PHYS1121 Course Notes

download PHYS1121 Course Notes

of 45

description

Physics course notes

Transcript of PHYS1121 Course Notes

  • Physics1ATopic1Mechanics

    FirstYearUniversityPhysics1ATopic1:Mechanics

    ParticleKinematicsInOneDimension(2.12.6)DisplacementDisplacementisthedistanceanobjectisfromtheorigin,irrespectiveoftheroutetakentothatposition.Beingavector,itwillalsostipulatedirectionfromtheorigin.Thedisplacementofanobjectunderconstantvelocitycanbedeterminedasfollows: (Wherevxisconstant)VelocityandAccelerationVelocityistherateofchangeofdisplacementwithrespecttotime.Averagevelocityisthechangeindisplacementdividedbythechangeintime.Instantaneousvelocitycanbedeterminedaccordingtothefollowingequation:

    lim

    Accelerationistherateofchangeofvelocitywithrespecttotime.Averageaccelerationisthechangeinvelocitydividedbythechangeintime.Instantaneousaccelerationcanbedeterminedbythefollowingequation:

    lim

    Totalaccelerationisgivenby: MotionwithConstantAccelerationIncaseswhereaparticlemovesunderconstantacceleration,itsaverageaccelerationwillbenumericallyequaltoitsinstantaneousaccelerationatanygivenpoint/sintime.Assuch,agraphofvelocityvstimewillproduceastraightline.

    12

    2

    NonUniformAccelerationThisoccurswhenanobjectchangesvelocityatdifferentratesatanygivenpointintime.MotioninTwoandThreeDimensions(3.13.4,4.14.6)Vectors~Vectorarrowsindicatethemagnitudeanddirectionofthevector~Thetriangleisthesimplestformofavectordiagrampossible

    CompiledbyJohnTrieu2009 Page1

  • Physics1ATopic1Mechanics

    ResolutionandUnitVectorsVectorsareresolvedonthebasisoftheirdirectionfromtheorigin.Aguideforthenotationisprovidedbelow.

    Unitvectorsallhaveamagnitudeof1.Theyarealwaysunderlinedandindicatedbya^signabovethewordedvector(eg.)PolarCoordinateSystemsThisisbase ontheprinciplethatanypointrofcoordinates(x,y)willconsistof2dcomponent indicatingitslocation.Thesecomponentsare:s

    VectorAddition

    CompiledbyJohnTrieu2009 Page2

  • Physics1ATopic1Mechanics

    VectorSubtraction:v=vuToworkoutvectorvuwemustreverseuandaddtov.Letusimaginethatacarismovingat20m/sNanditturnsacornersoitisnowmoving20m/sW.Itispossibletouseavectordiagramtodeterminethechangeinvelocity.

    Step1:Draworiginalvectordiagram

    Step2:Reverseu

    Step3:Solveforx. 800Therefore 202Or28.28ms1SW(2DecimalPlaces)

    EquatingVectorsTheprocessofequatingvectorsisachievedbyensuringallcomponentsareequalandthenensuringthatallforcesareequal(asforcesarevectorsinthemselves).Assuchthemagnitudeanddirectionofthevectorsshouldbeequal.EquationsofMotioninVectorForm

    CompiledbyJohnTrieu2009 Page3

  • Physics1ATopic1Mechanics

    ProjectileMotionProjectilemotioncanbethoughtofasconsistingofhorizontalandverticalcomponentswhenwithintheEarthsgravitationalfield.Thehorizontalcomponentinvolvedtheprojectiletravellingatconstantvelocity.Theverticalcomponentinvolvedtheprojectileexperiencingaforceofgravity,pullingitdownataconstantacceleration.Thesecomponentsareresolvedasvectorswhichareindependentofoneanother,involvingvectoradditiontodeterminemotion. Atanygiventime,thediagrambelowisindicativeofthecomponentsofprojectilemotion.ThehorizontalcomponentisequaltoVcos,whiletheverticalcomponentisequaltoVsin.Theequationsforcalculatingthedisplacement,accelerationsandvelocitiesoftheindividualcomponentsareprovidedbelow.

    V Vy = V sin

    Otherequationsusedinprojectilemotioninclude:

    Vx = V cos

    2

    Whendealingwiththeprojectilemotionof1particlein3D,itispossibletoaltertheaxestocreatea2Dproblem.Thisensuresthattheprojectilefliesintheplaneofthepage,butwillnotworkinsituationsof2ormoreprojectiles.UniformCircularMotionUniformcircularmotionisachievedbyaconstantangularvelocity.Forthistoexist,theaccelerationvectormusthaveacomponentwhichisperpendiculartothepath,orinotherwords,itpointstothecentreofthecircle.Thefollowingequationsallowthedeterminationofvelocityandanglesbeingsweptout:

    2

    2

    Notethatwhenquestionsrequestdisplacementofparticlesinuniformcircularmotioninpolarform,itisinthefollowingform: . . Whereristheradius.

    CompiledbyJohnTrieu2009 Page4

  • Physics1ATopic1Mechanics

    CentripetalAccelerationandPeriodofRotationThisreferstoanaccelerationwhichiscentreseeking,andiscalculatedaccordingtotheequation:

    Notethatcentripetalaccelerationisneverconstantowingtothepersistentchangingofvelocity.Theperiodofrotationcanbecalculatedaccordingtotheequation:

    2

    ExampleAplanetravelsinahorizontalcircle,speedvandradiusr.Foragivenv,whatistherforwhichthenormalforceexertedbytheplaneonthepilotistwiceherweight.Whatisthedirectionofthisforce?

    CentripetalForce:

    VerticalForces:

    Byeliminating,

    30,TangentialandRadialAccelerationTangentialaccelerationisthecomponentwhichwillcauseachangeinthevelocityoftheparticle.Ithasparallelswithinstantaneousvelocityandisgivenby:

    Radialaccelerationisderivedfromthechangesindirectionofthevelocity,andisgivenby:

    Becauseradialandtangentialaccelerationareperpendicularcomponentvectorsofacceleration,themagnitudeoftotalaccelerationcanbegivenby:

    CompiledbyJohnTrieu2009 Page5

  • Physics1ATopic1Mechanics

    RelativeMotionAllmeasurementsaremaderelativetoaframeofreference.Whendescribingthepositingormotionofamovingobject,weneedtostateclearlytheframeofreferenceweareusingforourobservations.Thevelocityofanobject,asmeasuredbyamovingobserver,isreferredtoasrelativevelocity.RelativeVelocityisthedifferencebetweenthevelocityoftheobject,relativetotheground,andthevelocityoftheobserverrelativetotheground.Whentheobjectsaretravellinginthesamedirection,relativevelocitycanbecalculatedbytheformula:V1V2Whentheobjectsaretravellinginoppositedirections,relativevelocitycanbecalculatedby:V1+V2ParticleDynamics(5.15.8,6.1)NewtonsLawsofMotionNewtonsFirstLawofMotion(LawofInertia)Anobjectwillremainatrestortravelwithaconstantvelocityunlessacteduponbyanetforce.NewtonsSecondLawofMotionTheforcerequiredtomoveanobjectisproportionaltoitsmass. Notethatthislawonlyappliesininertialframesandisasumofallforcesactingonanobject.NewtonsThirdLawofMotionForeveryaction,thereisanequalandoppositereaction.MassThisistheamountofmatterwithinagivenobject.Akeypropertyisthatthemassisproportionaltoberesistancetheobjectofferswhenattemptingtoalteritsvelocity(forinstance,causingatennisballtoaccelerateiseasierthancausingatraintoaccelerate).Asaconsequence,theaccelerationoftheobjectisinverselyproportionaltothemassofanobjectwhenafixedforceisapplied.

    CompiledbyJohnTrieu2009 Page6

  • Physics1ATopic1Mechanics

    ApplicationsofNewtonsLawsNewtonslawscanbeappliedintermsofthetensionincables.Theparticleswhichareapplyingatensiontothecablecanbeinequilibriumorunderanetforce.Iftheparticleisinequilibrium, 0asthereisnoforceinthexdirection.Additionally, 0 0 ,suchthatFgisthegravitationalforceandTistheupwardforceprovidedbytension.

    Iftheparticleisunderanetforce,then

    ,where

    theforceisbeingexertedinthehorizontalplane.Thisprinciplecanbeappliedtotheyplaneiftheforceisappliedvertically.However,ifthereisnoforceappliedvertically,then: .Inotherwords,thenormalforcehasthesamemagnitudebutoppositedirectiontogravitationalforce.

    0

    ContactForcesWhenanobjectmoveswhileitisincontactwithanothermedium,thereisaforceexertedwhichresiststhemotion.Thisisbecauseoftheinteractionsbetweentheobjectanditssurroundings;resultantofthejaggednatureofobjects.Theseforcesareknownascontactforces. Thenormalcomponentofacontactforceisthenormalforce(N).Thecomponentwhichoccursintheplaneofcontactisthefrictionforce(Ff).

    Thenormalforceisatrightanglestothesurfaceandresultsfromdeformation.Ifthereexistsrelativemotion,thereiskineticfriction(whichopposesmotion).Ifthereisnorelativemotion,thenthereisstaticfriction,whichopposesanyappliedforce.

    Belowareequationswhichdisplaytheratiooffrictionforcesto

    normalforces. (Assuch,thenormalforceisproportionaltothekineticfrictionforce) (Assuch,thenormalforceisgreaterthanthestaticfrictionalforce,wherefrictioncanbe0)Ageneralisedlawinvolvingfrictionstatesthatkineticandstaticfrictionareroughlyindependentofthenormalforceandofcontactarea.

    Acomparativelargescaleexamplewouldbeplatetectonics.Thejaggednatureofplatescausesthemtolockperiodically,andthislockingcontinuesuntilsuchtimeasenoughforceisexertedtobreakfreeofthislocking.Thislockingcausesstaticfrictionduetothelackofrelativemotionandopposesanyappliedforcetounlocktheplates.Thebreakingfreecausesadeformationintheplatesandtheninteractswithitssurroundsresultinginkineticfriction. Whatbecomesclearistheforcerequiredtokeepanobjectmovingislessthanthattoinitiallymoveanobject.

    CompiledbyJohnTrieu2009 Page7

  • Physics1ATopic1Mechanics

    Examples

    DynamicsofCircularMotionIncircularmotion,thereexistsaradialcomponentofacceleration,nutalsoa

    tangentialcomponentwithamagnitudeof| |,thereforetheforceontheparticle

    hasaradialandtangentialcomponent.Assuch, andhence ExampleAcivilengineerwishestoredesignacurvedroadwayinsuchawaythatacarwillnothavetorelyonfrictiontoroundacurvewithoutskidding.Inotherwords,acarmovingatthedesignatedspeedcannegotiatethecurveevenwhenitiscoveredinice.Sucharoadisbanked.Supposethedesignatedspeedis13.4m/sandthecurveradiusis35m.Findtheangletheroadshouldbebankedby.Onabankedroad,thenormalforcehasahorizontalcomponentwhichpointstothecentreofthecurve.However,sincetheforceofstaticfrictionis0,theonlycomponentwhichcancausecentripetalaccelerationis . . Therefore:

    .

    (1)

    . 0. (2)

    (1)/(2)=

    .

    . 27.6

    CompiledbyJohnTrieu2009 Page8

  • Physics1ATopic1Mechanics

    WorkandEnergy(7.17.4,15.1,7.57.8,8.18.2,8.5)MechanicalWorkTheworkWdoneonasystembyanagentexertingaconstantforceonthesystemisequalto: . whereistheanglebetweentheforceandthedisplacementvectors.

    DeformingSprings

    BasedonthediagramandHookesLaw,theworkdonebythespringontheblockis

    equalto

    .

    Whereastheworkdoneappliedontothespringisequalto:

    VectorDotProductThisisalsoknownasthescalarproduct(beingtheproductof2scalarquantities).Thisisduetothenotationforthemultiplicationofscalarpropertiesbeing(a.b),while(axb)isusedforvectors.

    Becauseofthis,wecanderivescalarproductsbycomponents.Hence:

    . .

    . . . .

    . . . Since. , . . allequal0,

    .

    CompiledbyJohnTrieu2009 Page9

  • Physics1ATopic1Mechanics

    Thiscanbeappliedtotheproblembelow:

    ariableForcesV

    HookesLawHookesLawdealswiththebehaviourofproductswhichdisplaylinearelasticity.Itisbasedontheprinciplethattheforceappliedtoanobjectwillbeproportionaltoanydeformation. However, helawhasamajorflawwithit;itonlyappliestoasmallportionofthe

    of

    tive

    hbelow:

    tgraphofforcevsdeformation(orintermolecularseparation,asthisisanindicatordeformation).Indeformationbybending,someseparationsarestretched,whileothersarecompressed.Therealsoexistsaneutralpositionwherethereisnorelastretchingorcompression.Whenthisstretchingorcompressionexceedsthelimitationsoftheobject,thelawfails.Assuch,itcanonlybeusedasanapproximation.Observethegrap

    CompiledbyJohnTrieu2009 Page10

  • Physics1ATopic1Mechanics

    Clearlytherepulsiveforcesmustbesubstantiallystrongeroverallasitisdifficulttocompressanobjectbeyondafewpercent.Alsoquiteclearisthatatrest,forceis0.Anotherclearobservationisthatthereareseveralrangesoverwhichforceisproportionaltodeformationareverysmall(whereHookeslawwillapply).Also,eachregionhasitsownapproximationandhenceconstant.KineticEnergyUsingNewtonssecondlaw,wecanderivethefollowingequationforthenetworkonanobject:

    .

    .

    However,

    Therefore, WorkEnergyTheoremsWhenworkisdoneonasystemandtheonlychangeinthesystemisinitsspeed,thenetworkdoneonthesystemequalsthechangeinthekineticenergyofthesystem.Assuch,thistheoremindicatesthatthespeedofasystemwillincreaseifthenetworkdoneonitispositiveasthefinalkineticenergywillbegreater.Conversely,thespeedofasystemwilldecreaseiftheworkdoneonitisnegative.PotentialEnergyPotentialenergyisbasedontheconceptofgettingenergybac .Notallforcescankstoreenergyhowever;frictionenergycannotberecovered,whereasthatinacompressedspringcanberecovered(likewiseforworkdoneinagravitationalfield).Thereisaminimumofpotentialenergyattheequilibriumpoint.Foranyconservativeforce(whereworkdoneagainstisW=W(r)),itispossibleto

    defineapotentialenergyUas .Thatis, .

    Forinstance,usinggravity,whereanobjectofmassmisbeingslowlylifted(withnoacceleration)fromaheightyitoafinalheightofyf,itisfoundthattheworkdoneontheobjectasthedisplacementincreasesisaproductoftheappliedforceandthedisplacement,suchthat :

    . . As ssiblearesultofthis,itispo todeterminethatgravitationalpotentialenergyisequalto: and enceh

    ison,aspring,whichpossesseselasticpotentialenergy:

    Bycompar

    arbitraryandcanbeanything.Forinstance,withtheThechoiceofzeroforUis

    exampleofthespring,U=0atx=0,andso

    CompiledbyJohnTrieu2009 Page11

  • Physics1ATopic1Mechanics

    ConservativeForcesTheseforcesarewheretheworkdonearoundaclosedloopisequaltozero.Suchforceshave2keyproperties:

    Theworkdonebyaconservativeforceonaparticlemovingbetweenany2pointsisindependentofthepathtakenbyaparticle

    Theworkdonebyaconservativeforceonaparticlemovingthroughanyclosedpathiszero(wherethebeginningpointandendpointareidentical)

    Anexampleofsuchaforceisg n .

    ravity.Basedo ,itbecomesclearthatonlytheinitialandfinalcoordinatesmatterandhenceoveranyclosedpaththeworkdonewillbezero.Thisissimilarforelasticsystems.Theworkofaconservativeforceisgenerallyrepresentedby andgenerally NonConservativeForcesTheseareforceswheretheworkdoneinaclosedlookcannot ualzero.Aneqexampleofthiswouldbefriction.Assuch,themechanicalenergyisdefinedas: (wh icenergyandUispotentialenergy).SuchforceswillereKiskinetcauseachangeinthemechanicalenergyofthesystem.Forinstancbookalonganonidealisedtable,thekineticenergyisconvertedto

    ewhenslidingainternalenergy

    asheat.Furthermore,thepathtakeninaclosedloopwilldeterminehowmuchtion.

    onservationofMechanicalEnergy

    kineticenergyisconvertedtointernalenergy;thelongerthepath,themorefricCMechanicalenergyisgenerallynotconserved.However,ifnonconservativeforcesdonowork,thereforemechanicalenergyisconserved.pplicationsA

    PowerThisistherateofdoingwork.Generallyspeaking,Wisusedforwork,while| |isusedforweight.Itisworthnotingthatwhendisplacinginthehorizontaldirection,thereisnoworkbeingdoneagainstgravity.Additionally,velocityisnormally

    f

    constant.TheSIunitisjoulespersecond,orwatts.Positiveworkisthatdoneinthesamedirectionastheforce.Negativeforceisworkdoneoppositetothedirectionotheforce.

    AveragePower:

    InstantaneousPower:

    Example:

    CompiledbyJohnTrieu2009 Page12

  • Physics1ATopic1Mechanics

    Gravitation(13.1,13.413.6)NewtonsLawofGravitationNewtonsLawofUniversalGravitationstatesthateverymassintheuniverseisttractedtoeveryothermassintheuniversebyaforceofgravitation.a

    221

    dGF =

    MotionofPlanetsandSatellitesSlingshotEffectSatellitesmusthaveacertainvelocityinordertostayinorbit.IfnottheywilleithercrashintoEarthorgooutintospaceandneverreturn.Thisvelocitydependsontheforceofgra

    m

    vityactingonthesatellite.Satellitespathsofmotionareaffectedbyseenbyorbitsandtheslingshotaffect.

    a Motionlawstatesthatallplanetsorbitthesuninanellipticalorbitwherethe

    tedatoneofthefoci.Keplerssecondlawisaconsequenceofconservationofangularmomentumand

    m

    gravity,thiscanbeKeplersLawsofPlanet ryKeplersfirstsunisloca

    statesthataplanetwillsweepequalareasinequalamountsoftime.Assuch:

    whereLandMareconstants.

    Keplersthirdlawshowstherelationshipbetweentheperiodandradiusoforbits.

    GandVariationThevalueofgravityvariesasthedistanceawayfromthecentreofgravityincreases.

    Assuch,thevalueofgravitycanbeseentobe:

    whereristheradiusofthe

    thesurface.Assuch,agravitationalfieldexists,andlthoughatlargedistances,theforceisnegligible.

    planetandhistheheightaboveextendsinfinitelyintospace,a

    Basedon ,

    whereisaunitvectorpointingradiallyoutward

    fromtheplanet,thenegativesignindicatesthefieldpointstothecentreoftheplanet.

    entialEnergyGravitationalPotWhile isareasonableestimateofthepotentialenergyofanobject,itcanonlyapplyclosetothesurfaceofaplanet.Whereamoregeneralequationisrequired,

    willapply.

    EscapeVelocityThisiswhenthekineticenergyofanobjectallowsittoescapefromthegravitationafieldofanyobject(usuallyaplane

    lt).Hence:

    CompiledbyJohnTrieu2009 Page13

  • Physics1ATopic1Mechanics

    OrbitsandEnergySincenonconservativeforcesdonowork,mechanicalenergyisconserved.Hence ,whereEisthemechanicalenergyofthesatellite.Assuch,

    .Byremovingvelo consideringthecircularcityand

    orbit:

    .

    Since

    Therefore:

    Assuch radiuswillresultinaverynegativepotentialenergyandaverylarge,asmallkineticenergy.Hencetheinnerplanetsarefasterthantheouterplanets.Basedonthis,large largeamountorbitsrequirea ofworktoreachtherequiredaltitude,whereitsvelocitywilldecreaseatthesehigheraltitudes.

    mesevidentwithspacecraftinorbit.Inordertospeedupandcatch

    itwilltravelfasteruntilitcatchesupwiththesecondspacecraft.Itwillthenfireitsenginesforwardtoslowdownandenceclimbuptoitsoriginal,slowerorbit.

    Thisbecouptoanotherspacecraft,aspacecraftwillfireitsenginesbackwards,losingenergyanddoingnegativeworkonitself.Thishastheeffectofmorenegativemechanicalenergy,causingittofalltoalowerorbitwhere

    h

    MomentumandCollisions(9.1,9.39.6)ConservationofLinearMomentumTotalMomentumPrior=TotalMomentumFollowingM1U1+M2U2+=M1V1+M2V2+

    MomentumisconservedincollisionsbecauseofNewtonsThirdLaw.Thisisbecausethereisanequalandoppositereactiontoeveryactiondone.Becauseofthis,thereactionforcesmustequaltheactionforces.

    ThechangeinmomentumofanobjectisreferredtoasImpulse.Itisdefinedbythefollowingequation:

    CompiledbyJohnTrieu2009 Page14

  • Physics1ATopic1Mechanics

    CompiledbyJohnTrieu2009 Page15

    CollisionsinOneDimensionElasticcollisionsin1dimensionarethosewherethetotalkineticenergy,andhencemomentum,ofthesystemisthesamebeforeandafterthecollision.Inreality,nocollisionsareperfectlyelasticbecauseobjectswilldeformslightlyduringthecollisionaswellasasmallamountofenergybeingconvertedtootherforms,suchasheatandsound.Basedonthis,thefollowingapply: and

    Basedonthis,inelasticcollisionsarethosewherethetotalkineticenergyinasystemisdifferentbeforeandafteracollision,evenifmomentumisconserved.Thiscanhappenwhenobjectssticktogether(knownasaperfectlyinelasticcollision)orwhenanobjectissubstantiallydeformed(aswithaball)whenbeingbounced.Inelasticcollisionsaregenerallyhardtoanalysewithoutadditionalinformation. Inaperfectlyinelasticcollision,bothobjectswilltravelwithacommonvelocityafterimpact.Beinganisolatedsystem,momentumisconservedandassuch,thefinalvelocitycanbedeterminedbythefollowing:

    .

    CollisionsinTwoDimensionsIncollisionsintwodimensions,momentumisconservedinboththexandyaxesindependentlyas and

    Giventheinitialycomponentofmomentumina2particlesystemiszero(giventhedirectioncanbetakenasthexaxis): cos cosWhereistheangleobject1fliesoffat,andistheangleatwhichobject2fliesoffat(whereobject1collideswithobject2),and:0 sin sin

    Ifthecollisioniselastic,then:

    .Kinetic

    energywillnotbeconservedifthecollisionisinelastic.CentreofMassThexcoordinatesofthecentreofmassofaseriesofparticlescanbefoundbythe

    followingequation:

    Wherexiisthexcoordinateof particleandthetotalmassistheith ,

    w thesumrunsovernparticles.Theyandzcoordinatesofthecentreofmasscanalsobederivedbysimilarequations:here

    Thevectorpositionofthecentrefmassofanextendedobjectcanbeexpressedintheform:

    Thecentreofmassofanysymmetricalobjectli fsymmetryesontheaxiso .Forinstance,thecentreofmassforasphereisatitsandonanyplaneofsymmetry

    geometriccentre. Forallothe edeterobjects,thecentreofmasscanb rminedbysuspendingtheobjectfromanypointA,andthendrawingaverticallineAB(determinableviaaplumb bob).IftheobjectisthensuspendedfromanypointC,andagain,averticallinedrawnasCD,theintersectionofABandCDwillmarkthecentreofmass.

  • Physics1ATopic1Mechanics

    Theworkdonebythecentreofmasscanbegivenbythechangeinkineticenergyofthecentreofmass.Example:

    any

    reofmassofsuchasystemisgivenby:M ParticleSystemsThevelocityofthecent

    Thetotalmomentumofasystemofparticlesisgivenby: heaccT elerationofthecentreofmasscanbegivenby: Assuch,thesumofallexternalforcescanbegivenby: Rotation(10.1,10.310.6)AngularVelocityandAccelerationAngulardisplacement:

    Angularvelocity:

    Angularacceleration:

    2.

    Notethattheaboveequationsarecomparabletotheprojectileequations,however,therespectivecomponentsofdisplacement,velocityandaccelerationhavebeendividedbyrtoobtaintheirangularequivalents.AngularQuantitiesLinear Angular

    . sin

    CompiledbyJohnTrieu2009 Page16

  • Physics1ATopic1Mechanics

    Example:Abicyclewheelhasaradiusof40cm.Whatisitsangularvelocitywhenthewheeltravelsat40kmh.

    .

    .

    /

    . 28.

    RotationalKineticEnergyenergyisderived omthesumoftheindividualkineticenergiesof

    idobject.

    Asseenabove,rotational ineticenergyisequalto

    Rotationalkinetic fr

    .However,sincetheparticleswithinarig

    k

    ,

    .

    Thetotalkineticenergyof rollingobjectis:a

    MomentofInertiaThisisameasureoftheabilityofanobjecttoresistchangesinitsrateofrotation.Itisalsoreferredtoastherotationalanalogueofmass.Forasystemofmasses,thisisequalto:

    Foracontinuousbody:

    ecomes thatIwilldependonthetotalmass,distributionofmassandshape,aswe astheaxisofrotation.Whatb evidentis

    llThemomen ofinertiacan sobedefinedbytheequation:t al wherenisanumber. canalsobe efinedasIt d where .Forahoop, .Otherobjects(forwhichkdoesnotneedtoberemembered):

    Disc:

    Solidsphere:

    Itisworthnotingthat enwh anobjecthasalowermomentofinertia,thereislessrotationalkineticenergy,andhencemoretranslationalkineticenergy.TorqueTorqueistheturning omentof force.Torquethatisaboutanaxisofrotationis

    distancebetweentheendofthebeamandthepoint

    m aequaltotheproductofthethroughwhichtheforceisappliedandthecomponentofforceperpendiculartothebeam.

    . sin

    CompiledbyJohnTrieu2009 Page17

  • Physics1ATopic1Mechanics

    AngularMomentum

    CompiledbyJohnTrieu2009 Page18

  • Physics1ATopic1Mechanics

    CompiledbyJohnTrieu2009 Page19

    SystemofParticles

    Example:Persononrotatingseatholdstwo2.2kgmassesatarmslengthanddrawsthemtowardstheirchest.Whatistheincreaseinagularmomentum?IsKconserved?

  • Physics1ATopic2ThermalPhysics

    FirstYearUniversityPhysics1ATopic2:ThermalPhysics

    TemperatureTemperatureandThermalEquilibriumTemperatureistheconceptbywhichanobjectisperceivedtobehotorcold.Thedefinitionoftemperatureisdependentupontheconceptsofthermalcontactandthermalequilibrium.Athighertemperatures,particleswillpossessmoreenergyandhencehavemorekineticenergyandcollisions. Thermalcontactiswheretwoobjectsareabletoexchangeenergybetweenthemselves,eitherviaheatorEMR.Thisisaconsequenceofatemperaturedifferencebetweenthetwoobjects.Whenparticlescollidewithawall,itcantransferenergytothiswall,whichinturncantransfertheenergytotheparticlesontheothersideofthewall. ThermalEquilibriumiswheretwoobjectsexchangenonetenergywhenplacedinthermalcontact.Asstatedabove,thiscontactdoesnotneedtobephysicalasenergycanbetransferredviaEMR.AkeylawrelatedtothermalequilibriumistheZerothLawofThermodynamics.ThislawstatesthatifanytwoobjectsAandBareseparatelyinthermalequilibriumwithathirdobjectC,thenAandBareinthermalequilibriumwitheachother.Consequently,ifAandBarebroughttogether,nonetenergywillbeexchanged. Temperaturecanthenbedefinedusingthermalequilibrium.Itcanbethoughtoftobeapropertywhichdetermineswhetherornotanobjectisinthermalequilibriumwithanotherobject/s.Iftwoobjectsareinthermalequilibrium,thentheyarethesametemperature.Quiteevidently,thetemperatureisnowdefinedbyenergy.MeasuringTemperatureThetemperatureofanobjectismeasuredwithathermometer.Theyarebasedontheprinciplethatsomephysicalpropertyofasystemchangedasthetemperatureofthesystemchanges.Atemperaturescalecanbebasedonanyofthefollowingproperties:

    Volumeofaliquid(Mercuryoralcohol) Dimensionsofasolid(suchasintheexpansion/contractionoftraintracks) Pressureofagasataconstantvolume(Idealgases) Volumeofagasataconstantpressure(Idealgases) Electricalresistanceofaconductor

    (Asheatrises,conductivitydecreasesproportionallytothetemperature) Colourofanobject(aswithBlackBodies)

    Incalibratingathermometer,itmustbeplacedinthermalcontactwithsomenaturalsystemthatremainsataconstanttemperature(suchasthetriplepointofwater).TheCelsiusscaleisbasedupontheicepointofwaterbeingat0andtheboilingpointat100with100incrementsinbetweenthesepoints.

    CompiledbyJohnTrieu2009 Page1

  • Physics1ATopic2ThermalPhysics

    Akeyproblemwiththermometers,especiallyliquidinglassvariants(suchasthoseinvolvingalcoholormercury),isthatthethermometermayonlyagreewiththecalibrationpoint/s.Asaconsequence,therecanbelargediscrepancieswhenthetemperatureisfarfromthesepoints(thescalebetweencalibrationpointsmaynotbelinear).Thermometersalsohavealimitedrange;forinstance,mercurycannotoperatebelow30Candalcoholcannotworkabove85C. Theconstantvolumegasthermometerisbasedupontheeffectsonthepressureofafixedvolumeofgasasthetemperaturechanges.Anincreaseinthetemperaturecausesgreaterpressure,whichpushesthemercuryout.Theheightdifferenceisproportionaltothetemperature.

    Whencomparingtemperature,itisimportanttousetheKelvinscalebecausethisisatruerepresentationofthekineticenergyofanobject.Forinstance,waterat100Cisnottwiceashotaswaterat50C.However,aflameat233Cistwiceashotasanicecubeat20C.AbsoluteZeroThisconceptisbasedupontheclassicalphysicsprinciplethatat0K,particleswillhavezerokineticenergy.Itwouldfollowlogicallythatthemoleculeswouldthensettleoutonthebottomofthecontainer.However,quantumphysicsshowsthatsomeresidualenergywillremain,andthisiscalledzeropointenergy.Furthermore,theconceptofabsolutezeroisatheoreticalconcept.Thisisbecauseforasubstancetobeatabsolutezero,thecontainermustbeatabsolutezerobecausethetwoobjectswouldbeinthermalcontact.Thisproblemcontinuestocompound,andhenceforanobjecttobeabsolutezero,everythingmustbeatabsolutezero.ThermalPropertiesofMatterWhenanobjectisheated,itwillexpand.Consequently,thejointsinmanyobjectsallowroomforthisintheformofexpansionjoints.Thisexpansionisaconsequenceofthechangeinaverageseparationbetweenatomsinanobject.Ifthisexpansionissmallrelativetotheoriginaldimensions,thenagoodapproximationofthischangeindimensionsisthisisproportionaltothechangeintemperature.LinearExpansionThecoefficientoflinearexpansionisasfollows:

    /

    or or

    WhereLiistheinitiallengthandLfisthefinallengthandhasunitsof(C)1.

    CompiledbyJohnTrieu2009 Page2

  • Physics1ATopic2ThermalPhysics

    Itshouldbenotedthatsome,butnotall,materialscanexpandinonedirectionwhilecontractinanotherastemperatureincreases.Alsoasthelineardimensionschange,thesurfaceareaandvolumewillalsochange.VolumeExpansionThisisbasedontheprinciplethatthechangeinvolumeisproportionaltotheoriginalvolumeandthechangeintemperature. WhereisthecoefficientofvolumeexpansionandViistheinitialvolume.Insolids, 3.However,theformulaassumesthematerialisisotropic,orthesameinalldirections. Theprincipleofvolumeexpansioncanbeexploitedinthermometers.Thegreatervolumealiquidwillexpand,thegreatertheaccuracyofthethermometer.AreaExpansionThisisbasedontheprinciplethatthechangeinareaisproportionaltotheoriginalareaandchangeintemperature. 2WhereAiistheinitialarea.BimetallicStripsThesearestripsofmetalcontainingtwodifferentmetalsphysicallybondedtooneanother.Atacertaintemperature,thestripwillbeperfectlystraight.However,asonestripexpandsmorethantheother,itwillbendasthetemperaturechanges.Anapplicationforsuchanobjectisinthermostats.WaterWater,unlikeothersubstances,willincreaseindensityasitstemperaturerisesfrom0Cto4C.Above4C,waterwillbehavelikeanyothersubstance.Thisisaconsequenceofthehydrogenbondsbetweenmolecules.ChangesinVolumeWhilethevolumeexpansionequationrequiresaninitialvolumefortemperaturechange,thereisnoequilibriumseparationfortheatomsinagas.Inotherwords,thereisnostandardvolumeforanyfixedtemperature,andhencethevolumedependssoleonthecontainer.Consequently,thevolumeforgasesisvariable.Andthechangeinvolumeisconsidered.KineticTheoryandtheIdealGasMacroscopicPropertiesofaGasEquationofStateforaGasThisdescribeshowthevolume,pressureandtemperatureofagasofmassmarerelated.TheMoleTheamountofgaswithinagivenvolumecanbeexpressedinthenumberofmoles.OnemoleofanysubstancecontainsAvogadrosnumberofconstituentparticles.Thenumberofmolesiscalculatedby

    .

    CompiledbyJohnTrieu2009 Page3

  • Physics1ATopic2ThermalPhysics

    BoylesLawWhenagasiskeptataconstanttemperature,itspressureisinverselyproportionaltoitsvolume.CharlesandGayLussacssLawWhenagasiskeptataconstantpressure,itsvolumeisdirectlyproportionaltoitstemperature.IdealGasLawTheequationofstateforanidealgasis: Wherenisthenumberofmoles,RisaconstantcalledtheUniversalGasConstant(8.314J/mol.K),Tistemperature,Pispressure,Visvolume,andtheunitsforPVisJoules.Thislawisoftenstatedintermsofthetotalnumberofmoleculespresent,hence:

    WherekBisBoltzmannsconstantof

    and 1.38 10/.

    ItiscommontocallP,VandTthethermodynamicvariablesofanidealgas. Thislawhelpsexplainthatthepressureagasexertsonthewallsofacontainerareaconsequenceofthecollisionsofgasmoleculeswiththewall.IdealGasLawAssumptions

    1. Thenumberofmoleculesinthegasislargeandtheaverageseparationbetweenthemoleculesislargecomparedwiththeirdimensions.Suchmoleculesoccupyanegligiblevolumeinthecontainer.

    2. ThemoleculesobeyNewtonslawsofmotion,butasawholetheymoverandomly.Consequently,anymoleculecanmoveinanydirectionwithanyspeed.Atanygivenmoment,acertainpercentageofmoleculesmoveathighspeedsandacertainpercentagewillmoveatslowspeeds.

    3. Themoleculesinteractonlybyshotrangeforcesduringcollisions.Hencetherearenoattractiveorrepulsiveforcesbetweenthem.

    4. Moleculesmakeelasticcollisionswiththewalls5. Thegasunderconsiderationisapuresubstance.Inotherwords,allthe

    moleculesareidentical(notentirelytrueinrealityduetoisotopes)Thefirst3assumptionsarethemostimportanthowever.MolecularModeloftheIdealGasThemolecularmodelforagaswasdevelopedbyBrownin1801afterobservingthatpollensuspendedinwatermovedinanirregularpattern.Hethoughtthatthepollencontainedsomelifeforce,however,itisnowknownthatthiswasfromwatermoleculesbumpingintothepollenrandomly.Thiswasthefirstevidenceofatomisationwhichwasanobservationratherthanadeduction.KineticInterpretationofTemperaturePressureandKineticEnergyTherelationshipbetweenpressureandkineticenergyisasfollows:

    Thisisinterpretedasthepressureisproportionaltothenumberofmoleculesperunitvolume(N/V)andtotheaveragetranslationalkineticenergyofthemolecules.

    CompiledbyJohnTrieu2009 Page4

  • Physics1ATopic2ThermalPhysics

    Notetheuseof ,whichisthemeanvalueofthespeedsquared.Thisisaconsequenceofthelargenumberofparticlesinagas,andhenceitisimpossibletorefertoaspecificparticle.Furthermore,totalvelocityiszeroasthereasmanyvectorcomponentsinonedirectionastheother. BycomparingtheaboveequationwiththatfortheIdealGasLawwefind:

    Hence,thetemperatureisadirectmeasureoftheaveragemolecularkineticenergy.Simplifyingtheequationgives:

    Andgiventhiscanbeappliedinanydirection:

    The

    isaconsequenceofeachcomponent(x,yandz)are

    oftheoverallequation.

    Usingthis,itbecomesapparentthatthetranslationaldegreeoffreedomcontributesanequalamountofenergytothegas(giveneachdirectionisindependentoftheothers).ThisconceptofeachcomponentcontributingequallytotheenergyofthesystemcanbereferredtoastheTheoremoftheEquipartitionofEnergy.TotalKineticEnergyofaGasThetotalkineticenergyisjustNtimesthekineticenergyofeachmolecule:

    Notingthat

    Ifthegashasonlytranslationalenergy,thethisistheinternalenergyofthegas.Basedonthis,theinternalenergyofanidealhasdependssolelyontemperature.RootMeanSquare(RMS)SpeedThisisthesquarerootoftheaverageofthesquaresofthespeeds.Hence:

    WhereMisthemolarmass.HeatandtheFirstLawofThermodynamicsHeatandInternalEnergyofIdealGasesIn1850,Joulediscoveredalinkbetweenthetransferofenergybyheatinthermalprocessesandthetransferofenergybyworkinmechanicalprocesses.Thisledtheconceptofenergytobegeneralisedtoincludeinternalenergy. Internalenergyisthesumofallenergiespossessedbyaparticle.Forinstance,inagas,thisincludesgravitationalpotential,vibration,rotational,randomtranslational,chemicalpotentialandrestmassenergies.ThekineticenergyduetomotionthroughspaceisNOTincluded.Internalenergycanbechangedbyboththeapplicationofheat(orflowofenergy)orwork(applyingaforce). Thermalenergyreferstothesumofgravitationalpotential,rotational,vibrationalandrandommotionkineticenergies.ThisisrepresentedbythesymbolQ. Heatcanbeinterpretedtobeaflowofenergybetweentwoormoresystems.Thisisduetoatemperaturedifferencebetweentherespectivesystems.Heatisquantifiedastheamountofenergytransferred.

    CompiledbyJohnTrieu2009 Page5

  • Physics1ATopic2ThermalPhysics

    HeatCapacityThisisdefinedastheamountofenergyrequiredtoraisethetemperatureofasampleby1C.Itcanbedepictedbythefollowingequation. .SpecificHeatforSolidsandIdealGas

    Specificheatistheheatcapacityperunitarea,or .Theequationforspecific

    heatisgivenby .Thespecificheatisameasureofhowinsensitiveanobjectistotemperaturechangeasagreaterspecificheatwillrequiremoreenergytochangethatsubstancestemperature. Signconventionsforheatcapacityandspecificheatare:

    Iftemperatureincrease,Qand Tarepositiveasenergytransfersintothesystem

    Iftemperaturedecreases,QandTarenegativeasenergytransfersoutofthesystem.

    Thespecificheatofwaterisratherlargecomparedtomanyothersubstances.Theconsequencesofthisarevariousweatherphenomenon,suchasmoderatedtemperaturesalongthecoastandseabreezes.CalorimetryThisisatechniqueformeasuringthespecificheatofasubstance.Itinvolvesheatingamaterial,addingittoasampleofwater,andthenrecordingthefinaltemperature.Assumingthesystemofthesampleandthewaterisisolated,conservationofenergyrequiresthattheamountofenergywhichleavesthesampletobethesameastheenergywhichentersthewater. Thisminussignisimportant,andisindicativeofthesamplelosingenergy,whichthewatergainsenergy.PhaseChangesThisreferstothechangeofphysicalstateofasubstance,suchassolidtoliquid.Duringaphasechange,thereisnochangeintemperatureofthesubstance.TheenergyrequiredtoeffectthischangeiscalledLatentHeat.LatentHeatThisistheamountofenergyrequiredtocauseasubstancetochangestate.Itisequalto wheremisthemassofthesample.Thelatentheatoffusionistheenergyrequiredtochangefromsolidtoliquid,whilethelatentheatofvaporisationistheenergyrequiredtochangefromliquidtogas.Apositivesignwillbeusedtoindicateenergybeingtransferredintothesystem.Conversely,anegativesignwillindicatethatenergyislostbythesystem.Animportantconceptincalculatinglatentheatisthatthetemperaturewillnotchangeuntilthesamplehascompletelychangedstate.

    CompiledbyJohnTrieu2009 Page6

  • Physics1ATopic2ThermalPhysics

    WorkDoneonanIdealGasThestatevariableswilldescribethemacroscopicstateofasystem.Inanidealgas,thesearepressure,temperature,volumeandinternalenergy.However,thismacroscopicstatecanonlybespecifiedifthesystemisinthermalequilibrium. Transfervariablesdescribethechangesinstate.Theyarezerounlessaprocessoccurstocausethetransferofenergyacrossasystemboundary.Forexample,heatandworkaretransfervariables.Forinstance,heatcanonlybeassignedavalueifitcrossesaboundary. Theworkdoneonanidealgascanbegivenby: . . . SinceP=F/AThechangeinvolumeisgivenby . andhencetheworkdoneis . .Thetotalworkdoneisgivenby:

    PVDiagramsThesearediagramsshowingthecorrelationbetweenpressureandvolumetoallowadeterminationoftheworkdoneonanidealgas.Theworkdoneonsuchadiagramisverydependentonthepathtaken.

    Theabovediagramindicatesthatthevolumehasbeenreducedbeforethepressureisincreasedbyheating.

    Theabovediagramshowsthatthepressurewasfirstlyincreasedbeforethevolumewasdecreased.

    Theabovediagramshowsthatthepressureandvolumecontinuallychanged.While isanapplicableequationforthefirst2cases,indiagram3,theevaluationofworkrequirestheP(V)functiontobeknown.

    CompiledbyJohnTrieu2009 Page7

  • Physics1ATopic2ThermalPhysics

    ConversionofWorktoThermalEnergyIfapistoncompressesagas,thekineticenergyoftheparticleswillbeincreased.Thisisthroughconservationofmomentum,wherethemovingpistonsupplieskineticenergytotheparticles,therebyincreasethermalenergy.FirstLaworThermodynamicsThisisaspecialcaseofconservationofenergytakingintoaccountthechangeininternalenergythroughenergytransfersinworkandheat.Thelawstatesthat: Akeyconsequenceofthislawisthattheremustexistaninternalenergywhichisdeterminedbythestateofthesystem.Forinfinitesimalchanges: ApplicationsoftheFirstLawofThermodynamicsTheAdiabaticprocessiswherenoenergyentersofleavesthesystembyheat.Thisisachievedbyinsulatingthesystem,orhavingthesystemproceedquicklyenoughthatnoheatcanbeexchanged.Since 0, .Ifthegasiscompressedinthismanner,thenWispositive,sointernalenergyisalsopositiveandhencetemperatureincreases. Theisobaricprocessisonewhichoccursatconstantpressure.Theworkdoneis ,wherePisconstant.

    Theisovolumetricprocesstakesplaceinconstantvolume.Sincethereisnochangeinvolume,W=0.HenceininternalenergyequalsQ.Additionally,ifanyheatisadded,sincethevolumeisconstant,alloftheenergytransferredresultsinanincreaseininternalenergy. Theisothermalprocessoccursatconstanttemperature.Sincetemperaturedoesntchange,internalenergyequalszero.Anyenergythatentersmustleavethesystem.ItsPVgraphisasfollows:

    Since ,theequationformsaparabola.

    Also,sincethegasisanidealgasandtheprocessisquasistatic, . log

    Ifthegasexpands,thenVf>Vi,andhencetheworkdoneisnegative.TheTransferofHeatInanisolatedsystem,therearenointeractionswiththesurroundingenvironment,andhence 0 .Asaconsequence,theinternalenergyofsuchasystemremainsconstant.

    CompiledbyJohnTrieu2009 Page8

  • Physics1ATopic2ThermalPhysics

    CompiledbyJohnTrieu2009 Page9

    Cyclicprocessesarewherethesystemstartsandendsatthesamestate.Suchaprocessisnotisolated.OnaPVdiagram,thiswouldbeindicatedbyaclosedcurve.Becausetheinternalenergyisastatevariable,thereisnochangeininternalenergy.Hence,if 0, .Insuchprocesses,thenetworkdonepercycleisequaltotheareaenclosedbythecurveonaPVdiagram. Heatistypicallytransferredbyconduction,convectionorradiation.Inconduction,particlesbecomeenergisedandcollidewithotherparticles.Anincreaseinkineticenergythereforewilltransferthroughtotheotherparticles,thusconductingheat.However,theconductionprocesscanonlytakeplaceifthereisadifferencebetweentwopartsoftheconductingmedium.Therateoftransfercanbe

    givenby

    whereisaconstantofthermalconductivity,Pispower,dxisthethicknessandTaandTbarethetemperaturesof2differentmaterials,wheresubstanceAishotterthanB. Convectionreferstoenergytransferbemovingasubstance.Itisoftenassociatedwithchangesindensity,suchasinair.Thisisreferredtoasnaturalconvection.Forcedconvectionisachievedwithfansorpumps.Convectionresultsfromtheheatingofair,suchthatitexpandsandrises,whilecooleraircyclesin.Thusacontinuouscurrentisestablished. Radiationdoesnotrequirephysicalcontact.ItisaresultoftheIRemissionsofawarmbody.TherateofradiationcanbegivenbyStefanslawstating: ,wherePistherateoftransfer(inWatts),isaconstant(5.6696 10),Aisthesurfacearea,eistheconstantofemissionoremissivity,andTisthetemperatureinK.

    Therateatwhichanobjectradiatesheatisdeterminedbyitssurrounds,hence

    .Ifanobjectisinthermalequilibriumwithitsurrounds,therewillbenonetradiation.

  • Physics1ATopic3Waves

    FirstYearUniversityPhysics1ATopic3:Waves

    OscillationsOscillatingSystemsOscillatingsystemsoftenundergoperiodicmotion,wherethemotionoftheobjectwillrepeatatregularintervals.Onesuchexampleofthisissimpleharmonicmotion.SimpleHarmonicMotionThisiswhereaforceactingonanobjectisproportionaltothepositionoftheobject,relativetosomeequilibriumposition(wherethisforceisalsodirectedsuchaposition).Inthecaseofaspring,thisforcecanbequantifiedwith . TheaccelerationofaparticleundergoingSHMisnotconstant.However,theaccelerationofthemasscanbedeterminedusingNewtonssecondlaw:

    ItisthisaccelerationequationwhichdefinesasystemundergoingSHM.Fromthisequation,itisclearthattheaccelerationisproportionaltothedisplacementoftheobject.Furthermore,thedirectionofthisaccelerationisoppositetothedisplacementfromtheequilibriumpoint.Notethatwhenablockcompletesonefulloscillation,ithasmoved4A,whereAistheamplitudeoftheoscillation.Thisisbecauseitmustmovefrommaxdisplacement,toneutral,tominimumdisplacement,andthenallthewaybacktomaxdisplacement. Whenablockishungfromaverticalspring,itsweightwillcausethespringtostretchtosomeequilibriumpoint.Iftherestingpositionofthespringisdefinedasy=0,thenitisclearthat:

    WhenrepresentingSHMmathematically,itisusefultochoosethexaxisas

    theoneinwhichtheoscillationoccurs.ApplyingNewtonssecondlaw:

    Furthermore,if ,then2

    wherefisthefrequencyoftheoscillations.

    Clearly,theperiodandfrequencyofthemotionareverydependentuponthemassoftheparticleandtheforceconstantofthespring.Evidently,thefrequencyisproportionaltothespringconstant,butinverselyproportionaltothemass. InrepresentingSHMgraphically,anequationwhichcandefineSHMis: . cos

    . sin

    . cos

    . sin

    asrequiredforSHM.Similarly,anotherequationwhichcandefineSHMis .

    CompiledbyJohnTrieu2009 Page1

  • Physics1ATopic3Waves

    Notethatintheaboveequations:

    2

    ,

    2

    istheangularfrequency(unitsofradian/s) Aistheamplitudeofthemotion,orthemaximumdisplacementthe

    particleachieves isthephaseconstant,orinitialphaseangle

    Notethatthephaseofthemotionisgivenby . cos

    Since ,itispossibletodeterminethevalueofAandbyapplyingtheconditiont=0totheequation. Becauseofthenatureofthesineandcosinefunctionsoscillatingbetween1and1,themaximumvaluesofvelocityandaccelerationaregivenby:

    .

    Anotherimportantfactisthatthevelocityfunctionistypically90outofphasewiththedisplacementfunction,whiletheaccelerationistypically180outofphasewiththedisplacementfunction.EnergyofCollisionsAssumingthatthespringmasssystemismovingonafrictionlesssurface,thekineticenergycanbefoundby:

    . sin

    . sin ,

    Theelasticpotentialenergycanbefoundby:

    . cos

    Hencethetotalenergyofthesystemcanbegivenby:

    .

    Notethatthistotalenergygivenaboveremainsconstant,andthatitisproportionaltothesquareoftheamplitude.Theenergyisbeingcontinuouslytransferredbetweenthepotentialandkineticenergyoftheblock.

    MolecularModelofSimpleHarmonicMotionIftheatomsinamoleculedonotmovetoofarapart,theforcebetweenthemcanbemodelledasiftherewerespringsbetweentheatoms.Hencethepotentialenergyactssimilartothatofanoscillatorundergoingsimpleharmonicmotion.

    CompiledbyJohnTrieu2009 Page2

  • Physics1ATopic3Waves

    UniformCircularMotionThereexistsaclearlinkbetweensimpleharmonicmotionandcircularmotion.Ifadiskwithaknobisrotatedandviewedfromabove,theknobappearstomovebackandforthasthoughitwereundergoingsimpleharmonicmotion.Thisbecomesevidentinthediagrambelow:

    Theparticlemovesalongthecirclewithaconstantangularvelocity.

    OPmeansananglewiththexaxis. Attimet,theangle illbew . cos

    . sin . sin

    Hence whicht equirementforSHM

    Qu evidently,simpleh necanberepresentedby

    her

    ite armonicmotionalongastraightliaprojectionofuniformcircularmotionalongthediameterofareferencecircle.Thisallowsuniformcircularmotiontobeconsideredacombinationof2simpleharmonicmotions:

    Onealongthexaxis Theotheralongtheyaxis

    Wherethetwodifferinphaseby90.PendulumsThemotionofasimplependulumintheverticalplaneisdrivenbygravitationalforce.Thismotionisverysimilartothatofparticlesundergoingsimpleharmonic

    retheangleofthependulumissmall.

    motion,whe

    Fromthediagramabove,theforcesactingonthebobaretension(T)andweightforce(mg).Thetangentialcomponentofgravitationalforceisarestoringforce,givenby sin .Thearclengthi givenbys .

    Hence

    and

    Inthetangentialdirection, sin

    ThelengthLofthependulumisconstant,henceforsmallvaluesof,

    sin

    CompiledbyJohnTrieu2009 Page3

  • Physics1ATopic3Waves

    Hencethemotionissimpleharmonicwith

    Thefunction as:canbewritten cos

    Theangularfrequencyisgivenby:

    Theperiodisgivenby:

    2

    islongerorisinafieldoflowergravitationalplete1period.

    DampedOscillations

    Basedontheabove,ifthependulumforce,itwilltakelongertocom

    Inmanyrealsystems,nonconservativeforcesarepresent,suchasfriction,airresistanceandviscosity.Insuchcases,themechanicalenergyofthesystemwilldiminishovertime,andhencethemotionisdescribedasbeingdamped.Belowis

    thegraphofadampedoscillation:

    Basedonthisdiagram,theamplitudeoftheoscillationdecreasewithtime,wherethebluelineisrepresentativeoftheenvelopeofthemotion. Anexampleofdampedmotioniswhenanobjectisattachedtoaspringandsubmergedinaviscousliquid.Theretardingforcecanbeexpressedas ,wherebisapositiveconstant,knownasthedampingconstant.FromNewtonssecondlaw, Therearethreetypesofdamping,shownbythegraphbelowofpositionversustime:

    .

    (a) Isanunderdampedoscillator(b) Isacriticallydampedoscillator(c) Isanoverdampedoscillator

    CompiledbyJohnTrieu2009 Page4

  • Physics1ATopic3Waves

    ForcedOscillationsBecauseoftheconceptofdampedoscillations,theprocessofforcedoscillationswasdeveloped.Thisiswherelossofenergyinadampedsystemiscompensatedforbyapplyinganexternalforce,forinstanceperiodicallypushingapendulum.Theamplitudeofthemotionremainsconstantiftheenergyinputpercycleexactlyequalsthemechanicalenergylostbythesystemineachcyclefromresistiveforces.Generallyspeaking: sin sin W is eherextisthetransientforce,andxss th steadystateforce.

    Whilethemotionofanobjectundergoingsimpleharmonicmotionisgivenb am fy . cos ,the plitudeo thedrivenoscillationisgivenby:

    Whereisthenaturalfrequencyoftheundampedoscillator,givenby

    .

    Quiteclearly,theamplitude fthemotionisdependentonthefrequency.oResonanceWhenth frequencyofthedrivingforceisnearthenaturalfrequency,(oe r ),therewillbeanincreaseinamplitude.Thisdramaticincreaseisreferredtoasresonance,whilethenaturalfrequencyofthesystemisalsoreferredtoastheresonancefrequencyofthesystem.

    Themaximumpeakofresonanceoccurswhenthedrivingfrequencyequalsthenaturalfrequency.Theamplitudethenincreaseswithdecreaseddamping.Consequently,thecurve(shownbelow)willbroadenasdampingincreases.Theshapeo

    fthiscurveishencedependentonb.

    CompiledbyJohnTrieu2009 Page5

  • Physics1ATopic3Waves

    WaveMotionropagationofaDisturbanceP

    Therearetwomajortypesofwaves.Theyaremechanicalwaves(wheresomemediummustbedisturbedandthewavepropagatesthroughthismedium)andelectromagneticwaves.Theenergyofanydisturbanceistransferredoverdistance,butnotthematter(theparticlesmovebackandforthorupanddown). ApulseonaropecanbecreatedbyflickingaropeundertensionindirectThispulsecanthentravelthroughtherope,causingthepulsetohaveadefiniteheightandspeedofpropagation(whichistypicallyuniqueforeachmedium).

    ion.

    Iftheopeis

    Longitudinalwavesarethosewherethetravellingwavecausestheparticlestomoveparalleltothedirectionofthewave.

    Complexwavescanalsobeformed,suchaswaterwaves.Thesecanexhibitacombinationofthepropertiesoftransverseandlongitudinalwaves.

    r continuouslyflicked,aperiodicdisturbancecanbeformedasawave. Wavescantraveleitherparallelorperpendiculartothemotionofthedisturbance.Transversewavesarecomparabletoasinecurve,andtheparticlesaredisplacedperpendiculartothedirectionofpropagation.

    CompiledbyJohnTrieu2009 Page6

  • Physics1ATopic3Waves

    TravellingWavesAtravellingwaveorpulsecanberepresentedbyanequationwhichgivesthedisturbanceasafunctionofdisplacementandtime.

    w:

    Inthediagrambelo

    Evidently,theshapeofthepulseatt=0canberepresentedby, 0 .Thisdescribesthetransverseposition,y,oftheelementofthestringlocatedateachvalueofxatt=0.Thespeed ofthepulseisvandintimet,willtraveladistanceofvt.Attime=t,theshapeisrepresentedby .Thisisb seecausethepulmovesdowntheropeandisntalwayssinusoidal.Hence,toachievetheoriginalcurve,thedisplacementmustbesubtracted. Consequently,foracurvetravel t,lingtotherigh , .Meanwhile,foracurvetravellingtotheleft,, .Assuch,y(x,t)isthewavefunction,representingtheycoordina

    teofanyelementlocatedatposition

    x ytimet.Forafixedt,itiscalledthewaveform,as aatan itdefinesthecurve tanyspecifictime.PropertiesofWavesTheamplitudeofawaveisthemaximumdisplacementfromtheequilibriumposition.Thewavelengthisthedistancebetweenany2identicalpointsonadjacentwaves.

    ncyisthenumberofwavespersecond.Theperiodisthetimetakenforonewavelength.ThefrequeWaveFunction

    Thisisgivenby, . sin .Itdescribesthemotionofawave

    movinginthepositivexdirectionwithaspeedofv.Conversely,

    , . sin describesmotioninthenegativexdirection.

    Inperiodicformitisgivenby:

    , . sin 2

    . sin

    HencethewavenumberIsgivenby

    andtheangularfrequencyby

    CompiledbyJohnTrieu2009 Page7

  • Physics1ATopic3Waves

    WaveSpeedWhilethetransversespeedofawave givenbycanbe

    , . . cos ,this wave

    itself,givenby:

    isdifferenttothespeedofthe

    Thespeedofawaveonthestringcanalsobegivenby:

    /

    PowerandIntensityinWaveMotion

    Thekineticenergyofa veisgivenbywa ,where .

    Thetotalkineticenergyinawaveisgivenby

    .Thissameequation

    canalsobeusedtodefinepotentialener ence,the rgygyinawave.H totalene ofa

    waveisgivenby

    .

    Thepowerassociatedwithawaveisgivenby:

    red,amplitudesquaredandwavespeed.PrincipleofSuperposition

    y

    Hencepowerisproportionaltofrequencysqua

    Theprincipleofsuperpositioninvolvestheenergyofaseriesofwavesaddingatangivenpoint;hencetheircombinationisthealgebraicsumoftheirvalues.However,theprincipleofsuperpositioncanonlyapplytolinearwaves,wheretheamplitudeissmallerthanthewavelength. Theprinciplestatesthattravellingwavescanpassthroughoneanotherwithoutbeingdestroyedoraltered.Thisresultsintheircombinationinaresultantwaveknownasinterference.InterferenceofWavesTheretwotypesofinterference:constructiveanddestructive.Constructiveinterferenceiswherethedisplacementscausedbythetwopulsesareinthesamedirectionandhencetheamplitudeoftheresultingwaveisgreaterthaneitherwave.Destructiveinterferenceiswherethedisplacementsareinoppositedirectionsandhencetheamplitudeoftheresultingwaveislessthaneitherwave.Ineffectthewavescanceleachotherouttoacertainextent.

    Mathematically:1 . sin 2.sin 21 2.cos

    sin

    Hencetheresultingwaveissinusoidal,withthesamefrequencyandwavelength,but

    withanamplitudeof2. cos andaphaseof

    .Henceduringperfectconstructive

    ndthewa

    interference,thephaseiszero(wherebothwavesareinphaseeverywhere)andperfectdestructiveinterference,thephaseis

    anoddmultipleof(a vescanceloneanotherout)resultinginanconsequently,theamplitudeis2A.In

    amplitudeof0.Generallyspeaking,ifthephaseisbetween0andanoddmultipleoftheamplitudeisbetween0and2Aandthefunctionswillcontinuetoadd.

    CompiledbyJohnTrieu2009 Page8

  • Physics1ATopic3Waves

    StandingWavesIf2waveshavethesameamplitude,wavelengthandfrequency,andtravelintheoppositedirectiononeanotherwiththeequations: . sin . sin Wherethedifferentsignsindicatethedifferentdirections,theywillinterfereaccordingtothesuperpositionprincipledescribedintheequationbelow: 2. sin cos

    Thisisthewavefunctionofastandingwave.Evidently,thereisno component,becausethewaveisnolongertravelling.Thisbecomesobviouswhenastandingwaveisobserved,wherethereisnosenseofmotionastheparticlesappeartooscillatearoundanode. Anodeoccursatapointofzeroamplitude.Inotherwords:

    sin sin 0.Thiscorrespondstowhen

    , .

    Anantinodeoccursatapointofmaximumdisplacement(2A).Inotherwords:

    sin 1 towhere .Thiscorresponds

    ,wherenisapositiveodd

    number. Evidently,theamplitudeofanindividualwaveisA,whiletheamplitudeof

    dergoingSHMis2. sin, theamplitudeofastandinganyparticleun while waveis2A.However,theamplitudeofanyparticleinastandingwaveisgivenbythesameequationasforSHM. Keytostandingwavesis tatpointsofmaximaldisplacement,thethefactthaparticlesaremomentarilystationary,whileatzerodisplacement,theparticleshavedifferinginstantaneousvelocitiesasssomeparticlesmoveupwhileothersmovedown. Forastandingwavetobeestablished,theendpointsmustbenodesabdfixed(hencehavezerodisplacement).Thiswillthenresultinasetofnormalmodes(oraseriesofantinodes),whereeachnormalmodereferstothenumberofantinodes.Therelationshipbetweennormalmodesandthewavelengthviewedis

    givenby

    ,wherenisthenthnormalmodeofoscillation.Since ,the

    naturalfrequencyisgivenby

    .Ifthestringisundertension,

    thiscanb by ,ifafreelyhangingweightisused.Inastandingwaveegiven ,thenumberofnodesisonegreaterthanthatofantinodesanditwillshowsymmetryaboutthemidpointofthestrinQuantisation

    g.

    Thisiswhereonlycertainfrequenciesofoscillationareallowed.Thisisparticularlycommonwhereboundaryconditionsmustbemet.

    esHarmonicSeriThenaturalfrequencycorrespondsto 1,andisthelowestfrequency.Thefrequenciesofthereaminingnaturalmodesareintegermultiplesofthefunamentalfrequency,andwillformaharmonicseries.Thenormalmodesmaybecalledharmonics,orresonantmodes.

    CompiledbyJohnTrieu2009 Page9

  • Physics1ATopic3Waves

    SoundWavespeedofSoundhespeedofsoundisdependentuponthepropertiesofthemediumitistravellingST

    through.Itcanbesummedupbytheequation

    .Inaliquidora

    gas,theBulkmodulus,orB,isgivenby

    .Thedensityofthematerialis

    givenby,whilethespeedofsoundinaliquidorgasisgivenby .

    Thespeedofsoundinasolidisdeterminedviadifferentmeans.Itutilises

    Youngsmodulus:

    .Again,the

    d isgivenby.Hencethevelocityofsoundinasolidisgivenbyensity .

    Thespeedof fthemediumsoundisalsodependentuponthetemperatureo ,

    especiallyingases.Forair,thisrelationshipisgivenby 3311

    ,

    whereuponthefrequency.

    mpressionsandrarefactionsinthemedium

    TcisthetemperatureinCelsius.Unliketransversewaves,thevelocitydoesnotdepend

    TravellingLongitudinalWavesSoundwavesarecausedbyaseriesofcoitistravellingthrough.Theseregionsmovewiththesamespeedassound.Theperceptionofsoundcanbeviathechangeinpressure(causedbythedifferencesinpressureofcompressionsandrarefactions),orbytheinterpretationofthepulses. EachelementofthemediummoveswithSHMparalleltothedirectionofpropagation.Consequently,thedisplacementofanyelementisgivenby:, cos ,wheresmaxisthemaximumpositionfromtheequilibriumposition,andisoftencalledthedisplacementamplitudeofthewave.

    Thevariationingaspressure,orisalsoperiodicandcanbegivenbytheequation

  • Physics1ATopic3Waves

    PowerandIntensityofSoundWavesIfapistonweretocompressagas,itwouldtransferenergytotheelementsofairinthetube.Thisenergywouldthenpropagateawayfromthepistonasasoundwave.

    kineticandpotentialenergy,togivethetotalUsingthis,itispossibletocalculatetheenergyofthewave, cos , . sin

    12

    1

    2. . . sin

    Byusing sin

    14.

    mentsundergoSHM,thepotentialenergyofonewavelengthisthesameasitskineticenergy.Hence, hetotalmechanicalenergyisgivenby:Astheele

    t

    12.

    enby:

    Therateofenergytransferisthepowerofthewaveandisgiv

    12. .

    inceS .Thisgivestheenergythatpassesagivenpointduringoneperiodof

    oscillation. Theintensityofawaveisdefinedasthepowerperunitarea.Itistherateatwhich nergytransportedbythewavepassesthroughaunitarea;thee

    In aseoftheir,thisisgivenby:thec . .Intermsofthepressure

    amplitude: . . .

    .

    Apointsourcewillemitsoun alldirections.Consequentdwavesequallyin ly,thepowerwillbeevendistributedinthisspherearoundthesource.

    .Evidently,thislawobey inversesquarelaw.sthe

    Theintensityofsoundwavesismeasuredindecibels.Whiletherangeofintensitiesdetectablebythehumanearareratherlarge,theyaredetectedaccordingtoalogarithmicsca isinfact10le,suchthatasoundperceivedtobetwiceasloudti sloud.Theintensitycanbedeterminedvia:mesa

    10 log

    I0isconsideredthereferenceintensity,andistakentobethethresholdofhearing.Itisequivalenttothefaintestdiscernableintensityofsoundinasilentroom.Itisequalto1 10/ .Atthislevel,theintensityis0dB.0dBdoesnotnecessarilymean

    Theloudnesherethe

    ncesound(oftentakentobe

    thereisnosound;justnosoundwhichcanbedetectedbythehumanear.Consequently,anegativevalueofdBispossible. sofasoundisoftenrelatedtoaphysicalmeasurementofthestrengthofasound.However,apsychologicalassessmentcanalsooccur,wbodycalibratesasoundbycomparingittoarefere1000Hz,whichisthethresholdofhearing).Generally,doublingtheloudnesswillcauseanincreaseof10dB.

    CompiledbyJohnTrieu2009 Page11

  • Physics1ATopic3Waves

    DopplerEffectThisistheapparentchangeinfrequency(orwavelength)ofawave,whichoccursbecauseofrelativemotionbetweenthesourceandtheobserver.Whentherelativespeedisgreaterthanthewavespeed,thefrequencyappearstoincrease.Conversely,whentherelativespeedislowerthanwavespeed,thefrequencyappearstodecrease. Ifthesourceisstationaryandtheobservermovestowardsthesource,thenthespeedofthewavesrelativetotheobserverwillbe .Consequently,theobservedfrequencywillbe:

    Wherefistheobservedfrequencyandvisthevelocityofthewavesandfisthefrequencyofthewaves.Consequently,ifthesourceisstationaryandtheobservermovesawayfromthesource,theobservedfrequencywillbe:

    Ifthesourceisinmotionandtheobserverisatrest,thenthedistancebetweenwavefrontswillchangeby

    .Hencethedistancebetweenwavefronts

    w omeillbec

    .Therefore:

    "

    "

    Mostimportantlyistha thewavespeedremainsunchanged.Wavespeedistpurelydependentuponthemediumandisnotaffectedbyanyrelativemotionofthesource. Whenthesourceismovingtowardstheobserver:

    "

    Whenthesourceismovingawayfromtheobserver:

    "

    Ifboththesourceandobserverismoving,then:

    eyto forachangeinfrequencytooccur.Ifatrainapproachesatconstantvelocity,thedistancebetweenwavefrontswillessentiallybethesameandtherefore,therewillbenochangeinfrequency.

    K theDopplerEffectisthepresenceofacceleration

    CompiledbyJohnTrieu2009 Page12

  • Physics1ATopic3Waves

    ShockWavesItispossibleforthespeedofthesourcetoexceedthespeedofthewave.Theresultisanenvelopeofthesewavefrontsintheformofacone,wheretheapexhalfangleisgivenbysin

    .ThisanglemayalsobecalledtheMachangle.

    TheMachnumberistheratioofthesourcespeedtothewavespeed.Itisgivenby

    .TherelationshipbetweentheMachnumberandMachangleisgiven

    by:sin

    .Whenthemachnumberisgreaterthan1,ashockwave

    willform hespeedisconsideredsupersonic.Theshockwavecarriesalargeandtamountofenergy,concentratedinthesurfaceofthecone.Consequently,thepres rdingtolocation.surevariesgreatlyacco Whenanaircraftflieswithconstantvelocityfromcoldairtowarmair,theMachnumberwilldecrease.ResonanceA miscapableofoscillatinginoneormorenormalmodes.Consequently,ifasysteperiodicforceisappliedtoasystem,theresultingmotionisgreatestwhenthefrequencyoftheappliedmotionisequaltooneofthenaturalfrequenciesofthesystem.Thesenaturalfrequenciesarereferredtoasresonancefrequencies,andissymbolisedby .Insuchsystems,themaximumamplitudeisonlylimitedbythefrictioninthesystem.StandingLongitudinalWavesinAirColumnsSuchwavescan esetupinaircolumnsasaresultofinterferencebetweenblongitudinalsoundwavestravellingintheoppositedirectiontoeachother.Thephaserelationshipbetweentheincidentandreflectedwavesdependonwhethertheendofthepipeisopenorclosed. Iftheendofthepipeisclosed,thenadisplacementnodeisformedattheendofthepipe(andsincedisplacementandpressureare90outofphase,itisapressureantinode).Thisisbecausethewallwillnotallowanyfurtherlongitudinalm intheair.Consequently,thereflectedwaveis180outofphasewiththeotionincidentwave,creatingastandingwave.Itisworthnotingthattheopenendisadisplacementantinode,whiletheclosedendremainsadisplacementnode.Thefirst

    resonancewillgivenby ,whilethefirstfundamentalfrequencyisgivenby

    .Consequentlyfrequenciesofhighermodesaregivenby:

    4 2 1 2 1

    CompiledbyJohnTrieu2009 Page13

  • Physics1ATopic3Waves

    Iftheendofthepipeisopen,thenattheendofthepipewillbeadisplacementantinode(orpressurenode)becausethecompressedairisfreetoexpandintotheatmosphere(andhencethereisnopressurevariation).Itisworthnotingthatbothendsofthetubearedisplacementantinodes.Thefirstresonance

    w ofillbe ,whilethefundamentalfrequencywillbe

    .Higher

    resonanceswillbeequalto . .

    .

    Inpractiseanantinodeformingattheopenendofatubewillbeslightlybeyondtheendofthetube.Thisadditionallengthmustbeaccountedforwhenconsidering

    resonance.Forthetubebelow,thefirstresonancewillbegivenby 2 .

    Anexampleofresonanceinaircolumnscanbegivenbytubespartiallyfilledwithwater.Whenatuningforkisbroughtnearthetopofthetube,andthelengthfromthetoptothewatercorrespondstoaresonancefrequencyofthepipe,thesoundwillbelouder.Usingtheselengths,itis ossibletocalculatethelengthswherepresonanceoccurs.

    CompiledbyJohnTrieu2009 Page14

  • Physics1ATopic3Waves

    StandingLongitudinalWavesinRodsIfarodisclampedinthemiddle,andstrokesareappliedtherod(andinthesamedirectionastherod),longitudinalwaveswillpassthroughit,causingtherodtooscillate.Theclamphoweverwillforcetheappearanceofadisplacementnode.Theendsoftherod,however,willbefreetovibrateandhencewillformdisplacementantinodes.

    Iftherodisclampedatapointotherthanthemiddle,othernormalmodesofoscillationcanbeproduced.Iftherodisclampedadistanceof

    fromoneendofthe

    rod(where

    ),thenthesecondnormalmodewillbeproduced.Thisconceptis

    utilisedonmusicalinstrumentssuchasxylophonesandchimes.StandingWaveinMembranes

    circularface resultingsoundwillnotbeharmonic,sincethestandingwaveshavefrequencieswhicharenotintegermultiples.Thefundament

    Twodimensionaloscillationscanbesetupinaflexiblemembranestretchedovera.The

    alfrequencywill

    SpatialandTemporalInterference

    containonenodalcurve.

    Spatialinterferenceiswhentheamplitudeoftheoscillationinamediumvarieswiththepositioninspaceoftheelement,suchaswithstandingwaves.Temporalinterferenceiswhenthewavesareperiodicallyinandoutofphase.Consequently,

    eenconstructiveanddestructiveinterference,thereisatemporalalternationbetwsuchasinbeats.

    CompiledbyJohnTrieu2009 Page15

  • Physics1ATopic3Waves

    Beatstemporalinterferencewilloccurwhentheinterferingwavehaveslightlydifferentequencies.Beatingistheperiodicvariationinamplitudeatagivenpointduetotheuperpositionoftwowaveshavingslightlydifferentfrequencies.

    Afrs . cos . cos2 . cos . cos2

    2 cos 2 2

    cos 2 2

    Consequently,thewavehasameanfrequencyof:

    andismodulatedbythe

    timevaryingamplitudeof2 cos 2 .

    Thebeatfrequencyisthenumberofamplitudemaximapersecond.Itoccurs

    whencos 2 1.Consequently,itisthe ifferencebetweenthed

    frequenciesoftwosources,givenby | |,althoughthehumanearcano tectabeatfrequencyofupto20beatspersecond.nlyde

    Thewavepatternsproducedbymusicalinstrumentsaretheresultofthesuperpositioningofvariousharmonics.Thehumanperceptiveresponseassociatedwiththesemixturesisthequalityortimbreofthesound.Forinstance,atuningforkproducesasinusoidalpattern:

    CompiledbyJohnTrieu2009 Page16

  • Physics1ATopic3Waves

    CompiledbyJohnTrieu2009 Page17

    Thesamenoteonaflutesoundsdifferently,giventhesecondharmonicisverystrongandthefourthissimilarinstrengthtothefirst:

    Whenawavepatternisperiodic,itcanbecloselyapproximatedbyacombinationofsinusoidalwaveswhichformaharmonicseries.ThistechniqueisdescribedbyFouriersTheorem,andutilisestheFourierSeries.heseriesismadeupofoddnumberedharmonicsandisgivenby:T

    sin2 cos2

    Where

    and n n

    andA andB aretheamplitudesofthewaves.

    PHYS1121_Topic 1_MechanicsPHYS1121_Topic 2_Thermal PhysicsPHYS1121_Topic 3_Waves