Photoelectron Spectroscopy for Functional Oxides

82
International Summer School on Surfaces and Interfaces in Correlated Oxiides, Vancouver, 29 Aug – 01 Sep 2011 FOR 1346 Ralph Claessen (U Würzburg, Germany) Photoelectron spectroscopy of functional oxides: Heterostructures and buried interfaces Photoelectron spectroscopy (PES) PES theory in a nutshell PES with hard x-rays (HAXPES) HAXPES of oxide heterostructures

description

Photoelectron Spectroscopy for Functional Oxides

Transcript of Photoelectron Spectroscopy for Functional Oxides

Page 1: Photoelectron Spectroscopy for Functional Oxides

International Summer School on Surfaces and Interfaces in Correlated Oxiides, Vancouver, 29 Aug – 01 Sep 2011

FOR

1346

Ralph Claessen (U Würzburg, Germany)

Photoelectron spectroscopy of functional oxides: Heterostructures and buried interfaces

• Photoelectron spectroscopy (PES)

• PES theory in a nutshell

• PES with hard x-rays (HAXPES)

• HAXPES of oxide heterostructures

Page 2: Photoelectron Spectroscopy for Functional Oxides

Heterostructures of functional oxides

strong coupling between charge/orbital/spin/latticedegrees of freedom lead to:

3d transition metal oxides

- metal-insulator transitions- charge and orbital ordering- local magnetism (ferro, antiferro,…)- high-temperature superconductivity- collossal magnetoresistance- …

Epitaxial heterostructures by MBE, PLD

controlled interfaces, additional functionalities:- strain engineering- interfacial 2dim electron gas (2DEG)- electrostatic doping (by polarity or field effect) - artificial multiferroics- spin injection- …

Page 3: Photoelectron Spectroscopy for Functional Oxides

"The interface is the device"(H. Kroemer, Nobel lecture 2000)

Want information on:

• chemical composition

• electronic structure

• vertical depth profile

photoelectron spectroscopy (PES) with soft and hard x-rays

Oxide heterostructures

Page 4: Photoelectron Spectroscopy for Functional Oxides

Photoelectron spectroscopy (PES)

Page 5: Photoelectron Spectroscopy for Functional Oxides

Photoelectron spectroscopy (PES)

Ekin = hν – EB - Φ0

sample

spectrum

Ekin

measure kinetic energy distribution of photoelectrons

Page 6: Photoelectron Spectroscopy for Functional Oxides

Photoelectron spectroscopy (PES)

Chemistry (core levels):→ composition→ chemical bonding→ valencies

Electronic structure (valence band):→ density of states → band structure → Fermi surface

→ spectral function A<(k,E)

sample

spectrum

Page 7: Photoelectron Spectroscopy for Functional Oxides

Core level spectroscopy: ESCA

Inte

nsity

[a.u

.]

140012001000800600400Kinetic Energy [eV]

Bi2Sr2CaCu2O8+δ

•Cu 2p•CuO

C 1s

Ca 2p

O 1s

Bi 4f

hν = 1486.6 eV [Al - Kα]

Sr 3d

Inte

nsity

[a.u

.]1500149014801470

Kinetic Energy [eV]

Fermi level

Bi 4d

Inte

nsity

[a.u

.]

1340133013201310Kinetic Energy [eV]

Bi 4f7/2Bi 4f5/2

Bi 5d

Electron Spectroscopy for Chemical Analysis

courtesy of A.F. Santander-Syro

Page 8: Photoelectron Spectroscopy for Functional Oxides

Core level spectroscopy: Chemical shift and valency

1080 1075 1070 1065

binding energy (eV)

Na1s

37%32%23%

10%4%

15%

dopi

ng x

(%

)

462 460 458 456 454

binding energy (eV)

Ti2p3/2(+ Na)

Ti3+Ti2+

Na

Example: alkali metal doping of TiOCl

valence change:Ti3+(3d1) Ti2+(3d2)

PRL 106, 056403 (2011)

Page 9: Photoelectron Spectroscopy for Functional Oxides

TiOCl

O 2p / Cl 3p

Ti 3d

Valence band spectroscopy

k-integrated spectrum

PRB 72, 125127 (2005)

Page 10: Photoelectron Spectroscopy for Functional Oxides

band structure and Fermi surface

Valence band spectroscopy: ARPES

Angle-Resolved PhotoElectron Spectroscopy

courtesy T. Deveraux/A. Damascelli

emis

sion

ang

le (i

.e. m

omen

tum

)

energy

Page 11: Photoelectron Spectroscopy for Functional Oxides

PES instrumentation

• rare gas discharge lamp (<40.2 eV)• x-ray tube (1.256 and 1.486 keV)• synchrotron radiation (10 eV … 10 keV)

• hemispherical anylzer• time of flight (TOF) analyzer)

typically 10-10 mbar

Wikipedia

Page 12: Photoelectron Spectroscopy for Functional Oxides

PES theory in a nutshell:

1) Independent electron approximation

Page 13: Photoelectron Spectroscopy for Functional Oxides

Unperturbed electron system: one-electron states with energy E

Perturbation: classical radiation field with vector potential

Fermi´s Golden Rule for the photoinduced transition rate from initial to final states:

Hence, the total photoelectron current is:

)(2

0 νδψψ hEEpeAw ifirki

ffi −−⋅∝ ⋅→

ψ

PES theory: Independent electrons

)2(0),( trkieAtrA πν−⋅=

)()(,

ffi

fiPES EwI −∝∑ → εδε

Time-dependent perturbation theory

Page 14: Photoelectron Spectroscopy for Functional Oxides

)(2

0 νδψψ hEEpeAw ifirki

ffi −−⋅∝ ⋅→

final state:inverted LEED state(eigenstate of semi-infinite crystal)

energy conservation

PES theory: Independent electrons

initial state:Bloch wave or core level

Page 15: Photoelectron Spectroscopy for Functional Oxides

)(2

0 νδψψ hEEpeAw ifirki

ffi −−⋅∝ ⋅→

final state:inverted LEED state(eigenstate of semi-infinite crystal)

PES theory: Independent electrons

One-step model Three-step model

final state: high-energy Bloch state of infinite crystal,steps 2 and 3 incoherently decoupled

courtesy A. Damascelli

Page 16: Photoelectron Spectroscopy for Functional Oxides

)(2

0 νδψψ hEEpeAw ifirki

ffi −−⋅∝ ⋅→

transition matrix element

PES theory: Independent electrons

If the radiadion field is only weakly modulated on atomic length scales, (i.e. >> few Å), the photon momentum can be neglected in the transition matrix element:

Examples:

hν = 20 eV λ ≈ 600 Å

hν = 2000 eV λ ≈ 6 Å

k

πλ 2= k

irefAipAfipeAf rki

⋅∝⋅≈⋅⋅000

Dipole approximation

Page 17: Photoelectron Spectroscopy for Functional Oxides

PES theory: Independent electrons

Dipole approximation and k-selection rule for Bloch states

momentum conservation:

photonif kGkk

++=only"vertical" transitions

ARPES

Page 18: Photoelectron Spectroscopy for Functional Oxides

oxides of the 3d transition metals: M = Ti, V, … ,Ni, Cu

basic building blocks: MO6 octahedra (or other ligand shells)

electronic configuration: O 2s2p6 = [Ne]

TM 3dn

cubic perovskites perovskite-like anatas rutile spinel

O2-

quasi-atomic,strongly localized strong intraatomic Coulomb interaction

and breakdown of independent electron approx.

Transition metal oxides: electronic correlations

TMX+

Page 19: Photoelectron Spectroscopy for Functional Oxides

PES theory in a nutshell:

2) Many-body picture

Page 20: Photoelectron Spectroscopy for Functional Oxides

Ekin

N interacting electrons:

"loss" of kinetic energy due to interaction-related excitation energy stored in the remaining N-1 electron system !

Many-body effects in photoemission

Photoemission process:

sudden removal of an electron from N-particle system

Page 21: Photoelectron Spectroscopy for Functional Oxides

Fermi´s Golden Rule for N-particle states:

with

N-electron ground state of energy EN, 0 ("initial state")

N-electron excited state of energy EN, s, ("final state")

consisting of N-1 electrons in the solid and a free photoelectron of momentum and energy ε

in second quantization with suitable one-electron basis

)(ˆ)( 0,,2

0,, νδε hEEI NsNs

isf −−Ψ∆Ψ∝∑

0,0, Ni =Ψ

sNksf ,1,, −=Ψ

k

ifif

N

iii ccMprA +

==⋅=∆ ∑

1)(ˆ

one-particle matrix element

Reinterpretation of Fermi´s Golden Rule

Page 22: Photoelectron Spectroscopy for Functional Oxides

Electron removal spectrum

Fermi´s Golden Rule for N-particle states:

The ARPES signal is directly proportional to the

single-particle spectral function )()(Im1)( ωωπ

ω fGA ×−=<

)(εI

a little bit of mathand a few plausible assumptions (sudden approximation)

single-particle Green´s function

probability of removing an electron at energy ω from the system

)(ˆ)( 0,,2

0,, νδε hEEI NsNs

isf −−Ψ∆Ψ∝∑

Page 23: Photoelectron Spectroscopy for Functional Oxides

ωµ

U

TiOCl

O 2p / Cl 3p

Ti 3d1

d1 → d0

LHBd1 → d2

UHB

Example: PES of the Mott insulator TiOCl

spectral function A<(ω) (DMFT)

Page 24: Photoelectron Spectroscopy for Functional Oxides

Photoemission probing depth:

soft and hard x-ray PES

Page 25: Photoelectron Spectroscopy for Functional Oxides

Inelastic scattering of the photoelectron

Three-step model

courtesy A. Damascelli

Step 2: photoelectron transport to the surface

inelastic scattering with other electrons (excitation of e-h-pairs, plasmons)

• generation of secondary electrons("inelastic background")

Ekin

intensity intrinsic spectrum

incl. background

Page 26: Photoelectron Spectroscopy for Functional Oxides

Inelastic scattering of the photoelectron

Three-step model

Step 2: photoelectron transport to the surface

inelastic scattering with other electrons (excitation of e-h-pairs, plasmons)

• generation of secondary electrons("inelastic background")

• loss of unscattered photoelectron current⇒ inelastic mean free path λ

courtesy A. Damascelli

Page 27: Photoelectron Spectroscopy for Functional Oxides

"conventional" VUV/XUV-PES:surface sensitive on atomic length scale !

Photoemission probing depth

λ(Ekin)

hνEkin

probing depth (3λ) up to >10 nm access to bulk, buried nanostructures, and

interfaces

depth profiling of thin films

λ(Ekin) "universal curve"

hard x-ray PES = HAXPESsoft x-ray PES (SX-PES)

Page 28: Photoelectron Spectroscopy for Functional Oxides

0≠µ0=µ0=µ

O2-

TMX+

Transition metal (TM) oxides form lattice of ionic charges

Classification of surfaces (Tasker): - surface charge Q- electrical dipole moment in repeat unit

P. W. Tasker, J. Phys. C 12, 4977 (1979)

Transition metal oxides: Instability of polar surfaces

O2-TMX+

µ

0=Q 0≠Q 0≠Q

Page 29: Photoelectron Spectroscopy for Functional Oxides

O2-

TMX+

type 3 surfaces are energetically unfavorable:

Transition metal oxides: Instability of polar surfaces

charge field potential

"polarization catastrophe"

will be avoided by atomic/ionic/electronic surface reconstruction

⇒ surface ≠ bulk

-σ+σ-σ+σ

Page 30: Photoelectron Spectroscopy for Functional Oxides

8.2 Å

PRB 76, 075412 (2007)

Transition metal oxides: Instability of polar surfaces

Example: Fe3O4 (magnetite) different reconstructions of the (111) surface (STM)

Page 31: Photoelectron Spectroscopy for Functional Oxides

VUV-PESsurface-sensitive

Soft X-ray PESprobing depth 2x larger

Transition metal oxides: Instability of polar surfaces

Example: Fe3O4 (magnetite)

EPL 70, 789 (2005)

Page 32: Photoelectron Spectroscopy for Functional Oxides

∑∑ ↑↓+ +−=

iii

jiji nnUcctH

σσσ

,,

ˆ

kinetic energy,itinerancy

local Coulomb energy,localization

Surface effects in Mott-Hubbard-type oxides

t

Uspectral function (DMFT for n=1)

U/t

Page 33: Photoelectron Spectroscopy for Functional Oxides

Surface effects in Mott-Hubbard-type oxides

spectral function (DMFT for n=1)

U/t

Example: CaVO3

A. Sekiyama et al., PRL 2004

surface

"bulk"

lower Hubbard band

quasiparticle peak

Page 34: Photoelectron Spectroscopy for Functional Oxides

Surface effects in Mott-Hubbard-type oxides

Example: CaVO3

A. Sekiyama et al., PRL 2004

surface

"bulk"

lower Hubbard band

quasiparticle peak

reduced atomic coordination @ surface:

stronger electron localization

smaller effective bandwidthWsurf < Wbulk

surface stronger correlated:U / Wsurf >U / Wbulk

Page 35: Photoelectron Spectroscopy for Functional Oxides

"conventional" VUV/XUV-PES:surface sensitive on atomic length scale !

Photoemission probing depth

λ(Ekin)

hνEkin

probing depth (3λ) up to >10 nm access to bulk, buried nanostructures, and

interfaces

depth profiling of thin films

λ(Ekin) "universal curve"

hard x-ray PES = HAXPESsoft x-ray PES (SX-PES)

Page 36: Photoelectron Spectroscopy for Functional Oxides

hν = 6 keV λ ≈ 2 Å, kphot ≈ 3 Å-1

HAXPES: drawbacks and caveats

Non-negligible photon momentum

Page 37: Photoelectron Spectroscopy for Functional Oxides

hν = 6 keV λ ≈ 2 Å, kphot ≈ 3 Å-1

• suppression of direct (k-conserving) transitions

Debye-Waller factor for direct transitions

HAXPES: drawbacks and caveats

ARPES of W(110) @ hν = 870 eV Plucinski et al., PRB 78, 035108 (2008)

( )atomphotdir MTkW 2exp α−=

Non-negligible photon momentum

Page 38: Photoelectron Spectroscopy for Functional Oxides

hν = 6 keV λ ≈ 2 Å, kphot ≈ 3 Å-1

• suppression of direct (k-conserving) transitions

• atomic recoil effect

photon-absorbing atom takes up recoil energyat the expense of

photoelectron energy,

depending on atom mass and lattice stiffness

HAXPES: drawbacks and caveats

Non-negligible photon momentum

MkE photkin 222=

Y. Takata et al., PRB 75, 233404 (2007)

Page 39: Photoelectron Spectroscopy for Functional Oxides

hν = 6 keV λ ≈ 2 Å, kphot ≈ 3 Å-1

• suppression of direct (k-conserving) transitions

• atomic recoil effect

• quadrupolar contribution to transition matrix element

HAXPES: drawbacks and caveats

Non-negligible photon momentum

( ) iprkiAfipeAf rki

⋅⋅+≈⋅⋅ 100

Page 40: Photoelectron Spectroscopy for Functional Oxides

hν = 6 keV λ ≈ 2 Å, kphot ≈ 3 Å-1

• suppression of direct (k-conserving) transitions

• atomic recoil effect

• quadrupolar contribution to transition matrix element

• cross section for photoemission

• electron analyzer transmission

need bright x-ray source…

HAXPES: drawbacks and caveats

Non-negligible photon momentum

Low photoemission signal

( ) 3−∝ νσ h1−∝ kinEt

Page 41: Photoelectron Spectroscopy for Functional Oxides

HAXPES set-up @ PETRA III (DESY, Hamburg)

X-rays fromPETRA III

"High-resolution hard x-ray photoemission for materials science" (BMBF)

• joint project with C. Felser (U Mainz) and W. Drube (DESY)

• photon energy: 2.5…15 keV

• energy resolution: 30 meV

• linearly/circularly polarized x-ray radiation

• commissioned in 2010

• user operation since 2011

other HAXPES instruments worldwide:- Spring-8, Japan (>4)- BESSY, Germany (HIKE)- ESRF, France (ID-9)- Soleil, France (under construction)- Diamond, UK (under construction)

Page 42: Photoelectron Spectroscopy for Functional Oxides

HAXPES of oxide heterostructures:

(1) Fe3O4/GaAs

Page 43: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

Epitaxial growth of Fe3O4/GaAsPRB 79, 233101 (2009)

surface Datta-Das spin transistor

semiconductor with large spin diffusion length

semimetallic ferromagnet(100% spin polarization @ EF)

resistively matched to semiconductor

Fe3O4 (magnetite), (RE,Sr)MnO3, CrO2, Heusler compounds, …

Page 44: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

Epitaxial growth of Fe3O4/GaAsPRB 79, 233101 (2009)

surface

MBE growth of thin magnetite film:

• epitaxial Fe deposition @ RT

• postoxidation @ 600 - 800K / p(O2) = 10-5 mbar (10-30 min)

Fe valency?

mixed-valent Fe3O4 vs. (Fe2+ )O and (Fe 3+)2O3 ?

chemical depth profile ?

Page 45: Photoelectron Spectroscopy for Functional Oxides

700 705 710 715 720 725 730 735 740 745 750

Fe2O3

Fe3O4

FeO

Fe

charge transfer satellites

binding energy (eV)

Valence signatures in Fe 2p spectrum

Fe3+

Fe2+

Fe0

Fe2+/Fe3+

2p1/2 2p3/2

Page 46: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

Depth profiling of Fe3O4/GaAs

Fe 2p spectra

PRB 79, 233101 (2009)

surface

interface

surface

Page 47: Photoelectron Spectroscopy for Functional Oxides

Depth profiling of Fe3O4/GaAs

Tuning the information depth by variation of

(1) photon energy, or (2) photoelectron escape angle

energy

mea

n fr

ee p

ath

θ

λeff

λeff = λIMFP cos θ

Page 48: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

Depth profiling of Fe3O4/GaAs

Fe 2p spectra

PRB 79, 233101 (2009)

surface

film: mixed-valent Fe2+/3+

interface: divalent and metallic Fe (O-deficient)

interface

surface

Page 49: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

interface (Fe, FeOx, GaOx, AsOx)

Depth profiling of Fe3O4/GaAs

Fe 2p spectra As 2p3/2 spectra

PRB 79, 233101 (2009)

surface

film: mixed-valent Fe2+/3+

interface: divalent and metallic Fe (O-deficient)oxidized Ga,As

Page 50: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

GaAs

interface (Fe, FeOx, GaOx, AsOx)

Validation by electron microscopy

surface

TEM

STEM-EELS

J. Verbeeck, H. Tian, and G. van Tendeloo, U Antwerp

Page 51: Photoelectron Spectroscopy for Functional Oxides

Fe3O4

ZnO

Fe3O4/ZnO: An all-oxide structure

also PLD-grown contacts: R. Gross et al.

APL 98, 012512 2011

HAXPES TEM

film grown by reactive deposition in O2-atmosphere (∼10-6 mbar)

Page 52: Photoelectron Spectroscopy for Functional Oxides

HAXPES of oxide heterostructures:

(2) Interface 2DEG in LaAlO3/SrTiO3

Page 53: Photoelectron Spectroscopy for Functional Oxides

•epitaxial growth by PLD

A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006)N. Reyren et al., Science 317, 1196 (2007)

LAO/STO heterostructures in a nutshell

LaAlO3∆=5.6eV

SrTiO3∆=3.2eV

Page 54: Photoelectron Spectroscopy for Functional Oxides

•epitaxial growth by PLD

•both oxides: wide gap insulators

• if LaAlO3 film thicker than 3 unit cells (uc) : → formation of a high-mobility 2DEG

at the interface

LAO/STO heterostructures in a nutshell

2DEGconductivity

sheet carrier density (Hall)

A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006)N. Reyren et al., Science 317, 1196 (2007)

LaAlO3∆=5.6eV

SrTiO3∆=3.2eV

Page 55: Photoelectron Spectroscopy for Functional Oxides

LAO/STO heterostructures in a nutshell

2DEG

A. Ohtomo et al., Nature 419, 378 (2004) S. Thiel et al., Science 313, 1942 (2006)N. Reyren et al., Science 317, 1196 (2007)

properties of the 2DEG:

• tunable conductivity by electric gate field

• superconducting below 200 mK

•magnetoresistance

•coexistence of s.c and magnetism / electronic phase separation

origin of 2DEG, threshold behavior ?

LaAlO3∆=5.6eV

SrTiO3∆=3.2eV

Page 56: Photoelectron Spectroscopy for Functional Oxides

Polar catastrophe

polar catastrophe

Nakagawa et al., Nature Mat. 5, 204 (2006)

AlO2

LaO

LaO

LaO

AlO2

AlO2

TiO2

SrOTiO2

SrO

-1+1-1+1-1+1

0000

charge:

electrostatic energy increases linearly with thickness of polar film

electronic or ionic

0.5e- per layer unit cell n2D = 3.5×1014 cm-2

partial Ti 3d occupation Ti3.5 (d0.5) = Ti3+/Ti4+

charge reconstruction

AlO2

LaO

LaO

LaO

AlO2

AlO2

TiO2

SrOTiO2

SrO

-1/2+1-1+1-1+1

-1/2000

∆q = -1/2

and how to avoid it

Page 57: Photoelectron Spectroscopy for Functional Oxides

HAXPES of LAO/STO heterostructures

PRL 102, 176805 (2009)

undoped SrTiO3: |3d0> Ti4+

doped LAO/STO interface: |3d0> + |3d1> Ti3+/Ti4+

Ti 2p spectrum

Ti4+

2p1/2 2p3/2

2DEG

SrTiO3

LaAlO3

Ti3+

Page 58: Photoelectron Spectroscopy for Functional Oxides

Dependence on LAO overlayer thickness

interface charge density increases with LAO overlayer thickness

non-zero Ti d1 signal already for 2uc sample (?)

PRL 102, 176805 (2009)

Ti4+

Ti3+

Ti3+

Page 59: Photoelectron Spectroscopy for Functional Oxides

Depth profiling by angle-resolved HAXPES

θ

d

e-

e-

PRL 102, 176805 (2009)

2DEG thickness

sheet carrier density

Page 60: Photoelectron Spectroscopy for Functional Oxides

Quantitative analysis: 2DEG thickness

*lattice constant of STO unit cell (uc) = 3.8 Åθ

d

e-

e-

PRL 102, 176805 (2009)

Sample 2 uc 4 uc 5 uc 6 uc

d (uc*) 3 ± 1 1 ± 0.5 6 ± 2 8 ± 2

interface thickness < 3 nm

consistent with

- CT-AFM Basletic et al. (2008)

- TEM-EELS Nakagawa et al. (2006)

- density functional theory Pentcheva et al. (2009)

- 2D superconductivity Reyren et al. (2007)

- ellipsometry Dubroka et al. (2010)

Page 61: Photoelectron Spectroscopy for Functional Oxides

Quantitative analysis: sheet carrier density

Sample 2 uc 4 uc 5 uc 6 uc

n2D (1013 cm-2) 2.1 3.9 8.1 11.1

n2D << electronic reconstruction value

n2D >> Hall effect data

el. reconstruction

35

PRL 102, 176805 (2009)

Page 62: Photoelectron Spectroscopy for Functional Oxides

RIXS on LAO/STO

RIXS eg-excitation as fct. of # LAO-overlayers

PRB 82, 241405(R) (2010)

t2g

Ti 2p

Ti 3deg

Ti3+ (3d1)

photon in photon

out

Page 63: Photoelectron Spectroscopy for Functional Oxides

Sheet carrier density: HAXPES, RIXS & Hall effect

• n2D much smaller than expected for purely electronic reconstruction (35 x 1013 cm-2)

• n2D higher than Hall effect data

• photo-generated carriers cannot fully account for observed excess

• remaining excess due to additional localized Ti 3d electrons? (cf. DFT - Popovic et al., PRL 2008)

PRB 82, 241405(R) (2010)

Page 64: Photoelectron Spectroscopy for Functional Oxides

~3 eV

LAO/STO: Valence band spectroscopy with HAXPES

2DEG

SrTiO3

LaAlO3

2DEG

SrTiO3

LaAlO3

Ti 3d electrons should be here, but HAXPES cross-section too small !(theor. estimate: 10-4 of O2p emission)

O2p-derived vb states

Page 65: Photoelectron Spectroscopy for Functional Oxides

Band situation from density-functional theory

surf

ace2D

EGSTO LAO

CBM

VBM

E

core levels

EF

Yu Lin et al., arXiv 0904.1636 (2009)Pentcheva and Pickett, PRL 102, 107602 (2009)

Page 66: Photoelectron Spectroscopy for Functional Oxides

holes@ LAO VBM

electrons@ STO CBM

Yu Lin et al., arXiv 0904.1636 (2009)Pentcheva and Pickett, PRL 102, 107602 (2009)

e-e- surf

ace2D

EGSTO LAO

CBM

VBM

E

core levels

EF

Band situation from density-functional theory

interface

Page 67: Photoelectron Spectroscopy for Functional Oxides

holes@ LAO VBM

electrons@ STO CBM

Yu Lin et al., arXiv 0904.1636 (2009)Pentcheva and Pickett, PRL 102, 107602 (2009)

e-

E

EF

e- surf

ace2D

EGSTO LAO

CBM

VBM

E

core levels

Band situation from density-functional theory

Page 68: Photoelectron Spectroscopy for Functional Oxides

Results from HAXPES

Al 1s core levelvalence band

~3 eV

VBM: ~ 3 eV below EF same width for all samples!

Page 69: Photoelectron Spectroscopy for Functional Oxides

band theory versus experiment

EF

e- surf

ace2D

EGSTO LAO

CBM

VBM

E

core levels

also observed by Segal et al., PRB 80, 241107(R) (2009)

STO LAO

Page 70: Photoelectron Spectroscopy for Functional Oxides

• VBMLAO above VBMSTO

• type II interface(valence band offset: 0.35 ± 0.1eV)

• confirmed by core level analysis

Valence band offsets

valence band analysisCB

VB

type I type II

STO LAO STO LAO

band alignment

0.35eV

Page 71: Photoelectron Spectroscopy for Functional Oxides

Band alignment: A possible scenario

DFT band theory:

Photoemission:

STO LAOlocalized hole states induced by surface O-vacancies

interface states (itinerant and localized)

Page 72: Photoelectron Spectroscopy for Functional Oxides

HAXPES of oxide heterostructures:

(3) LaVO3/SrTiO3 – electrostatic doping of a Mott a insulator

Page 73: Photoelectron Spectroscopy for Functional Oxides

Electrostatic doping of a Mott insulator

LaAlO3band ins.∆=5.6eV

SrTiO3band ins.∆=3.2eV

q2DEG

LAO/STO

(AlO2)-

(LaO)+

(TiO2)0

(SrO)0

……

polar

non-polar

Idea:replace Al3+ by trivalent transition metal

LaVO3

LVO/STO

LaVO3Mott ins.∆≈1 eV

SrTiO3band ins.∆=3.2eV

???

Ohtomo/Hwang, Nature 427, 423 (2004) Hotta et al., PRL 99, 236805 (2007)

Page 74: Photoelectron Spectroscopy for Functional Oxides

LaVO3: - valence configuration V3+ (d2)

- polar oxide

- Mott insulator (∆LVO << ∆STO)

electronic reconstruction and formation of interface 2DEG ?

extra carriers on which side of interface(LVO or STO) ?

Electrostatic doping of a Mott insulator

LaVO3Mott ins.∆≈1 eV

SrTiO3band ins.∆=3.2eV

???

LVO/STO

band-filling controlled Mott transition without chemical doping ?

Page 75: Photoelectron Spectroscopy for Functional Oxides

LVO/STO: Sample growth and characterization

pulsed laser deposition

RHEED oscillations

RHEED pattern AFM image

STEM image

interface

Page 76: Photoelectron Spectroscopy for Functional Oxides

LVO/STO: metal-insulator transition in transport

metal-insulator transition for n-type interface

p-type interface insulating

critical thickness: ∼ 9 uc LVO (Hotta et al.: 5 uc)

high carrier mobility

Page 77: Photoelectron Spectroscopy for Functional Oxides

HAXPES of LVO/STO: V 2p depth profiles

6 uc LVO

STO

homogeneous "V3+" profile

extra electronic charge on V near interface

10 uc LVO

STO

insulating conducting

Page 78: Photoelectron Spectroscopy for Functional Oxides

HAXPES of LVO/STO: Ti 2p

10 uc LVO

STO

no Ti3+ (d1) signal

possibly some bandbendingon STO side of interface

extra electronic charge on V near interface

Page 79: Photoelectron Spectroscopy for Functional Oxides

LVO/STO: electronic reconstruction picture

Page 80: Photoelectron Spectroscopy for Functional Oxides

Electrostatic doping of a Mott insulator

LaVO3/SrTiO3:

• creation of 2D metal states in a correlated electron system by interface engeering

• purely electrostatic doping

• no disorder by chemical dopants

LaVO3Mott ins.∆≈1 eV

SrTiO3band ins.∆=3.2eV

"q2DEG"

Page 81: Photoelectron Spectroscopy for Functional Oxides

Summary

Photoelectron spectroscopy of functional oxides:Heterostructures and buried interfaces

• Photoelectron spectroscopy (PES)yields (destruction-free) information on- chemical composition, valencies, local chemistry - electronic structure (band structure, spectral function)

• PES with hard x-rays (HAXPES)- enhanced probing depth giving access to bulk and buried interfaces- needs high x-ray intensity ( synchrotron radiation)- caveat: high photon momentum (ARPES difficult, recoil effects)

• Future directions:- magnetic information with polarized x-rays (XMCD, XMLD) and/or spin detection- soft x-ray ARPES: band mapping of buried interfaces

Page 82: Photoelectron Spectroscopy for Functional Oxides

Photoemission:

• S. Hüfner, Photoelectron Spectroscopy – Principles and Applications, 3rd ed. (Berlin, Springer, 2003)

• A. Damascelli, Angle-resolved photoemission studies of the cuprate superconductors,Rev. Mod. Phys. 75, 473 (2003)

HAXPES:

• K. Kobayashi: Hard x-ray photoemission spectroscopy, Nucl. Instr. Meth. Phys. Res. A 601, 32 (2009)

• László Kövér: X-ray photoelectron spectroscopy using hard X-rays,J. Electron Spectrosc. Rel. Phen. 178-179, 241 (2010)

HAXPES of oxide heterostructures

• R. Claessen et al.: Hard x-ray photoelectron specroscopy of oxide hybrid and heterostructures: a new method for the study of buried interfaces,New J. Phys. 11, 125007 (2009)

Reading