Contributors to Biological Physics

•  Francis Crick (DNA structure) •  Alan Turing (theory of periodic biological

structures) •  Max Delbrück (replication of viruses) •  Linus Pauling (structure of Hemoglobin) •  G.N. Ramachandran (protein

conformations)

Page 16: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Biological Model Building

•  Physical and Chemical Principles •  Quantitative experiments •  Facts

– Observations (eg. no. of proteins) – Mechanisms (eg. DNA->RNA->Protein) – Hypotheses (eg. Bacterial origin of

mitochondria)

Page 17: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Common Strand?

Page 18: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Molecules

(A) Nucleic acids (B) Proteins (C) Lipids (D) Sugars

Water

Page 19: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks
Page 20: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Polymers: Nucleic Acids and Proteins

•  DNA sequence <-> Protein sequence •  2 Polymer languages •  DNA: codons (3 base pairs) •  Protein: protein folds α-helix, β-sheet

(combinations of amino acids)

Page 21: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks
Page 22: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Purines Pyrimidines

Page 23: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

DNA Strand

Anti-parallel strands

Complementary

Page 24: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

DNA Structure

B-DNA A-DNA Z-DNA

Helix Right-handed

Right-handed

Left-handed

Rise/bp [nm]

0.34 0.23 0.38

Bp/turn 10.5 11 12

Diameter [nm]

2

Page 25: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Genetic Code

Crick, Brenner et al. 3 bps = 1 codon

Nirenberg, Matthai, Ochoa, Leder, Holley, Khorana Deciphering the code

Page 26: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Model Building

•  Abstraction and simplification •  Analytical models of predictive value •  Collection of models

Page 27: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

DNA Models

Specific question determines model type

Page 28: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Protein Models

Page 29: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Lipid Membrane Models

Page 30: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Cellular Models

Page 31: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Models of Water

Page 32: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Models and Cartoons

Page 33: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks
Page 34: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Membrane Structures of Mitochondria

Page 35: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Electron Transport Chain

Page 36: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Mitochondrial Division

Page 37: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Gene Expression: Qualitative Cell expression level DNA conformation

Page 38: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Gene Expression: Quantitative

Müller J, Oehler S, Müller-Hill B. (1996)

Page 39: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Models

Page 40: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Simple Models

•  Spring (harmonic oscillator) •  Hooke’s law

Potential energy

Restoring force €

energy =12k ⋅ x 2

F = −k ⋅ x

Page 41: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Spring

Page 42: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Biological Instances of a

Simple Harmonic Oscillator

Page 43: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Classes of Physical Models

•  Simple harmonic oscillator •  Ideal gas •  Two-level systems and Ising model •  Ramdom walks, entropy etc. •  Poisson-Boltzmann model of charge •  Newtonian fluids and Navier-Stokes

equation •  Diffusion and random walks •  Rate equation models of chemical kinetics

Page 44: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Estimates and Models

Estimating genome size in bp from image of bacteriophage genome

Page 45: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Wrong Models are Good

•  Inappropriate model (e.g. Incorrect dimensions)

•  Lacking detail (e.g. Incomplete) •  Importance of different considerations (e.g.

E. coli movement and Brownian motion vs. viscous drag vs. inertia)

•  Introduce correct physical model and parameters and compare with experiment

The Best

Page 46: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Biological Estimates-1 Scale Quantity Symbol Rule of thumb

E. coli Cell volume VEcoli ≈1 μm3

Cell mass mEcoli ≈1 pg Cell cycle time tEcoli ≈3000s

Cell surface area AEcoli ≈6 μm2

Swimming speed vEcoli ≈20 μm/s

Genome length NbpEcoli ≈5 x 106 bp

Yeast Volume of the cell Vyeast ≈60 μm3

Cell mass myeast ≈60 pg

Cell diameter dyeast ≈5 μm

Cell cycle time tyeast ≈1.2 x 104 min

Genome length Nbpyeast ≈107 bp

Page 47: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Biological Estimates-2

kBT ≈ 4 pN-nm (at room temperature in K)

Scale Quantity Symbol Rule of thumb

Organelles Diameter of nucleus dnucleus ≈5 μm

Length of mitochondrion

lmito ≈2 μm

Diameter of transport vescicles

dvescicle ≈50 nm

Water Volume of molecule VH2O ≈10-2 nm3

Density of water ρ 1 g/cm3

Viscosity of water η 1 centipoise (10-2 g/(cm-s))

Hydrophobic embedding energy

≈Ehydr 25 cal/mol-Å2

Page 48: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks

Book List

1.  Microbe hunters- Paul de Kruif

2.  What is life- Erwin Schroedinger

Page 49: Physical Biology › ~cathale › lects › 201011_bio322 › ...• Poisson-Boltzmann model of charge • Newtonian fluids and Navier-Stokes equation • Diffusion and random walks