phương pháp tính tích phân

21
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN GV Vũ SMinh - Email: [email protected] - www.mathvn.com 1 Chuyªn ®Ò 1: C¸c ph−¬ng ph¸p tÝnh tÝch ph©n C¸c ph−¬ng ph¸p tÝnh tÝch ph©n C¸c ph−¬ng ph¸p tÝnh tÝch ph©n C¸c ph−¬ng ph¸p tÝnh tÝch ph©n Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y: +) Loi 1: TÝch ph©n cña hμm sè ®a thøc ph©n thøc h÷u tû. +) Loi 2: TÝch ph©n cña hμm sè chøa c¨n thøc +) Loi 3: TÝch ph©n cña hμm sè l−îng gi¸c +) Loi 4: TÝch ph©n cña hμm sè mò vμ logarit §èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau: I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n vμ ¸p dông ®−îc ) a ( F ) b ( F ) x ( F dx ) x ( f b a b a - = = +) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh: 1. - = 2 1 3 2 dx x x 2 x I ta cã 1 2 ln ) 2 1 (ln ) 1 2 (ln x 2 x ln dx ) x 2 x 1 ( I 2 1 2 1 2 - = + - + = + = - = 2. + + + + - = 2 e 1 dx x 4 x 3 x 2 J ( 29 + + - = + - = + - = - 2 2 e 1 2 e 1 2 / 1 7 e 4 e 3 x ln 4 x 3 x 4 dx x 4 3 x 2 3. - - = 8 1 3 2 3 5 dx x 3 1 x 3 x 4 K = - - = - - = - 8 1 8 1 3 3 4 2 3 / 2 3 / 1 4 207 x x 4 3 x 3 4 dx x 3 1 x x 3 4 +) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c VÝ dô 2. TÝnh: 1. - = 2 / 2 / xdx 5 cos x 3 cos I π π π π π π ( 29 0 8 x 8 sin 2 x 2 sin 2 1 dx x 8 cos x 2 cos 2 1 2 / 2 / 2 / 2 / = + = + = - - π π π π 2. - = 2 / 2 / xdx 7 sin x 2 sin J π π π π π π ( 29 45 4 9 x 9 sin 5 x 5 sin 2 1 dx x 9 cos ) x 5 cos( 2 1 2 / 2 / 2 / 2 / = - = - - = - - π π π π 3. - = 2 / 2 / xdx 7 sin x 3 cos K π π π π π π ( 29 0 10 x 10 cos 4 x 4 cos 2 1 dx x 10 sin x 4 sin 2 1 xdx 3 cos x 7 sin 2 / 2 / 2 / 2 / 2 / 2 / = + - = + = = - - - π π π π π π 4. = π π π 0 2 0 xdx cos x 2 sin H = - - = + = π π 0 0 0 x 4 cos 16 1 x 2 cos 4 1 dx 2 x 2 cos 1 x 2 sin hoÆc biÕn ®æi = π π π 0 2 xdx cos x 2 sin H = - - = + = π π 0 0 0 x 4 cos 16 1 x 2 cos 4 1 dx 2 x 2 cos 1 x 2 sin 5. + + + + + + + + + + + + = 2 / 6 / dx x cos x sin x 2 cos x 2 sin 1 G π π π π π π ( 29 1 x sin 2 xdx cos 2 dx x cos x sin x sin x cos ) x cos x (sin 2 / 6 / 2 / 6 / 2 / 6 / 2 2 2 - = - = = + - + + = π π π π π π 6. = 2 / 0 4 xdx sin E π π π ( 29 16 3 x 2 sin 4 x 4 sin x 3 8 1 dx x 2 cos 4 x 4 cos 3 8 1 dx 2 x 2 cos 1 2 / 0 2 / 0 2 / 0 2 π π π π = - + = - + = - = 7. = 4 / 0 2 xdx tan F π π π ( 29 4 4 x x tan dx 1 x cos 1 4 / 0 4 / 0 2 π π π - = - = - = . §Ò xuÊt: = 2 / 4 / 2 1 xdx cot F π π π π π π = 4 / 0 4 2 xdx tan F π π π +) BiÕn ®æi biÓu thøc ë ngoμi vi ph©n vμo trong vi ph©n VÝ dô 3. TÝnh: 1. + + + + = 1 0 3 dx ) 1 x 2 ( I 10 4 ) 1 x 2 ( 2 1 ) 1 x 2 ( d ) 1 x 2 ( 2 1 1 0 4 1 0 3 = + = + + = 2. - = 2 1 3 dx ) 1 x 2 ( 1 J 0 ) 1 x 2 ( 1 4 1 2 ) 1 x 2 ( 2 1 ) 1 x 2 ( d ) 1 x 2 ( 2 1 1 0 2 1 0 2 2 1 3 = - - = - + = - - = - -

description

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 1 1 xdx3cosx7sin www.MATHVN.com xdxtanF x2cos1 x2sin xdxcotF 33 423/23/1 xdxtanF xdxsinE CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN =   =   =   xsinxcos)xcosx(sin xdx7sinx3cosK xdx5cosx3cosI xdx7sinx2sinJ ++++−−−− ==== ++++==== +) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh: +) BiÕn ®æi biÓu thøc ë ngoµi vi ph©n vµo trong vi ph©n VÝ dô 3. TÝnh: =   16

Transcript of phương pháp tính tích phân

Page 1: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 1

Chuyªn ®Ò 1: C¸c ph−¬ng ph¸p tÝnh tÝch ph©nC¸c ph−¬ng ph¸p tÝnh tÝch ph©nC¸c ph−¬ng ph¸p tÝnh tÝch ph©nC¸c ph−¬ng ph¸p tÝnh tÝch ph©n Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y:

+) Loại 1: TÝch ph©n cña hµm sè ®a thøc ph©n thøc h÷u tû. +) Loại 2: TÝch ph©n cña hµm sè chøa c¨n thøc +) Loại 3: TÝch ph©n cña hµm sè l−îng gi¸c +) Loại 4: TÝch ph©n cña hµm sè mò vµ logarit

§èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau: I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp

Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n vµ ¸p dông ®−îc )a(F)b(F)x(Fdx)x(fb

a

b

a

−−−−========∫∫∫∫

+) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh:

1. ∫∫∫∫−−−−====

2

13

2

dxx

x2xI ta cã 12ln)21(ln)12(ln

x

2xlndx)

x

2

x

1(I

2

1

2

1

2−=+−+=

+=−= ∫

2. ∫∫∫∫++++−−−−====

2e

1

dxx

4x3x2J ( )∫ ++−=+−=

+−= −

22e

1

2e

1

2/1 7e4e3xln4x3x4dxx

43x2

3. ∫∫∫∫−−−−−−−−====

8

13 2

3 5

dxx3

1x3x4K ∫ =

−−=

−−= −8

1

8

1

33 423/23/1

4

207xx

4

3x

3

4dxx

3

1xx

3

4

+) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c VÝ dô 2. TÝnh:

1. ∫∫∫∫−−−−

====2/

2/

xdx5cosx3cosIππππ

ππππ

( ) 08

x8sin

2

x2sin

2

1dxx8cosx2cos

2

12/

2/

2/

2/

=

+=+= ∫− −

π

π

π

π

2. ∫∫∫∫−−−−

====2/

2/

xdx7sinx2sinJππππ

ππππ

( )45

4

9

x9sin

5

x5sin

2

1dxx9cos)x5cos(

2

12/

2/

2/

2/

=

−=−−= ∫− −

π

π

π

π

3. ∫∫∫∫−−−−

====2/

2/

xdx7sinx3cosKππππ

ππππ

( ) 010

x10cos

4

x4cos

2

1dxx10sinx4sin

2

1xdx3cosx7sin

2/

2/

2/

2/

2/

2/

=

+−=+== ∫∫− −−

π

π

π

π

π

π

4. ∫∫∫∫====ππππ

0

20 xdxcosx2sinH ∫ =

−−=+=π π

0 0

0x4cos16

1x2cos

4

1dx

2

x2cos1x2sin hoÆc biÕn ®æi

∫∫∫∫====ππππ

0

2 xdxcosx2sinH ∫ =

−−=+=π π

0 0

0x4cos16

1x2cos

4

1dx

2

x2cos1x2sin

5. ∫∫∫∫ ++++++++++++====

2/

6/

dxxcosxsin

x2cosx2sin1G

ππππ

ππππ

( ) 1xsin2xdxcos2dxxcosxsin

xsinxcos)xcosx(sin2/

6/

2/

6/

2/

6/

222

−=−==+

−++= ∫∫π

π

π

π

π

π

6. ∫∫∫∫====2/

0

4 xdxsinEππππ

( )16

3x2sin

4

x4sinx3

8

1dxx2cos4x4cos3

8

1dx

2

x2cos12/

0

2/

0

2/

0

2 ππππ

=

−+=−+=

−= ∫∫

7. ∫∫∫∫====4/

0

2 xdxtanFππππ

( )4

4xxtandx1

xcos

1 4/

0

4/

0

2

πππ

−=−=

−= ∫ . §Ò xuÊt: ∫∫∫∫====2/

4/

21 xdxcotF

ππππ

ππππ

∫∫∫∫====4/

0

42 xdxtanF

ππππ

+) BiÕn ®æi biÓu thøc ë ngoµi vi ph©n vµo trong vi ph©n VÝ dô 3. TÝnh:

1. ∫∫∫∫ ++++====1

0

3dx)1x2(I 104

)1x2(

2

1)1x2(d)1x2(

2

11

0

41

0

3 =+=++= ∫

2. ∫∫∫∫ −−−−====

2

13

dx)1x2(

1J 0

)1x2(

1

4

1

2

)1x2(

2

1)1x2(d)1x2(

2

11

02

1

0

22

1

3 =−

−=−+=−−=

−−∫

Page 2: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 2

3. ∫∫∫∫ −−−−====3/7

1

dx3x3K9

16)3x3(

9

2)3x3(d)3x3(

3

13/7

1

3

3/7

1

2/1 =−=−−= ∫

4. ∫∫∫∫ −−−−====

4

0 x325

dxH

3

13210)x325(

3

2)x325(d)x325(

3

11

0

2/1

4

0

2/1 −=−−=−−−= ∫−

5. ∫∫∫∫ −−−−++++++++====

2

1

dx1x1x

1G

3

123dx)1x1x(

2

1dx

)1x()1x(

1x1x2

1

2

1

−−=

−−+=

+−−−−+= ∫ ∫

(Nh©n c¶ tö vµ mÉu víi bt liªn hîp cña mÉu sè)

§Ò xuÊt C)cax()bax()cb(a

1dx

caxbax

1G 33

1 ++++

++++++++++++

−−−−====

++++++++++++==== ∫∫∫∫ víi cb;0a ≠≠

6. ∫∫∫∫ −−−−====1

0

dxx1xP ∫ ∫∫ =−+−−−−=−+−=1

0

1

0

1

05

4dxx1)x1(dx1)1x(dxx1)11x(

7. ∫∫∫∫−−−−====

1

0

x1 xdxeQ2

= 1ee)x1(de2

1 1

0

x1

1

0

2x1 22

−=−=−− −−∫

§Ò xuÊt 15

264dxx1xQ

1

0

231

−−−−====++++==== ∫∫∫∫ HD ®−a x vµo trong vi ph©n vµ thªm bít (x2 + 1 - 1).

VÝ dô 4. TÝnh:

1. 0dx)x2sin3x3cos2(I0

1 ====++++==== ∫∫∫∫ππππ

; 41

xdxcosxsinI2/

0

32 ======== ∫∫∫∫

ππππ

vµ 1exdxsineI2/

0

xcos3 −−−−======== ∫∫∫∫

ππππ

2. 2lnxdxtanJ4/

0

1 ======== ∫∫∫∫ππππ

; 2lnxdxcotJ2/

6/

2 ======== ∫∫∫∫ππππ

ππππ

vµ 2ln32

dxxcos31

xsinJ

4/

0

3 ====++++

==== ∫∫∫∫ππππ

(®−a sinx, cosx vµo trong vi ph©n)

3. 1cos1dxx

)xsin(lnK

e

1

1 −−−−======== ∫∫∫∫ ; 2cos1dxx

)xcos(lnK

2e

1

2 −−−−======== ∫∫∫∫ vµ 2dxxln1x

1K

3e

1

3 ====++++

==== ∫∫∫∫

{®−a 1/x vµo trong vi ph©n ®Ó ®−îc d(lnx)}

4. ∫∫∫∫ ++++====

3ln

1

x

x

1 dxe2

eH

e2

5lne2ln

3ln

1

x

+=+=

∫∫∫∫ ++++−−−−====

2ln

0

x

x

2 dxe1

e1H ∫ ∫∫ −=

+−=

+−+=

2ln

0

2ln

0

x

x2ln

0

x

xx

3ln22ln3dxe1

e2dxdx

e1

e2e1

∫∫∫∫ ++++====

2ln

0

x3 5e

dxH

7

12ln

5

15eln

5

1x

5

1

5e

dxe

5

1dx

5

1

5e

dx)e5e(

5

12ln

0

x

2ln

0

x

x2ln

0

2ln

0

x

xx

=

+−=+

−=+−+= ∫∫∫

∫∫∫∫ −−−−++++====

1

0

xx

x

4 ee

dxeH ∫

+=+=+

=1

0

21

0

x2x2

x2

2

1eln

2

11eln

2

1

1e

dxe

+) BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh ∫∫∫∫====b

a

dx)m,x(fI

- XÐt dÊu hµm sè f(x,m) trong ®o¹n [a; b] vµ chia [ ] ]b;c[...]c;c[]c;a[b;a n211 ∪∪∪= trªn mçi ®o¹n hµm sè f(x,m) gi÷ mét dÊu

- TÝnh ∫∫∫ +++=b

c

c

c

c

a n

2

1

1

dx)m,x(f...dx)m,x(fdx)m,x(fI

VÝ dô 5. TÝnh:

1. ∫∫∫∫ −−−−++++====2

0

2 dx3x2xI Ta xÐt pt: 3x1x0 32x x2 =∨=⇔=+ . B¶ng xÐt dÊu f(x)

Page 3: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 3

Suy ra 4dx)3x2x(dx)3x2x(dx3x2xdx3x2xI2

1

2

1

0

2

2

1

2

1

0

2 =−++−+−=−++−+= ∫∫∫∫

2. ∫∫∫∫−−−−

−−−−====1

3

3 dxxx4J tÝnh t−¬ng tù ta cã 16dxxx4dxxx4dxxx4J1

0

3

0

2

3

2

3

3 =−+−+−= ∫∫∫−

3. 2ln

14dx42K

3

0

x ++++====−−−−==== ∫∫∫∫

4. ∫∫∫∫ −−−−====ππππ2

0

1 dxx2cos1H 22dxxsin2dxxsin2dxxsin22

0

2

0

=+== ∫∫∫π

π

ππ

∫∫∫∫ −−−−====ππππ

0

2 dxx2sin1H

{ViÕt (1 – sin2x) vÒ b×nh ph−¬ng cña mét biÓu thøc råi khai c¨n}

22dxxcosxsindxxcosxsindxxcosxsindxxcosxsin2/3

4/3

4/3

4/

4/

00

=+++++=+= ∫∫∫∫π

π

π

π

ππ

II) Ph−¬ng ph¸p ®æi biÕn sè A - Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1:

Gi¶ sö cÇn tÝnh tÝch ph©n ∫=b

a

dx)x(fI ta thùc hiÖn c¸c b−íc sau:

- B−íc 1. §Æt x = u(t) - B−íc 2. LÊy vi ph©n dx = u’(t)dt vµ biÓu thÞ f(x)dx theo t vµ dt. Ch¼ng h¹n f(x)dx = g(t)dt - B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β

- B−íc 4. BiÕn ®æi ∫=β

α

dt)t(gI (tÝch ph©n nµy dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa)

C¸ch ®Æt ®æi biÕn d¹ng 1.

C¸ch ®Æt 1. NÕu hµm sè chøa 2x1−−−− th× ®Æt ]2/;2/[t;tsinx ππππππππ−−−−∈∈∈∈==== hoÆc ®Æt ];0[t;tcosx ππππ∈∈∈∈==== VÝ dô 1. TÝnh:

1. ∫∫∫∫−−−−====

1

2/2

2

2

dxx

x1A ta ®Æt ]2/;2/[t;tsinx ππ−∈= ⇒ dx = cost.dt; ®æi cËn khi x = 2 /2 th× t = 4/π ; khi x

= 1 th× t = 2/π . Khi ®ã 4

4dt.

tsin

tsin1dt.

tsin

tcosdt.tcos

tsin

tsin1A

2/

4/

2

22/

4/

2

22/

4/

2

2 ππ

π

π

π

π

π

−=−==−= ∫∫∫

2. ∫∫∫∫ −−−−====

1

02

2

dxx4

xB ta viÕt ∫ −

=1

02

2

dx)2/x(12

xB .

§Æt ];0[t;tcos)2/x( π∈= ⇒ tdtsin2dxtcos2x −=⇒=

§æi cËn suy ra ( )2

3

3dtt2cos12tdtcos4)tdtsin2(

tcos12

)tcos2(B

2/

3/

2/

3/

2

3/

2/2

2

−=+==−−

= ∫∫∫ππ

π

π

π

π

π

3. ∫∫∫∫ −−−−====1

0

22 dxx34xC Tr−íc hÕt ta viÕt ∫

−=

1

0

2

2 dx2

x.31x2C .

§Æt ]2/;2/[t;tsinx2

3 ππ−∈= ®−a tÝch ph©n vÒ d¹ng:

12

1

27

32dt

2

t4cos1

33

4tdtcostsin

33

16C

3/

0

3/

0

22 +=−== ∫∫πππ

Chó ý:

Page 4: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 4

- NÕu hµm sè chøa 0a,xa 2 >>>>−−−− th× ta viÕt 2

2

a

x1axa

−=− vµ ®Æt

∈=

−∈=

];0[t;tcosa

x

]2/;2/[t;tsina

x

π

ππ

- NÕu hµm sè chøa 0b,a,bxa 2 >>>>−−−− th× ta viÕt

2

2 xa

b1abxa

−=− vµ ®Æt

∈=

−∈=

];0[t;tcosxa

b

]2/;2/[t;tsinxa

b

π

ππ

VÝ dô 2. TÝnh:

1. ∫∫∫∫ −−−−====

2

3/22

dx1xx

1E {ViÕt tÝch ph©n vÒ d¹ng 2X1− }

ta viÕt ( )∫

−=

2

3/222

dxx/11x

1E vµ ®Æt [ ]2/;2/t;tsin

x

1 ππ−∈= suy ra 12

dtE3/

4/

ππ

π

== ∫

2. ∫∫∫∫−−−−====

3/22

3/2

3

2

dxx

4x3G {ViÕt tÝch ph©n vÒ d¹ng 2X1− }

ta viÕt ( )

∫−

=3/22

3/2

3

2

dxx

x3/21.x.3G vµ ®Æt [ ]2/;2/t;tsin

x3

2 ππ−∈= suy ra tÝch ph©n cã d¹ng

16

)336(3tdtcos

2

33G

3/

4/

2 −+== ∫ππ

π

{NÕu tÝch ph©n cã d¹ng bax2 − th× viÕt vÒ d¹ng 2X1− }

C¸ch ®Æt 2. NÕu tÝch ph©n cã chøa 2x1++++ hoÆc (((( ))))2x1++++ th× ta ®Æt (((( ))))2/;2/t;ttanx ππππππππ−−−−∈∈∈∈==== hoÆc ( )π;0t;tcotx ∈=

VÝ dô 3. TÝnh:

1. ∫∫∫∫ ++++====

3

3/1

2dx

x1

1M ta ®Æt ( )2/;2/t;ttanx ππ−∈= suy ra

6dtM3/

6/

ππ

π

== ∫

2. ∫∫∫∫ ++++====

3

122

dxx1.x

1N ta ®Æt ( )2/;2/t;ttanx ππ−∈= suy ra

3

3218dt

.tsin

tcosN

3/

4/

2

−== ∫π

π

3. ∫∫∫∫ ≠≠≠≠++++

====a

0

2220a;dx

)xa(

1P

ta viÕt ∫

+=

a

0

224

dx

)a

x(1a

1P vµ ®Æt ;ttan

a

x = ⇒3

4/

0

23 a4

2tdtcos

a

1P

+== ∫ππ

4. ∫∫∫∫ ++++++++====

1

0

2dx

1xx

1Q

ta viÕt ∫

++

=1

0

2dx

)2

1x(

3

21

1

3

4Q vµ ®Æt ( )2/;2/t;ttan

2

1x

3

2 ππ−∈=

+ ⇒9

3dt

2

3

3

4Q

1

0

π== ∫

Chó ý: NÕu gÆp tÝch ph©n chøa 2bxa ++++ hoÆc 2bxa ++++ th× ta viÕt:

+=+

2

2 xa

b1axba hoÆc

2

2 xa

b1abxa

+=+ vµ ta ®Æt ( )2/;2/t;ttanx

a

b ππ−∈=

Page 5: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 5

C¸ch ®Æt 3. NÕu tÝch ph©n cã chøa xaxa

++++−−−−

hoÆc xaxa

−−−−++++

th× ta ®Æt ta ®Æt ]2/;0[t;t2cosax ππππ∈∈∈∈==== vµ l−u ý vËn dông

=+

=−

tcos2t2cos1

tsin2t2cos12

2

VÝ dô 4. TÝnh:

1. ∫∫∫∫−−−−

>>>>−−−−++++====

0

a

0a;dxxaxa

I ta ®Æt ]2/;0[t;t2cosax π∈= suy ra ∫ −−+=

4/

2/

dt)t2sina2(t2cos1

t2cos1I

π

π4

4a

π−=

2. ∫∫∫∫ −−−−++++====

2/2

0

dxx1x1

J ta ®Æt ]2/;0[t;t2cosx π∈= suy ra ∫ −−+=

8/

4/

dt)t2sin2(t2cos1

t2cos1J

π

π

=

4

224tdtcos4J

4/

8/

2 −+== ∫ππ

π

{cã thÓ ®Æt tx1x1 ====

−−−−++++

suy rra tÝch ph©n J vÒ d¹ng tÝch ph©n cña hµm sè h÷u tû}

B - Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2:

Gi¶ sö cÇn tÝnh tÝch ph©n ∫∫∫∫====b

a

dx)x(fI ta thùc hiÖn c¸c b−íc sau:

- B−íc 1. §Æt t = v(x) - B−íc 2. LÊy vi ph©n dx = u’(t)dt vµ biÓu thÞ f(x)dx theo t vµ dt. Ch¼ng h¹n f(x)dx = g(t)dt - B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β

- B−íc 4. BiÕn ®æi ∫=β

α

dt)t(gI (tÝch ph©n nµy dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa)

C¸ch ®Æt ®æi biÕn d¹ng 2. C¸ch ®Æt 1. NÕu hµm sè chøa Èn ë mÉu th× ®Æt t = mÉu sè. VÝ dô 1. TÝnh:

1. ∫∫∫∫ −−−−====

2/

02

dxxcos4

x2sinI

ππππ

ta cã thÓ ®Æt t = 4 - cos2x suy ra 3

4ln

t

dtI

4

3

== ∫

2. ∫∫∫∫ ++++====

4/

0

22dx

xcos2xsin

x2sinJ

ππππ

®Æt xcos1xcos2xsint 222 +=+= suy ra ∫ ==2

2/34

3ln

t

dtJ

{cã thÓ h¹ bËc ®Ó biÕn ®æi tiÕp mÉu sè vÒ cos2x sau ®ã ®−a sin2x vµo trong vi ph©n}

§Ò xuÊt: ∫∫∫∫ ++++====

2/

0

22221 dxxcosbxsina

xcosxsinJ

ππππ

víi 0ba 22 >+

3. ∫∫∫∫ ++++====

2ln

0

xdx

5e

1K ta ®Æt 5et x += ⇒ 5tex −= ⇒ dtdxex = sau ®ã lµm xuÊt hiÖn trong tÝch ph©n biÓu

thøc dxex ⇒7

12ln

5

1

t

5tln

5

1

)5t(t

dt

)5e(e

dxeK

7

6

7

6

2ln

0

xx

x

=−=−

=+

= ∫∫

{Cã thÓ biÕn ®æi trùc tiÕp 7

12ln

5

1dx

5e

e

5

1dx

5e

5e

5

1dx

5e

e5e

5

1K

2ln

0

x

x2ln

0

x

x2ln

0

x

xx

=+

−++=

+−+= ∫∫∫ }

4. ∫∫∫∫ ++++−−−−++++====

2/

0

2dx

)4x2cosxsin2(

xcosx2sinH

ππππ

ta ®Æt 4x2cosxsin2t +−= ⇒21

2dt

t

1

2

1H

7

3

2== ∫

{®«I khi kh«ng ®Æt c¶ MS}

5. ∫∫∫∫ ++++====

2/

0

2

3

dxxcos1

xcosxsinG

ππππ

chó ý r»ng t¸ch mò 3 = 2 +1 ®Æt

xcos1t 2+= ⇒ 1txcos2 −= ⇒ dtxdxcosxsin2 −= khi ®ã: 2

2ln1)tlnt(

2

1dt

t

)1t(

2

1G

2

1

2

1

−=

−=−= ∫

Page 6: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 6

6. ∫ ++=

4/

0

dx2xcosxsin

x2cosM

ππππ

ta ®Æt 2xcosxsint ++= ⇒ dx)xsinx(cosdt −= l−u ý cos2x = (cosx+sinx)(cosx-sinx)

( )3

22ln12tln2t

t

dt)2t(dx

2xcosxsin

)xsinx)(cosxsinx(cosM

22

3

22

3

4/

0

++−=−=−=++

−+= ∫∫+

7. ∫ ++=

4/

03

dx)2xcosx(sin

x2cosN

ππππ

®Æt 2xcosxsint ++= suy ra

)21(2

1

9

2

3

1

9

1

22

1

)22(

1

t

1

t

1

t

dt)2t(N

2

22

3

22

323 +

−=+−+

−+

=

−=−= ∫+ +

§Ò xuÊt: ∫ +−=

4/

0

1 dx2xcosxsin

x2cosM

ππππ

vµ ∫ +−=

4/

031 dx

)2xcosx(sin

x2cosN

ππππ

8.

C¸ch ®Æt 2. NÕu hµm sè chøa c¨n thøc n )x(ϕϕϕϕ th× ®Æt n )x(t ϕϕϕϕ==== sau ®ã luü thõa 2 vÕ vµ lÊy vi ph©n 2 vÕ.

VÝ dô 1. TÝnh:

1. ∫∫∫∫ ++++++++−−−−====

1

0

dx1x32

3x4I ta ®Æt 1x3t += ⇒ ( )1t

3

1x 2 −= ⇒ tdt

3

2dx = khi ®ã ®−a tÝch ph©n vÒ d¹ng:

( )3

4ln

3

4

27

2dt

t2

6

9

2dt3t8t4

9

2dt

t2

t13t4

9

2I

2

1

2

1

2

2

1

3

−=+

−+−=+−= ∫∫∫

2. ∫ +=

7

03 2

3

dxx1

xJ ta ®Æt 3 2x1t += ⇒ 1tx 32 −= ⇒ dtt3xdx2 2= ⇒

20

141dt)tt(

2

3J

2

1

4 =−= ∫

3. ∫ +=

2

12

dxx1x

1K ta ®Æt 2x1t += ⇒ 1tx 22 −= ⇒ tdtxdx = ⇒

5

2

5

2

2 1t

1tln

2

1

t)1t(

tdtJ

+−=

−= ∫

4. ∫ +=

2

13

dxx1x

1H ta ®Æt 3x1t += ⇒ 1tx 23 −= ⇒ tdt2dxx3 2 = nh©n c¶ tö vµ mÉu sè víi x2 ta ®−îc:

2

12ln

3

2

1t

1tln

3

1

1t

dt

3

2

x1x

xdxH

3

2

3

2

2

2

132

+=+−=

−=

+= ∫∫

5. ∫ +

+=3

02

35

dx1x

x2xG ta ®Æt 2x1t += ⇒ 1tx 22 −= ⇒ tdtxdx = nhãm x2.x.(x2 +2) ta ®−îc:

5

26t

5

t

t

tdt)1t)(1t(dx

1x

x.x)2x(G

2

1

52

1

223

02

22

=

−=−+=

+

+= ∫∫

6. ∫− +++

=6

13

dx1x91x9

1M ta ®Æt 6 1x9t += ⇒ ( )1t

9

1x 6 −= ⇒ dtt

3

2dx 5= luü thõa bËc hai vµ bËc ba

ta cã:

+=+

−+−=+

=+

= ∫∫∫ 3

2ln

6

11

3

2dt)

1t

11tt(

3

2

1t

dtt

3

2

tt

dtt

3

2M

2

1

2

2

1

32

1

23

5

VÝ dô 2. TÝnh:

1. [§H.2005.A] ∫ ++=

2/

0

dxxcos31

xsinx2sinP

ππππ

ta ®Æt xcos31t += ⇒ )1t(3

1xcos 2 −= ⇒ tdt

3

2xdxsin −= nhãm

nh©n tö sinx ta cã: ∫ ++=

2/

0 xcos31

xdxsin)1xcos2(P

π

( )27

34t

3

t2

9

2dx1t2

9

22

1

32

1

2 =

+=+= ∫

Page 7: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 7

2. dx.xsin31

x2sinx3cosQ

2

0∫ +

+=

ππππ

ta ®Æt xsin31t += ⇒ )1t(3

1xsin 2 −= ⇒ tdt

3

2xdxcos = ¸p dông c«ng thøc

nh©n ®«i vµ nh©n 3 ta viÕt: dx.xsin31

xcosxsin2xcos3xcos4Q

2

0

3

∫ ++−=

π

xdxcos.xsin31

xsin23xsin442

0

2

∫ ++−−=

π

VËy ∫ −+−=2

1

24 dt)1t14t4(27

2Q

405

206tt

3

14t

5

4

27

22

1

35 =

−+−=

3. [§H.2006.A] ∫ +=

2

022

dxxsin4xcos

x2sinR

ππππ

ta ®Æt xsin31t 2+= ⇒ )1t(3

1xsin 22 −= ⇒

tdt3

2xdx2sin = . khi ®ã:

3

2t

3

2

t

tdt

3

2R

2

1

2

1

=== ∫

4. VÝ dô 3. TÝnh:

1. ∫+=

e

1

dxx

xln31xlnP

Ta ®Æt xln31t += ⇒ )1t(3

1xln 2 −= ⇒ tdt

3

2

x

dx = khi ®ã: ( )135

116dxtt

9

2P

2

1

4 =−= ∫

2. ∫ +−=

e

1

dxxln21x

xln23Q

Ta ®Æt xln21t += ⇒ )1t(2

1xln 2 −= ⇒ tdt

x

dx = . Khi ®ã:

3

1139

3

tt4dt)t4(

t

tdt)1t(3Q

3

1

32

1

2

2

1

2 −=

−=−=−−= ∫∫

3. ∫ +=

2ln2

2lnx 1e

dxR . Ta ®Æt 1et x += suy ra tdt2dxex = ⇒ ∫ −

++−=

−=

5

3

2 13

13.

15

15ln

1t

dt2R

4. ∫ +=

3

03 xe1

dxS . Ta ®Æt 3 xet = suy ra

1e

e2ln3

)1t(t

dx3S

e

1+

=+

= ∫

5. ∫ +−=

5ln

0x

xx

3e

dx1eeX

C¸ch ®Æt 3. NÕu hµm sè chøa c¸c ®¹i l−îng xsin , xcos vµ 2x

tan th× ta ®Æt 2x

tant = khi ®ã

2t1

t2xsin

+= ,

2

2

t1

t1xcos

+−=

VÝ dô 4. TÝnh:

1. dx.5xcos3xsin5

1Q

2/

0∫ ++

Ta ®Æt 2

xtant = ⇒

2t1

dt2dx

+= vµ

5

8ln

3

1

4t

1tln

3

1dt

4t5t

1Q

1

0

1

0

2=

++=

++= ∫

2. dx.2xcos

2

xtan

L3/

0∫ +

ta ®Æt 2

xtant = ⇒

2t1

dt2dx

+= vµ

9

10ln3tln

3t

tdt2L

3/1

0

2

3/1

0

2=+=

+= ∫

Page 8: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 8

3. ∫ ++=

4

0

dx1x2sinx2cos

x2cosV

π

ta ®Æt xtant = ⇒2t1

dtdx

+= vµ ∫∫∫ +

++

=+

+=1

0

2

1

0

2

1

0

2 )t1(2

tdt

)t1(2

dt

)t1(2

dt)t1(V

1

0

21 1tln

4

1V ++= ta tÝnh

8)t1(2

dtV

ytant1

0

21

π==

+= ∫ suy ra

8

2ln2dx

1x2sinx2cos

x2cosV

4

0

+=++

= ∫π

π

4. ∫ +−++=

4

0

22

2

dx1xsinx2sinxcos

xtan1N

π

ta viÕt ∫ +++=

4

0

2

dx1x2sinx2cos

xtan1N

π

vµ ®Æt

xtant = ⇒2t1

dtdx

+= suy ra

4

2ln231tlnt

2

t

2

1dt

1t

t1

2

1N

1

0

21

0

2 +=

+++=

++= ∫

5. [§H.2008.B] ∫ +++

−=

4

0

dx)xcosxsin1(2x2sin

4xsin

π

ta viÕt ( )

∫ +++−=

4

0

dx)xcosxsin1(2xcosxsin2

xcosxsin

2

1F

π

dùa

vµo mèi quan hÖ gi÷a xcosxsin + vµ xcosxsin ta ®Æt xcosxsint += ⇒ dx)xsinx(cosdt −= vµ

2

1txcosxsin

2 −= khi ®ã ∫∫ −+

=+

=++

−=++−

−=2

1

2

12

2

1

2 22

1

22

1

1t

1

2

1

1t2t

dt

2

1

)t1(21t

dt

2

1F

C¸ch ®Æt 4. Dùa vµo ®Æc ®iÓm hai cËn cña tÝch ph©n.

NÕu tÝch ph©n cã d¹ng ∫−

=a

a

dx)x(fI th× ta cã thÓ viÕt ∫∫ +=−

a

0

0

a

dx)x(fdx)x(fI ®Æt t = - x ®Ó biÕn ®æi ∫−

=0

a

1 dx)x(fI

NÕu tÝch ph©n cã d¹ng ∫=π

0

dx)x(fI th× ta cã thÓ ®Æt t = π - x

NÕu tÝch ph©n cã d¹ng ∫=π2

0

dx)x(fI th× ta cã thÓ ®Æt t = 2 π - x

NÕu tÝch ph©n cã d¹ng ∫=2/

0

dx)x(fIπ

th× ta cã thÓ ®Æt t = 2

π - x

NÕu tÝch ph©n cã d¹ng ∫=b

a

dx)x(fI th× ta cã thÓ ®Æt t = (a + b) - x

VÝ dô 4. TÝnh:

1. ∫−

=1

1

2008 xdxsinxI ta viÕt += ∫−

0

1

2008 xdxsinxI BAxdxsinx1

0

2008 +=∫ . Ta ®Æt t = -x th× A = - B. vËy I = 0.

2. ∫ +=

π

0

2dx

xcos1

xsinxJ ta ®Æt xt −= π khi ®ã ∫∫ +

−+

=ππ π

0

2

0

2dt

tcos1

tsintdt

tcos1

tsinJ ta ®æi biÕn tiÕp:

2dt

tcos1

tsinJ

2utantcos

0

21

πππ =====

+= ∫ vµ Jdt

tcos1

tsintJ

xt

0

22

−====

+= ∫

π

.VËy 4

JJ2

J22 ππ =⇒−=

C¸ch ®Æt 4. NÕu tÝch ph©n cã chøa 0a;cbxax2 >++ th× ta cã thÓ ®Æt cbxaxxat 2 ++=− sau ®ã tÝnh x theo t vµ tÝnh dx theo t vµ dt.{PhÐp thÕ ¬le} VÝ dô 5. TÝnh:

1. ∫ +−=

1

02 1xx

dxI ta ®Æt 1xxxt 2 +−=− ⇒

1t2

t1x

2

+−= ⇒ 3ln

1t2

dt2I

2

1

=−

= ∫

2. ∫ +−=

1

02 1x2x9

dxJ ta ®Æt 1x2x9x3t 2 +−=− ⇒

)1t3(2

1tx

2

−−= ⇒

2

126ln

3

1

1t3

dtJ

22

1

−=−

= ∫

III)Ph−¬ng ph¸p tÝch ph©n tõng phÇn

Page 9: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 9

-Gi¶ sö cÇn tÝnh tÝch ph©n ∫=b

a

dx)x(fI . Khi ®ã ta thùc hiÖn c¸c b−íc t×nh:

B−íc 1. ViÕt tÝch ph©n d−íi d¹ng: ∫∫ ==b

a

b

a

dx)x(h).x(gdx)x(fI

B−íc 2. §Æt

==

dx).x(hdv

)x(gu ⇒

=

=

∫ dx).x(hv

dx)x('gdu

B−íc 3. ¸p dông c«ng thøc: hay ∫∫ −=b

a

b

a

b

a

du.vv.udv.u

C¸c c¸ch ®Æt ®Ó tÝch ph©n tõng phÇn:

+C¸ch ®Æt 1. NÕu tÝch ph©n cã d¹ng ∫=b

a

dx.axsin).x(PI th× ta sÏ ®Æt

==

dx.axsindv

)x(Pu⇒

−=

=

a

axcosv

dx)x('Pdu

NÕu tÝch ph©n cã d¹ng ∫b

a

dx.axcos).x(P th× ta ®Æt

==

dx.axcosdv

)x(Pu⇒

=

=

a

axsinv

dx)x('Pdu

NÕu tÝch ph©n cã d¹ng ∫b

a

ax dx.e).x(P th× ta ®Æt

=

=

dx.edv

)x(Puax

=

=

a

ev

dx)x('Pduax

VÝ dô 5. TÝnh:

1. ∫ −=π

0

dx.x2sin).1x3(I ta ®Æt

=−=

dx.x2sindv

1x3u⇒

−=

=

2

x2cosv

dx3du⇒

2

3dx.x2cos

2

3

2

x2cos)1x3(I

00

πππ

−=+−−= ∫

2. ∫ +=2/

0

2 dx.xcos).1x(Jπ

ta ®Æt

=+=

dx.xcosdv

1xu 2

==

xsinv

xdx2du

⇒ 1

2

0

2/

0

2 J24

4dx.xsin..x2xsin)1x(J −+=−+= ∫

πππ

ta tÝnh ∫=2/

0

1 dx.xsin.xJπ

b»ng c¸ch ®Æt

==

dx.xsindv

xusau ®ã suy ra 1xdxcosxcosxJ

2/

0

2/

01 =+−= ∫π

π.VËy

4

42

4

4J

22 −=−+= ππ

3. ∫ +−=1

0

x32 dx.e).1xx(L ta ®Æt

=

+−=

dx.edv

1xxux3

2

⇒ 1

31

0

x31

0

x32 L3

1

3

1edx.e).1x2(

3

1e)1xx(

3

1L −−=−−+−= ∫

TÝnh tiÕp ∫ −=1

0

x31 dx.e).1x2(L ®Æt

=

−=

dx.edv

1x2ux3

⇒9

4e4L

3

1

−= suy ra 27

5e5L

3 −=

4. ∫=π

0

2 dx.)xsinx(M ta viÕt ∫∫∫ −=−==ππππ

00

2

00

2 xdx2cosx2

1

4

xdx.

2

x2cos1xdx.xsinxM

xÐt 0dx.x2cosxMxu

xdx2cosdv0

1 ===∫=

=

. vËy ta cã 4

M2π=

5. ∫=4/

0

2

dx.xsinMπ

ta ®æi biÕn xt = ®Ó ®−a ∫=2/

0

tdtsint2Mπ

b»ng c¸ch ®Æt

==

dt.tsindv

t2u⇒ 2M =

Page 10: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 10

+C¸ch ®Æt 2. NÕu tÝch ph©n cã d¹ng ∫=b

a

ax dx.bxsineI th× ta ®Æt

=

=

dx.edv

bxsinuax

=

=

a

ev

bxdxcosbduax

NÕu tÝch ph©n cã d¹ng ∫=b

a

ax dx.bxcoseI th× ta ®Æt

=

=

dx.edv

bxcosuax

=

−=

a

ev

bxdxsinbduax

VÝ dô 6. TÝnh:

1. ∫=2/

0

x2 dx.x3sin.eIπ

ta ®Æt

=

=

dxedv

x3sinux2

=

=

2

ev

xdx3cos3dux2

⇒ 1

0

x2

2/

0

x2

I2

3

2

edx.x3cose

2

3

2

ex3sinI −−=−= ∫

πππ

(*). Ta xÐt ∫=π

0

x21 dx.x3coseI vµ ®Æt

=

=

dxedv

x3cosux2

I2

3

2

1dx.x3sine

2

3

2

ex3cosI

0

x2

2/

0

x2

1 +=+−= ∫ππ

thay vµo (*) ta cã: ⇒

+−−= I2

3

2

1

2

3

2

eI

π

13

3e2I

+−=π

2. ∫=π

0

2x dx.)xsin.e(F ta viÕt ∫∫∫ −=−=πππ

0

x2

0

x2

0

x2 dx.x2cose2

1dx.e

2

1dx.

2

x2cos1eF

Ta xÐt 2

1edx.e

2

1F

2

0

x21

−== ∫ππ

. Sau hai lÇn tÝch ph©n tõng phÇn ta tÝnh ®−îc 4

1edx.x2cose

2

1F

2

0

x22

−== ∫ππ

.

VËy ta cã: 8

1edx.)xsin.e(F

2

0

2x −== ∫ππ

+C¸ch ®Æt 3. NÕu tÝch ph©n cã d¹ng [ ]∫=b

a

dx)x(Q.)x(PlnI th× ta ®Æt [ ]

==

dx).x(Qdv

)x(Plnu⇒

=

=

∫ dx)x(Qv

dx)x(P

)x('Pdu

VÝ dô 7. TÝnh:

1. ∫ −=5

2

dx)1xln(.xI ta ®Æt [ ]

=−=

dx.xdv

1xlnu⇒

=

−=

2

xv

dx1x

1du

2⇒ ∫ −

−−=5

2

25

2

2

dx2x2

x)1xln(

2

xI

4

272ln48 +=

2. ∫ ++=3

0

2 dx)x1xln(J ta ®Æt

=

++=

dxdv

x1xlnu 2

=+

=

xv

dxx1

1du

2 ⇒ 1)23ln(3J −+=

3. ∫=e

1

2 xdxln.xK ta ®Æt

==

xdxdv

xlnu 2

suy ra ∫−=e

1

e

1

22

xdxln.xxln2

xK . XÐt ∫=

e

1

1 xdxln.xK vµ ®Æt

==

xdxdv

xlnuth×

4

1eK

4

1eK

22

1

−=⇒+= .

4. ∫=2

1

5dx

x

xlnH ta ®Æt

=

=− dxxdv

xlnu5

suy ra 256

2ln415dxx

4

1xln

x4

1H

e

1

52

14

−=+−= ∫ − .

5. ∫=3/

6/

2dx

xcos

)xln(sinG

π

π

®Æt

=

=

dxxcos

1dv

)xln(sinu

2

==

xtanv

xdxcotdu⇒ ∫−=

3/

6/

3/

6/dx)xln(sinxtanI

π

π

π

π 6

2ln343ln33 π−−=

Page 11: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 11

6. dx)x(lnoscFe

1∫=π

®Æt

==

dxdv

)xcos(lnu⇒

=

−=

xv

dxx

)xsin(lndu

⇒ ∫+=π

πe

1

e

1dx)xsin(ln)xcos(lnxI (*). Ta xÐt

∫=πe

1

1 dx)xsin(lnF ®Æt

==

dxdv

)xsin(lnu⇒

=

=

xv

dxx

)xcos(lndu

⇒ Fdx)xcos(ln)xsin(lnxFe

1

e

11 −=−= ∫π

π

thay

vµo (*) ta cã: 2

1eFF1eF

+−=⇒−−−=π

π .

III)Ph−¬ng ph¸p t×m hÖ sè bÊt ®Þnh

A- Khi gÆp tÝch ph©n: ∫∫∫∫==== dx)x(Q)x(P

I víi P(x), Q(x) lµ c¸c ®a thøc cña x.

B−íc 1: NÕu bËc cña P(x) ≥ bËc cña Q(x) th× ta lÊy P(x) chia cho Q(x) ®−îc th−¬ng A(x) vµ d− R(x), tøc lµ P(x) = Q(x).A(x) + R(x), víi bËc R(x) < bËc Q(x).

Suy ra :)x(Q)x(R

)x(A)x(Q)x(P ++++==== ⇒ ∫∫∫∫∫∫∫∫∫∫∫∫ ++++==== dx

)x(Q)x(R

dx)x(Adx)x(Q)x(P

B−íc 2: Ta ®i tÝnh : ∫∫∫∫==== dx)x(Q)x(R

I , víi bËc R(x) < bËc Q(x).

Cã thÓ x¶y ra c¸c kh¶ n¨ng sau :

+Kh¶ n¨ng 1: Víi cbxax)x(Q 2 ++++++++==== ,( 0a ≠≠≠≠ ) th× bËc R(x) < 2 ⇒⇒⇒⇒ R(x) = M.x+N vµ cbxax

Nx.M)x(Q)x(R

2 ++++++++++++====

TH1 : Q(x) cã 2 nghiÖm x1, x2, tøc lµ: Q(x) = a(x – x1)(x – x2).

Chän h»ng sè A, B sao cho: 2121 xx

Bxx

A)xx)(xx(a

Nx.M)x(Q)x(R

−−−−++++

−−−−====

−−−−−−−−++++====

TH2 : Q(x) cã nghiÖm kÐp x0, tøc lµ: 20)xx(a)x(Q −−−−==== .

Chän h»ng sè A, B sao cho: 200

20 )xx(

Bxx

A)xx(a

Nx.M)x(Q)x(R

−−−−++++

−−−−====

−−−−++++====

TH3 : Q(x) v« nghiÖm. Chän h»ng sè A, B sao cho: B)x('Q.A)x(R ++++==== và )x(Q

B)x(Q

)x('Q.A)x(Q)x(R ++++====

+Kh¶ n¨ng 2: Víi dcxbxax)x(Q 23 ++++++++++++==== ,( 0≠a ) th× bËc R(x) < 3

TH1: Q(x) cã 3 nghiÖm .x,x,x 321 tøc lµ: )xx)(xx)(xx(a)x(Q 321 −−−−−−−−−−−−====

Chän h»ng sè A, B, C sao cho: 321321 xx

Cxx

Bxx

A)xx)(xx)(xx(a

)x(R)x(Q)x(R

−−−−++++

−−−−++++

−−−−====

−−−−−−−−−−−−====

TH2: Q(x) cã 1 n0 ®¬n 1x , 1 n0 kÐp 0x , tøc lµ: 201 )xx)(xx(a)x(Q −−−−−−−−====

Chän h»ng sè A, B, C sao cho: 2001

201 )xx(

Cxx

Bxx

A)xx)(xx(a

)x(R)x(Q)x(R

−−−−++++

−−−−++++

−−−−====

−−−−−−−−====

TH3: Q(x) cã mét nghiÖm 0x (béi 3), tøc lµ: 30)xx(a)x(Q −−−−====

Chän h»ng sè A, B, C sao cho: 30

200

30 )xx(

C)xx(

Bxx

A)xx(a

)x(R)x(Q)x(R

−−−−++++

−−−−++++

−−−−====

−−−−====

TH4: Q(x) cã ®óng mét nghiÖm ®¬n 1x , tøc lµ: )xax)(xx()x(Q 21 γγγγββββ ++++++++−−−−==== (trong ®ã 0a42 <<<<−−−−==== γγγγββββ∆∆∆∆ ).

Chän h»ng sè A, B, C sao cho: γγγγββββγγγγββββ ++++++++

++++++++−−−−

====++++++++−−−−

====xaxCBx

xxA

)xax)(xx()x(R

)x(Q)x(R

21

21

+Kh¶ n¨ng 3: Víi bËc )x(Q >3 th× th«ng th−êng ta gÆp Q(x) lµ c¸c biÓu thøc ®¬n gi¶n nh−: 1x4 ++++ ; 1xx 24 ++++±±±± ; 1x6 ++++ VÝ dô 1. TÝnh c¸c tÝch ph©n:

Page 12: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 12

1. ∫∫∫∫−−−−

++++−−−−++++++++====

0

12

2

dx2x3x

1xxI ta viÕt ∫

+−−+=

0

1

2dx

2x3x

1x41I vµ viÕt

2x

B

1x

A

2x3x

1x42 −

+−

=+−

−Sau ®ã chän ®−îc

A = -3; B = 7. Khi ®ã: ( ) 3ln72ln102xln71xln3xI0

1−=−+−−=

−.

2. ∫ ++=

1

0

2dx

1xx

xJ ta viÕt x = A(x2 + x + 1)’ + B suy ra A = 1/2; B = - 1/2. VËy 21 JJJ += víi

3ln2

1

1xx

)1xx(d

2

1J

1

0

2

2

1 =++++= ∫ vµ ∫∫

+

+

−=++

−=1

0

2

1

0

22

12

1x

3

2

dx

3

4.

2

1

1xx

dx

2

1J

Ta ®Æt utan2

1x

3

2 =

+ suy ra 9

3du

3

32J

3/

6/

2

ππ

π

=−= ∫ .

3. ∫ +=

3

1

3dx

x3x

1K ta viÕt

3x

cBx

x

A

x3x

123 +

++=+

sau ®ã chän ®−îc A = 1/3, B = - 1/3, C = 0. V× thÕ viÕt ®−îc

3ln6

1dx

)3x(3

xdx

x3

1K

3

1

2

3

1

=+

−= ∫∫ {V× ®−a ®−îc x vµo trong vi ph©n}.

4.

B – Khi gÆp tÝch ph©n ∫ ++=

β

α

dxxcosdxsinc

xcosbxsinaI (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ tøc lµ chän A, B sao cho:

dcosx)'B(csinxdcosx)A(csinx bcosx asinx +++=+ hoÆc ®Æt 2

xtant = ⇒

2t1

t2xsin

+=

2

2

t1

t1xcos

+−=

VÝ dô 1. TÝnh:

1. ∫ ++=

2/

0

dxxcosxsin

xcos5xsin3I

π

ta viÕt sinx)-B(cosxcosx)A(sinx cosx 53sinx ++=+ suy ra A = 4; B = 1.

Khi ®ã: ( ) ππ

ππ

2xcosxsinlnx4xcosxsin

)xcosx(sinddx4I

2/

0

2/

0

2/

0

=++=+++= ∫∫

2. ∫ ++=

2/

0

3dx

)xcosx(sin

xcosxsin3J

π

ta viÕt sinx)-B(cosxcosx)A(sinx cosx 3sinx ++=+ suy ra A = 2; B = -1.

Khi ®ã: 2)xcosx(sin2

1)

4xcot(

)xcosx(sin

)xcosx(sinddx

)xcosx(sin

2I

2/

0

2

2/

0

3

2/

0

2=

+++−=

++−

+= ∫∫

πππ π

C – Khi gÆp tÝch ph©n ∫ ++++=

β

α

dxnxcosdxsinc

mxcosbxsinaI (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ + C. Chän A, B,C sao cho:

Cn)'dcosxB(csinxn)dcosxA(csinx mbcosx asinx ++++++=++ hoÆc cã thÓ ®Æt

2

xtant = ⇒

2t1

t2xsin

+=

2

2

t1

t1xcos

+−=

VÝ dô 1. TÝnh:

1. ∫ +++−=

2/

0

dx5xcos3xsin4

7xcosxsin7I

π

ta viÕt C3sinx)-B(4cosx)5cosx3A(4sinx 7cosx7sinx ++++=+−

Khi ®ã A = 1; B = -1; C = 2 vµ ∫∫∫ +++

++++−=

2/

0

2/

0

2/

0

dx5xcos3xsin4

2dx

5xcos3xsin4

)5xcos3xsin4(ddxI

πππ

Page 13: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 13

XÐt ∫ ++=

2/

0

1 dx5xcos3xsin4

2I

π

®Æt 2

xtant = ⇒

2t1

t2xsin

+=

2

2

t1

t1xcos

+−= suy ra

3

1dt

)2t(

12I

1

0

21 =+

= ∫ . VËy ( )8

9ln

3

1

2I5xcos3xsin4lnxI 1

2/

0−+=+++−= ππ

V)Ph−¬ng ph¸p dïng tÝch ph©n liªn kÕt VÝ dô 1. TÝnh:

1. ∫ +=

2

0xcosxsin

xdxsinI

π

ta xÐt thªm tÝch ph©n thø hai: ∫ +=

2

0xcosxsin

xdxcosJ

π

Khi ®ã: 2

JIπ=+ (*).

MÆt kh¸c 0xcosxsin

)xcosx(sind

xcosxsin

dx)xcosx(sinJI

2

0

2

0

=++−=

+−=− ∫∫

ππ

(**). Gi¶I hÖ (*) vµ (**) suy ra I = J = 4

π.

2. dxxcosxsin

xsinI

2

0

nn

n

n ∫ +=

π

ta xÐt dxxcosxsin

xcosJ

2

0

nn

n

n ∫ +=

π

. Khi ®ã: 2

JI nn

π=+ (*)

MÆt kh¸c nÕu ®Æt x = 2

π- t th× n

2

0

nn

n2

0

nn

n

n Jdxxcosxsin

xcosdt

tcostsin

tcosI =

+=

+= ∫∫

ππ

(**). Tõ (*), (**) ta cã 4

I n

π=

3. dxxcosxsin

xsinI

2

0nn

n

n ∫ +=

π

t−¬ng tù xÐt dxxcosxsin

xcosJ

2

0nn

n

n ∫ +=

π

vµ suy ra 4

JI nn

π==

4. dxxcos3xsin

xsinE

6

0

2

∫ +=

π

vµ dxxcos3xsin

xcosF

6

0

2

∫ +=

π

ta cã 3ln4

1dx

xcos3xsin

1FE

6

0

=+

=+ ∫π

(*)

L¹i cã 31dx)xcos3x(sinF3E6

0

−=−=− ∫π

(**). Gi¶I hÖ (*), (**) ta ®−îc: 4

313ln

16

1E

−−= vµ

4

313ln

16

3F

−+= . Më réng tÝnh =−=+

= ∫ EFdxxcos3xsin

x2cosE

6

0

π

2

313ln

8

1 −+

§Ò xuÊt dxxcos3xsin

x2cosL

6

0∫ −

C¸c bµi to¸n t−¬ng tù.C¸c bµi to¸n t−¬ng tù.C¸c bµi to¸n t−¬ng tù.C¸c bµi to¸n t−¬ng tù. A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp

1. [§HNNI.98.A] ∫∫∫∫ ++++++++====

1

0x2

2x

e1

dx)e1(M

+ B×nh ph−¬ng vµ ph©n tÝch thµnh 2 ph©n sè ®¬n gi¶n. + BiÕt ®æi biÕn.

Gi¶i: ∫∫∫∫∫∫∫∫ ++++++++

++++++++====

1

0x2

x1

0x2

x2

e1

dxe2

e1

dxe1M ta tÝnh ∫∫∫∫ ++++

====1

0x2

x

1e1

dxe2M ®Æt (((( ))))2/;2/t,ttanex ππππππππ−−−−∈∈∈∈==== khi ®ã víi tan α =e vµ

∫ +=

α

π 4/

221tcos)ttan1(

tdttan2M =

2

e1ln

ttan1

1ln2tcosln2tdttan2

2

4/

24/4/

+=+

−=−=∫α

π

α

π

α

π

2. [§HTCKT.97] ∫ +

2

0

3

xcos1xdxsin3

ππππ

+

Gi¶i:

2. [§HTCKT.97] ∫ +

2

0

3

xcos1xdxsin3

ππππ

+

Gi¶i:

Page 14: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 14

2. [§HTCKT.97] ∫ +

2

0

3

xcos1xdxsin3

ππππ

+

Gi¶i:

2. [§HTCKT.97] ∫ +

2

0

3

xcos1xdxsin3

ππππ

+

Gi¶i:

1. [§HNNI.98.A] ∫ ++

1

0x2

2x

e1

dx)e1(

2. [§HTCKT.97] ∫ +

2

0

3

xcos1xdxsin3

ππππ

3. [§HBK.98] ∫ +2

0

44 dx)xcosx(sinx2cosππππ

4. [§HDL§.98] ∫ −++

2

1 1x1x

dx

5. ∫+

6

0

dx)

6xcos(.xcos

1

ππππ

ππππ

6. ∫+

2e

e

dxx

)xln(lnxln

7. [§HMá.00] ∫+

3

6

dx)

6xsin(xsin

1ππππ

ππππππππ

8. ∫3

0

4 xdx2sinxcosππππ

9. [§HNN.01] ∫ +

4

0

66dx

xcosxsin

x4sinππππ

10. [§HNNI.01] ∫2

4

4

6

dxxsinxcos

ππππ

ππππ

11. ∫3

4

4xdxtgππππ

ππππ

12. [C§GTVT.01] ∫−

+3

2

2 dx.x3x

13. [C§SPBN.00] ∫ +−3

0

2 dx4x4x

14. ∫ππππ

0

dxxsinxcos

15. ∫ −+3

6

22 dx2xgcotxtgππππ

ππππ

Page 15: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 15

16. ∫ +−3

0

23 dxxx2x

17. ∫−

−1

1

dxx4 §¸p: )35(2 −

18. ∫−

−1

1

dxxx 322

19. ( )∫−

−−+5

3

dx2x2x 8

20. ∫ −+

−+3

02

2

dx.2xx

1xx

21. ∫ +ππππ

0

dxx2cos22 4

22. ∫ −ππππ

0

dxx2sin1 22

23. ∫ +2/

0

dxxsin1ππππ

24

24. ∫ ∈−1

0

Ra;dxax

≤<+−

≤+−

1m0~2/1mm

0m~2/1m2

25. ∫ ∈++−2

1

2 Ra;dxax)1a(x 2a ≥ th× ®s: (3a – 5)/6;

1 < a < 2 th× ®s: (a-1)3/3 – (3a - 5)/6 a ≤ 1 th× ®s: (5 – 3a)/6

26. ∫ +

2

0

3

dxxcos1

xcosππππ

28. [§H.2005.D] ∫∫∫∫ ++++2

0

xsin xdxcos)xcose(ππππ

28. [§H.2003.D] ∫∫∫∫ −−−−2

0

2 dxxx

29. [§H.2003.B] ∫∫∫∫ ++++−−−−

4/

0

2

dxx2sin1xsin21

ππππ

29. (((( ))))dx.xcos.xsinxcosxsinM2

0

2266∫∫∫∫ −−−−++++====

ππππ

30. dx.xcos

xsinN

4

08

2

∫∫∫∫====

ππππ

31.

Page 16: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 16

B – Ph−¬ng ph¸p ®æi biÕn

1. [C§BN.01] ∫ +

1

0

32

3

dx)x1(

x HD ®Æt fsf

2. [PVB.01] ∫ −1

0

23 dx.x1x

3. ∫ +

3ln

0x 2e

dx

4. [C§XD.01] ∫ +

2

0

2 dxxcos1

x2sinππππ

5. [§HKTQD.97] ∫ −1

0

635 dx)x1(x §Ò xuÊt: ∫ −1

0

72 dx)x1(x

6. [§HQG.97.B] ∫ +

1

0 x1

dx

7. [§H.2004.A] ∫ −+

2

1 1x1

xdx

``8. [§H.2003.A] ∫ +

32

52 4xx

dx

9. [§HSPHN.00.B] ∫ −ππππ

0

222 dxxax

10. [§HBK.00] ∫ +

2ln

0x

x2

1e

dxe

11. ∫ +−+

23

14 2x58x

dx

12. ( )∫ +

2

02

dxxsin2

x2sin

ππππ

13. ∫4

0

3 xcos

dx

ππππ

14. ∫ ++

6

2

dx1x4x2

1

15. ∫ +3

0

25 dxx1x

16. ∫+

2e

e

dxx

)xln(lnxln

17. ∫+

4

2

dxx

1x

18. ∫ ++

+++1

022

23

dx1x)x1(

x101x3x10

Page 17: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 17

19. ∫ −

e

12

dxxln1x

1

20. ∫

+

e

1

dxxln1x

xln

21. ∫ +++

4

03

dx1x21x2

1

23. ∫ +

4

72 9x.x

dx

24. ∫ ++

7

2

dx.2xx

1

25. ( )∫ +

1

022x31

dx

26. [GTVT.00] ∫∫∫∫−−−−

−−−−++++

2

22

dxxsin4

xcosxππππ

ππππ

27. [§HAN.97] ∫∫∫∫ ++++

ππππ

0

2 xcos1xdxsinx

28. [§HLN.00] ∫∫∫∫ ++++++++

2

0

dxxcosxsin2

1ππππ

29. [§HH§.00] ∫∫∫∫ ++++

4

0

dxtgx11

ππππ

30. [§HVH.01] ∫∫∫∫ ++++

4

0

dxx2cosx2sin

xcosxsinππππ

31. [HVBCVT.98] ∫∫∫∫ ++++

2

0

2

3

xcos1xdxcosxsin

ππππ

32. ∫∫∫∫−−−−

++++====

1

122

dx)1x(

1I

33. [§HTN.01] ∫∫∫∫++++

++++−−−−++++

2)51(

124

2

dx1xx

1x

34. [§HTCKT.00] ∫∫∫∫ ++++++++

1

0

24 dx1xx

x

35. [HVKTQS.98] ∫∫∫∫−−−− ++++++++++++

1

12 )x1x1(

dx

36. [PVB¸o.01] ∫∫∫∫ −−−−1

0

23 dx.x1x

37. [§H.2004.B] ∫∫∫∫++++

e

1

dxx

xlnxln31

38. [§H.2005.A] ∫∫∫∫ ++++++++

2

0

dxxcos31

xsinx2sinππππ

Page 18: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 18

39. [§H.2006.A] ∫∫∫∫ ++++

2

022

dxxsin4xcos

x2sinππππ

40. [§H.2005.B] ∫∫∫∫ ++++

2

0

dxxcos1

xcosx2sinππππ

41. . [§H.2005.B] ∫∫∫∫ −−−−++++ −−−−

5ln

3lnxx 3e2e

dx

42. [§H.2003.A] ∫∫∫∫ ++++

32

52 4xx

dx

43. [§H.2004.A] ∫∫∫∫ −−−−++++

2

1

dx1x1

x

44. [§H.2008.A] ∫∫∫∫6/

0

4

dxx2cosxtan

ππππ

45. [§Ò thi thö §H] ∫∫∫∫ ++++

4/

066

dxxcosxsin

x4sinππππ

46. [§Ò thi thö §H] ∫∫∫∫

++++

++++

e

1

2 dx.xln.xxln1.x

1

47. [§Ò thi thö §H] ∫∫∫∫++++

4

0

1x2 dxe

48. [§Ò thi thö §H] ∫∫∫∫ ++++

2

03

dx)xsin1(2

x2sin

ππππ

HD: §Æt xsin1t ++++==== ⇒⇒⇒⇒81

t2

dt)1t(22

13

====−−−−

∫∫∫∫

49. ∫∫∫∫−−−−====

8

4

2

dxx

16xI

50. ∫∫∫∫++++++++−−−−====

4

2

dxx

1x1xJ

51. ∫∫∫∫ ++++++++

++++++++++++====1

022

23

dx1x)x1(

x101x3x10K

52. ∫∫∫∫−−−−

−−−− −−−−====

2ln

2lnx2

x

dxe1

eH

53. ∫∫∫∫ ++++====

3ln

0x2 1e

dxG

54. ∫∫∫∫ ++++++++====

2

0xcos3xsin53

dxF

ππππ

55. ∫∫∫∫ ++++−−−−==== 2

0 24

3

dx3xcos3xcos

xcosD

ππππ

56. ∫∫∫∫ ++++−−−−====

5ln

0x

xx

3e

dx1eeS

57. ∫∫∫∫ −−−−++++====

ππππ

ππππ2

xcosxsin2

dxT

Page 19: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 19

58. ∫∫∫∫ ++++====

4

72 9x.x

dxR

59. ∫∫∫∫ ++++++++====

7

2

dx.2xx

1E

60. ∫∫∫∫ ++++++++++++====

4

0

dx.1x21

1x2W

61. ∫∫∫∫ ++++====

2/

0xcos2

dxQ

ππππ

§Æt 2x

tant ==== th× 93

t)3(

dtQ

utan3t1

022

ππππ====================

++++==== ∫∫∫∫

62. ∫∫∫∫ ++++++++−−−−====

2

02 1x6x3

dxM

C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn

1. [§HC§.97] ∫∫∫∫ ++++1

0

x22 dxe)x1(

2. [§HTCKT.98] ∫∫∫∫ −−−−4

0

2 dx)1xcos2(xππππ

3. ∫∫∫∫ ++++2

0

23 dx)1xln(x vµ ∫∫∫∫10

0

2 xdxlgx

4. [PVB¸o.98] ∫∫∫∫e

1

2dx)xlnx(

5. [HVNH.98] ∫∫∫∫ππππ

0

2 xdxcosxsinx

6. [§HC§.00] ∫∫∫∫++++

2

12x

dx)1xln(

7. [§HTL.01] ∫∫∫∫ ++++4

0

dx)tgx1ln(ππππ

8. ∫∫∫∫2

0

2xdxxtgππππ

9. [§HYHN.01] ∫∫∫∫ −−−−3

2

2 dx.1x

10. [§Ò thi thö] ∫∫∫∫ −−−−2

1

2 dx)xx3ln(x

11. [§H.2007.D] ∫∫∫∫e

1

22 xdxlnx

12. [§H.2006.D] ∫∫∫∫ −−−−1

0

x2 dxe)2x(

13. ∫∫∫∫−−−−

++++++++====0

1

3x2 dx)1xe(xI

14. ∫∫∫∫++++====

2e

e

dxx

)xln(lnxlnJ

Page 20: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 20

15. ∫∫∫∫====ππππ

0

2dx)xsinx(K

16. ∫∫∫∫ ++++====

1

02

dx)1x2(sin

xH

17. ∫∫∫∫====4

0

3dx

xcos

xsin.xG

ππππ

18. ∫∫∫∫====2ln

0

x5 dxe.xF2

19. ∫∫∫∫ ++++++++====

4

1

dxxx

)1xln(D

20. ∫∫∫∫

++++

++++====

e

1

2 dxxlnxln1x

xlnS

21. ∫∫∫∫====2

2 4/

2 dx.xcosAππππ

ππππ

22. (((( ))))∫∫∫∫====ππππ

0

2x dxxcos.eP

23. dx.xsin.xU

2

0∫∫∫∫====ππππ

24. dx.xcos.xsin.xY 2

0∫∫∫∫====ππππ

25. ∫∫∫∫ ++++++++====

3/

0

xdxexcosxsin

xsin1T

ππππ

§Æt ====++++

++++==== dv;xcosxsin

xsin1u ..XÐt ∫∫∫∫ ++++

====3/

0

x1 dxe

xcos1xsin

Tππππ

vµ ®Æt tptp suy ra

3

excos1xsine

T33/

0

x ππππππππ

====++++

====

26. ∫∫∫∫ ++++====1

0

2 dxx1R §s: 2

)21ln(2 ++++++++

27. ∫∫∫∫ ++++====1

0

2 dx)1xln(xE §S: 21

2ln −−−−

28. ∫∫∫∫ ++++====2/

0

dx)xcos1ln(xcosWππππ

§s: 12

−−−−ππππ

29. ∫∫∫∫ ++++====

e

e/12

dx)1x(

xlnQ §s:

1ee2

++++

30. ∫∫∫∫ ++++++++====

2/

3/

dxxcos1xsinx

Mππππ

ππππ

ViÕt M = M1 + M2. Víi

23

lndxxcos1

xsinM

2/

3/

1 ====++++

==== ∫∫∫∫ππππ

ππππ

& ∫∫∫∫ ++++====

3/

6/

2 dxxcos1

xM

ππππ

ππππ

.

§Æt

++++====

====

dxxcos1

1dv

xu⇒

====

====

2x

cot2v

dxdu⇒ 4ln

3)323(

M 2 −−−−−−−−====

ππππ

VËy 83

ln3

)323(M ++++

−−−−====ππππ

Page 21: phương pháp tính tích phân

www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN

GV Vũ Sỹ Minh - Email: [email protected] - www.mathvn.com 21

31. ∫∫∫∫ ++++++++====

2/

6/

dxx2cos1x2sinx

Mππππ

ππππ

B – Ph−¬ng ph¸p hÖ sè bÊt ®Þnh

1. [§HYHN.00] ∫∫∫∫ ++++−−−−

2

12

2

12x7x

dxx

2. [§HNNI.00] ∫∫∫∫ ++++

2

1

3 dx)1x(x

1 vµ ∫∫∫∫ ++++

1

0

3dx

1x

3

3. [§HXD.98] ∫∫∫∫ ++++++++

4

0

dxxsin3xcos4

xsin2xcosππππ

4. [§HTM.00] ∫∫∫∫ ++++

2

0

3 dx)xcosx(sin

xsin4ππππ

5. [§HTN.98] ∫∫∫∫ ++++++++

1

0n nn x1)x1(

dx

6. ∫∫∫∫ ++++++++−−−−====

2

0

2

4

dx4x

1xxI

7. ∫∫∫∫ ++++++++++++====

1

03

2

dx1x

7x3x2J

8. ∫∫∫∫ ++++++++++++====

1

02

dx2x3x

5x4K

9. (((( ))))∫∫∫∫ −−−−−−−−====

1

022 4x3x

dxL

10. ∫∫∫∫ ++++++++−−−−====

2

02

4

dx.4x

1xxZ

D – Ph−¬ng ph¸p tÝch ph©n liªn kÕt

1. ∫∫∫∫ ++++

2

0

dxxcosxsin

xcosππππ

2. [§Ò thi thö] ∫∫∫∫++++

−−−−

++++−−−−====32

32

x

1x

3

4

dxex

1xI

2

HD: )()1

( xFx

F = . Suy ra

0)32

1()32( =

+−+= FFI

[§HTN.00] CMR: Zn ∈∈∈∈∀∀∀∀ , ta cã

0dx)nxxsin(sin2

0

====++++∫∫∫∫ππππ

[HVKTQS.01] ∫∫∫∫ ++++−−−−

b

0

22

2

dx)xa(

xa, 0b,a >>>>

[§HLN.01] ∫∫∫∫ ++++++++

1

0

2

x2

dx)1x(e)1x(