PHY 7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

18
10/31/2012 PHY 711 Fall 2012 -- Lecture 27 1 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 27: Introduction to hydrodynamics 1.Motivation for topic 2.Newton’s laws for fluids 3.Conservation relations

description

PHY 7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 27: Introduction to hydrodynamics Motivation for topic Newton’s laws for fluids Conservation relations. Motivation - PowerPoint PPT Presentation

Transcript of PHY 7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

Page 1: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 110/31/2012

PHY 711 Classical Mechanics and Mathematical Methods

10-10:50 AM MWF Olin 103

Plan for Lecture 27:

Introduction to hydrodynamics

1. Motivation for topic

2. Newton’s laws for fluids

3. Conservation relations

Page 2: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 210/31/2012

Page 3: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 310/31/2012

Page 4: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 410/31/2012

Page 5: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 510/31/2012

Motivation1. Natural progression from strings, membranes,

fluids; description of 1, 2, and 3 dimensional continua

2. Interesting and technologically important phenomena associated with fluids

Plan3. Newton’s laws for fluids4. Continuity equation5. Stress tensor6. Energy relations7. Bernoulli’s theorem8. Various examples9. Sound waves

Page 6: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 610/31/2012

Newton’s equations for fluids Use Lagrange formulation; following “particles” of fluid

pressureapplied

dt

d

dVm

m

FFF

va

Fa

(x,y,z,t)

p(x,y,z,t)

(x,y,z,t)

v Velocity

Pressure

Density :Variables

Page 7: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 710/31/2012

p(x) p(x+dx)

dVx

p

dxdydzdx

zyxpzydxxp

dydzzyxpzydxxpF xpressure

),,(),,(

),,(),,(

Page 8: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 810/31/2012

pdt

d

pdVdVdt

ddV

m

applied

applied

pressureapplied

fv

fv

FFa

Newton’s equations for fluids -- continued

Page 9: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 910/31/2012

tdt

d

tv

zv

yv

xdt

d

tdt

dz

zdt

dy

ydt

dx

xdt

d

tzyx

zyx

vvv

v

vvvvv

vvvvv

vv ,,,

:on termaccelerati of analysis Detailed

vvvvvvv

2

1

: thatNote

zyx vz

vy

vx

Page 10: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1010/31/2012

pv

t

pt

pdt

d

applied

applied

applied

fvvv

fv

vvvv

fv

221

2

1

Newton’s equations for fluids -- continued

Page 11: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1110/31/2012

Continuity equation:

equation continuity of

form ealternativ 0

:Consider

0

0

v

v

vv

v

dt

dtdt

dt

t

Page 12: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1210/31/2012

Solution of Euler’s equation for fluids

0221

221

tvU

p

pUv

t

fluid ibleincompress (constant) 3.

force applied veconservati .2

flow" alirrotation" 0 .1

:nsrestrictio following heConsider t

Uappliedf

v

v

p

vt applied

fvvv 2

21

Page 13: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1310/31/2012

Bernoulli’s integral of Euler’s equation

theoremsBernoulli' 0

)(),(),( where

)(

:spaceover gIntegratin

0

221

221

221

tvU

p

tCtt

tCt

vUp

tvU

p

rrv

Page 14: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1410/31/2012

Examples of Bernoulli’s theorem

constant

0 assuming form; Modified

0

221

221

vUp

t

tvU

p

1

2222

12

2212

11

1

1

21

21

0

vUp

vUp

v

ghUU

ppp atm

Page 15: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1510/31/2012

Examples of Bernoulli’s theorem -- continued

1

22

221

222

121

11

1

21

21

0

vUp

vUp

v

ghUU

ppp atm

ghv 22

Page 16: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1610/31/2012

Examples of Bernoulli’s theorem -- continued

constant221 vU

p

21

222

12

2212

11

1

21

21

21

equation continuity

vUp

vUp

avAv

UU

pppA

Fp atmatm

Page 17: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1710/31/2012

Examples of Bernoulli’s theorem -- continued

constant221 vU

p

21

22

22

2

1

/2

12

Aa

AFv

A

a v

A

F

Page 18: PHY  7 11 Classical Mechanics and Mathematical Methods 10-10:50 AM  MWF  Olin 103

PHY 711 Fall 2012 -- Lecture 27 1810/31/2012

Examples of Bernoulli’s theorem – continued Approximate explanation of airplane lift

Cross section view of airplane wing http://en.wikipedia.org/wiki/Lift_%28force%29

1

2

22

212

112

222

12

2212

11

1

21

vvpp

vUp

vUp

UU