Photonic crystals (I) Bloch's theorem, photonic band structure, and energy flow

27
Photonic crystals (I) Bloch's theorem, photonic band structure, and energy flow Pi-Gang Luan & Wave Engineering L ab ( 欒欒欒 & 欒欒欒欒欒欒欒 ) Institute of Optical Sciences National Central University ( 欒欒欒欒欒欒欒欒欒欒欒 )

description

Pi-Gang Luan & Wave Engineering Lab ( 欒丕綱 & 波動工程實驗室 ) Institute of Optical Sciences National Central University ( 中央大學光電科學研究所 ). Photonic crystals (I) Bloch's theorem, photonic band structure, and energy flow. 1D Crystal. 3D Crystal. 2D Crystal. Photonic/Sonic Crystals. - PowerPoint PPT Presentation

Transcript of Photonic crystals (I) Bloch's theorem, photonic band structure, and energy flow

Page 1: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Photonic crystals (I) Bloch's theorem,

photonic band structure, and energy flow

Pi-Gang Luan & Wave Engineering Lab

( 欒丕綱 & 波動工程實驗室 )Institute of Optical Sciences

National Central University

( 中央大學光電科學研究所 )

Page 2: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Photonic/Sonic CrystalsPhotonic/Sonic Crystals

1D Crystal

2D Crystal

3D Crystal

Page 3: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

3D Phononic Crystal?

Page 4: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Photonic/Sonic Band Structure

Page 5: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

90

Applications

Page 6: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Photonic crystals as optical components

P. Halevi et.al.Appl. Phys. Lett.75, 2725 (1999)

See alsoSee alsoPhys. Rev. Lett. Phys. Rev. Lett. 8282, 7, 719 (1999)19 (1999)

Page 7: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Periodic function, Fourier Series and Reciprocal Lattice

: ( ) ( ) ( ), , : period f x a f x f x R R na a 1D periodic function

Try ( ) ( )exp( )G

f x C G iGxWe have exp( ) 1 exp( 2 )iGa i n

2 2, , ( ) expn

n

nG nb b f x C inbx

a a

0 0

1exp exp ( )exp

a a

mn nimbx inbx dx a C f x inbx dxa

0

1Or ( ) ( )exp

aC G f x iGx dx

a

Page 8: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

1 2

1 1 2 1 1 2

: ( ) ( ) ( ) ( )

, and : fundamental translation vectors

f f f f

n n

2D periodic function r a r a r r R

R a a a a

1 2(Primitive) Cell Area: | |cA a a

Page 9: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

1 2Try ( ) ( )exp( ) exp( ) exp( ) 1f C i i i G

r G G r G a G a

1 1 2 2Define 2 ; , 1,2i j ijn n i j G b b a b

1 1 2 2 1 2In a cell: ; 0 1, 0 1 r a a

1 2

1 2

1 2 1 1 2 2Thus ( ) ( , ) exp 2n nn n

f f C i n n

r

21 1 2 2

1 21 2

| ( ) ( ) |Using the fact:

| |c

d dd rd d

A

a a

a a

1 2

2

1 1

1 2 1 1 2 2 1 20 0

1We have ( ) ( )exp( )

Or ( , )exp 2

c cell

n n

C f i d rA

C f i n n d d

G r G r

Page 10: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

31Fourier Component: ( ) ( )exp( )

c cell

C f i d rV

G r G r

1 2 3Cell Volumn: | ( ) |cV a a a

1 1 2 2 3 3Reciprocal Lattice: , 2i j ijn n n G b b b a b

2 3 3 1 1 21 2 3RL Bases: 2 , 2 , 2

c c cV V V

a a a a a a

b b b

Fourier Expansion: ( ) ( )exp( )f C i G

r G G r

1 1 2 2 3 3: ( ) ( ), f f n n n 3D periodic function r r R R a a a

1 1 1

1 2 3 1 1 2 2 3 3 1 2 3

0 0 0

( ) ( , , )exp 2C f i n n n d d d G

1 1 2 2 3 3 1 2 3Point in a Unit Cell: , 0 , , 1 r a a a

Page 11: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Lattice Bases vs. Reciprocal Lattice Bases (2D)

Square Lattice

1

2

ˆ ˆ32

ˆ ˆ32

a

a

a x y

a x y

1

2

2 1ˆ ˆ

3

2 1ˆ ˆ

3

a

a

b x y

b x y

1

2

ˆ

ˆ

a

a

a x

a y1

2

a

a

b x

b y

Triangular Lattice

Page 12: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Binary System and Structure Factor (2D)

if region ( )

if region a

b

a

b

rr

r( ) ( )exp( )i

G

r G G r

2

2 2

2 2

1( ) ( )exp( )

1 1exp( ) exp( )

( )exp( ) exp( )

c cell

a bc ca b

a b b

c ca a b cell

i d rA

i d r i d rA A

i d r i d rA A

G r G r

G r G r

G r G r

( ) if ( )

(1 ) if a b

S

f f

G G 0G

G 0

2

region

1Structure factor: ( ) exp( )

Filling Fraction:

c a

a

c

S i d rA

Af

A

G G r

Page 13: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Example 1: Square Lattice, Circular Rods/Holes

2

0 0

0 020 0

21

12

1

1: ( ) exp( 'cos ) ' '

2 2' ( ') ' ( )

2 2( )

2

r

c

r Gr

c c

c c

S iGr d r drA

r J Gr dr xJ x dxA G A

J GrrGrJ Gr

G A A Gr

J Grf

Gr

Structure Factor G

1 0: exp( cos ) ( ) , ( ) ( )n inn

n

dix i J x e xJ x xJ x

dx

Identities

2

2

rf

a

2 2 2 2

1 2 1 2

24

rGr n n f n n

a

Page 14: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Example 2: Triangular Lattice, Circular Rods/Holes

1: ( ) 2J Gr

S fGr

Structure Factor G

1 2

1 3ˆ ˆ ˆ, ,

2 2a a

a x a x y

1 2

2 1 2 2ˆ ˆ ˆ,

3 3a a

b x y b y

2

1 2

2

2

2

2

| |

sin( / 3)

2

3

rf

r

a

r

a

a a

1 2

2

2 2 11

2 21 1 2 2

2 21 1 2 2

2 1 2 2ˆ ˆ ˆ

3 3

22

3

24

3

8

3

Gr n n ra a

n nrn

a

rn n n n

a

fn n n n

x y y

Page 15: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Example 3: Simple Cubic Lattice, Spheres

1 2

0 1

2

0

3

:

2( ) exp( 'cos ) cos ' '

4 sin( ')' '

'

sin( ) cos( )3

( )

r

c

r

c

S G iGr d r drV

Grr dr

V Gr

Gr Gr Grf

Gr

Structure Factor

2 1/ 3 2 2 2(6 ) x y zGr f n n n

3

3

4

3

sphere

c

Vf

V

r

a

1 2 3ˆ ˆ ˆ, ,a a a a x a y a z 1 2 3

2 2 2ˆ ˆ ˆ, ,

a a a

b x b y b z

Page 16: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Bloch’s Theorem and Brillouin zone

Bloch’s Theorem (Electron Systems):2

2: ( ) ( ) ( ) ( ), ( ) ( ) 2

V E V Vm

Eigenvalue problem r r r r r r R

: ( ) ( )exp( ), ( ) ( )

( )exp

u i u u

u i

k k k k

kG

Solution r r k r r r R

k First Brillouin Zone G G r

First Brillouin Zone

Page 17: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

3Try ( ) ( )exp( )d K C i r K K r

Here ( ) ( )exp( )V V i G

r G G r

2 23Thus we have ( ) ( ) ( ) exp( ) 0

2

KE C V C i d K

m

G

K G K G K r

22Since ( ) ( ) ( ) ( )

2V E

m r r r r

3

3

( ) ( ) exp ( )

( ) ( ) exp

V C i d K

V C i d K

G

G

G K K G r

G K G K r

2 2

Or ( ) ( ) ( ) 02

KE C V C

m

G

K G K G

3

. .

3

. .

3

. .

3

. .

3

. .

( ) ( ) exp ( )

( ) exp ( )

exp( ) ( ) exp( )

exp( ) ( )

( )

B Z

B Z

B Z

B Z

B Z

d K C i

d k C i

d k i C i

d k i u

d k

G G

G

G

k

k

r k G k G r

k G k G r

k r k G G r

k r r

r

Define

( ) ( )exp( )

( ) exp( ) ( )

u C i

i u

kG

k k

K k G

r k G G r

r k r r

Proving Bloch’s Theorem

Page 18: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Band Structure (Electron System)Band Structure (Electron System)

2 2

'

( )We have ( ) ( ') ( ') ( )

2C V C E C

m

k

G

k Gk G G G k G k G

2 2

' '

( )Difine ( )= ( '), ( ) ( )

2M V C C

m

GG GG G

k Gk G G k k G

' ''

So we have the eigenvalue equation

( ) ( )= ( ) ( )M C E C GG G GG

k k k k

'''

More explicitly:

( ) ( )= ( ) ( ),

: Band Index;

: Bloch Wave Vector

( ) : Energy (Hyper)Surfaces

n nn

n

M C E C

n

E

G GGGG

k k k k

k

k

Page 19: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

2-1 -1

2

( )1( ) ( ), ( ) ( )exp( )

( )n ic

k kG

kH r H r r G G r

r

( ) ( )exp ( )i k kG

H r h G k G r

Bloch’s Theorem and Photonic Band Structure

2

1' 2

'

( )( ') ' , = + , '= + 'n

c

G GG

kG G P P h h P k G P k G

22 2

1' ' ' 2

' ' 1 1

( )ˆ ˆ ˆ( ') ' , nh h h

c

G G G GG

kG G P e P e h e

Page 20: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Energy Flow in Photonic Crystal

*1Time averaged Poynting vector: ( ) Re ( ) ( )

2 S r E r H r

2 21Time averaged energy density: ( ) ( ) | ( ) | ( ) | ( ) |

4U r r E r r H r

Harmonic fields: ( , ) ( ) , ( , ) ( )i t i tt e t e E r E r H r H r

Bloch Eigenmodes: ( ) ( ) , ( ) ( )i ie e k r k rk k k kE r e r H r h r

ˆPhase velocity: | |

Group velocity:

( )Energy velocity:

( )

p

g

e gU

k

v kk

v

S rv v

r

See Sakoda

Page 21: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Frequency Contours

Square Lattice

Page 22: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Two-Dimensional Inhomogeneous Wave Systems

2

2 2

1

c t

( ), ( )c c r r

2

2 2

2

2 2

2

2 2

2

2 2

1, Acoustic wave in fluid

1ˆ, -polarized shear wave: =

1ˆ, E-polarized EM wave: .

1, H-polarized EM wa

t

p p

c t

u uz u

c t

E EE

c t

H H

c t

u z

E z

ˆve: .HH z

0cc

2 2

1 1( ) ,

( )e

e t tc c

rr

Classical Waves

Unified Treatment

Page 23: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Binary System, Harmonic Waves

2

2

( ) ( )

( ) ( ) ( )c

r r

r r r

1 2

1 21 2

| |

1 1

Bd Bd

Bd Bdn n

1 1 1, ,c k

, ,c k

Scattered waveIncident wave

2 2 2 21 10, 0.k k

(1)

(1)1 1 1

( , ) ( ) ( )

( , ) ( ) ( )

inn n n n

n

inn n n n

n

r A H kr B J kr e

r C H k r D J k r e

0nC

(1)1

(1) 11

1

( ) ( ) ( )

'( ) '( ) '( )

n n n n n n

n n n n n n

A H ka B J ka D J k a

kkA H ka B J ka D J k a

nnB i

(1) (1)

'( ) ( / ) ( ) '( / )

( ) '( / ) '( ) ( / )n n n n n

nn n n n

ghJ ka J ka h J ka J ka hA i

H ka J ka h ghH ka J ka h

(1) (1)

2 /( )

( ) '( / ) '( ) ( / )n

nn n n n

gh i kaD i

H ka J ka h ghH ka J ka h

Page 24: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Band Structure Calculation (2D, Scalar Wave)

2

2 2

( , ) 1 ( , )Wave Equation: 0

( ) ( ) ( )

t t

c t

r r

r r r

Harmonic wave: ( , ) ( )exp( )t i t r r

2

2

( ) ( )Thus

( ) ( ) ( )c

r r

r r r

1

12

Media Parameters:

( ) ( )exp( ),

( ) ( ) ( )

( )exp( )

i

c

i

G

G

r G G r

r r r

G G r

1 2or ( ) ( ) ( ) ( ) (*) k k kr r r r

(1 ) if 0( )

( ) ( ) if 0a b

a b

f f

S

GG

G G

(1 ) if 0( )

( ) ( ) if 0a b

a b

f f

S

GG

G G

Substitute ( ) ( )exp into Eq. (*)i k kG

r G k G r

Page 25: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

2

' '

We get ( ')( ) ( ') ( ') ( ') ( ') k k kG G

G G k G k G G G G G

2Generalized Eigenvalue Problem: k k k k kM v N v

'

'

where

( ) ( ')( ) ( ')

( ) ( ')

( ) ( )

k GG

k GG

k G

M G G k G k G

N G G

v G

2 1

2 1

Transform

(2 1)( ) ( 1)

(2 1)( ) ( 1)

i N n N n N

j N n N n N

1 1 2 2

1 1 2 2' ' '

n n

n n

G b b

G b b

1 2

1 2

Choose

,

,

N n N N n N

N n N N n N

' '( ) ( ) , ( ) ( ) , ( ) ( )ij ij i k GG k k GG k k G kM M N N v v

1 2

2 2

2

We can also solve the Eigenvalue Problem:

The dimension of , : (2 1) (2 1)

There are (2 1) plane waves or eigenvalues

M N N N

N

k k k k kN M v v

Page 26: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Reduced Brillouin Zone and Dimensionless Frequency

/ 2 / /a c a c a

Page 27: Photonic crystals (I)  Bloch's theorem,  photonic band structure,  and energy flow

Photonic Band Gaps

Left: Photonic Band , Right: Transmission (20layers)