Phosphine Catalysis - Home | Princeton Universityorggroup/supergroup_pdf/jproberts... · Phosphine...

54
Phosphine Catalysis: Generation of Phosphonium Enolates Justin Roberts Organic Supergroup January 25, 2006 •Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535-544. •Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035-1050.

Transcript of Phosphine Catalysis - Home | Princeton Universityorggroup/supergroup_pdf/jproberts... · Phosphine...

Phosphine Catalysis: Generation of Phosphonium Enolates

Justin RobertsOrganic Supergroup

January 25, 2006

•Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535-544.•Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035-1050.

Why Phosphine?• Leaving group potential

– pKa Et3PH+ = 8.7 better LGEt3NH+ = 10.7

• Nucleophilicity

– K1/K2 > 500– ↑ with e- donating alkyl groups on phosphine

• Phosphonium stabilizes adjacent carbanion

Et2PhP I

I

+

+Et2PhN

Et2PhP+

Et2PhN+

K1

K2

I-

I-

•Davies, W. C.; Lewis, W. P. G. J. Chem. Soc. 1934, 1599.

Outline

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

Internal Redox

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

•Ketones, esters, amides•AcOH promotes reaction•More nucleophilic phosphines produced considerable amounts of oligamers.

•R3N or (RO)3P = NR•E,E-diene selective

R

O

R'R' R

O10 - 40 % PPh3

80 - 140 °C

•O

O O

OPPh3, PhCH3

60 °C, 2 h

69 - 88 %

90 %

•Trost, B. M.; Kazmaier, V. J. Am. Chem. Soc. 1992, 114, 7933-7935.•Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 1921-1923.

OMe

OOMe

O O

OMePh3P

H

Ph3P

Ph3P

H O

OMe

O

OMe

O

OMe

O

OMe

Ph3P

Ph3P

H

Ph3P

O

OMe

Ph3P

A

AH

A AH AH

A

Ph3P, AH

•Rychnovsky, S. P.; Kin, J. J. Org. Chem. 1994, 59, 2659-2660.

n-C6H13O

O

n-C6H13 O

O

PPh3, PhOH55 °C, 12 h

70 %

PPh3, PhOH55 °C, 14 h

n-Bu

On-Bu

O21 %

•E & Z enynes transfer selectively to E,E,E-trienes•Ynoates transfer to dienes @ rt with PhOH

R1OH

O

R2R1 R2

O

Ph3P, rtPhH, 8 h

R1 R2 R1 R2

PPh3

OH O

PPh3OO

•R2

OR1

Ph3P=O

R1

EtnPrnPrEt

R2

OEtOEtnBu

n-C5H11

85 %86 %83 %86 %

•Guo, C.; Lu, X. J. Chem. Soc., Chem. Commun.1993, 394-395.

Morita-Baylis-Hillman Reaction

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

CNR H

O

CNCN

Ph3P

CN

Ph3PR CN

CN

Ph3P

R

O

R

OHCN

cat. PCy3120 °C, 2 h R

OHCN+ <23 %

RCHO

RCHO

PCy3

•Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.•Basavaiah, D.; Rao, A. J.; Batyanarayana, T. Chem. Rev. 2003, 103, 811-891.•Stephen Goble “The Morita-Baylis-Hillman Reaction” Organic Supergroup Meeting,November 19, 2003.

Entry R Lewis Base % yield % ee

1 PhCH2CH2 A 88 90 2 Cy B 71 96 3 iPr B 82 95 4 Ph A 40 67 5 PhCHCH B 39 81

•Li, W.; Zhang, Z.; Ziao, D.; Zhang, X. J. Org. Chem. 2000, 65, 3489-3496.

•McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 123, 12094-12095.

N N

O

O

OH

O

O

H

O

+ 10 % catalystDCM, rt, 9 h

catalyst = PHO

HO

R H

O O

R

OH O+ 10 % Lewis Base

PEt3, 48 hTHF, -10 °C

OHOH

X

X

A: X =

B: X =

83 %, 17 % ee (+)

O

TolS

R

O

R

HNS

TolOO

10 % PhPMe2PhMe+

RPhCH2CH2 71 % 84 % deBu 52 % 82 % dem-FC6H4 76 % 76 % dep-BrC6H4 83 % 86 % dem,p-Cl2C6H3 80 % 80 % de

Ph3P

NH

R

STol

OOSi face

•Shi, M.; Xu, Y. Tetrahedron Asym. 2002, 13, 1195-1200.

Rauhut-Currier Reaction

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

•Rauhut, M.; Currier, H. U. S. Patent 3074999 1963

OEt

O

CN

cat. PBu3

EtO OEt

OO

PPh3, tBuOHMeCN, 45 °C NC CN

•Reaction let to polymerization without proton donor toterminate process

•Baizer, M. M.; Anderson, J. D. J. Org. Chem. 1965, 30, 1357-1360.

O O OPPh3, 118 °C

15 - 30% conv.

PPh3 or P(p-tolyl)3tBuOH or Et3SiOH

160 - 175 °C

CN NC CN

Ar3PCN

CNAr3P

CN

CNAr3P

CN H+ transfer

78 % in Et3SiOH60 % in tBuOH

•McClure, J. D. U. S. Patent 3,225,083 1965.•McClure, J. D. J. Org. Chem. 1970, 35, 3045-3048.

•Increased rate with polar solvent•PBu3addition is indiscriminate: 5-member ring is trapped by

cyclization6-member ring cyclizationbecomes rate determining

Ph

O

n

10 % PBu3

O

Ph

O Ph

O

O+

nn

n = 1

n = 2

1 : 1 79 %

7 : 1 77 %

OEtO OEt

O

O

O

EtO

O

+10 % PBu387 %

>95 : 5

O

O

•Wang, L.; Luis, A. L.; Agapiou, K.; Jang, H.; Krische, M. J. Am. Chem. Soc. 2002,124, 2402-2403.

O

O2N

O

O

O

O

O2N

OMe

MeO

NO2

Ph

Ph

O

PhO

10 % PBu375 %

10 % PBu385 %

10 % PBu381 %

+

>95

5

:

Ph

O

Ph

O Ph

O

Ph

O

+

>95 : 5

Ph

O

O

O

Ph

O

+

>95 : 5

O

OMe

O

O

OEt

OO

OBn

OBn OBn

O O

OBn BnO

OBn

OBn OBn

BnO

O O

20 % PBu371 %

MeOCOBn

OBnOBn

PBu3

EtO2C

+

>95 : 5

TBSO

TBSO CHO

CHO TBSO

TBSO

CHO

CHO

30 % PBu3MeCN, 14 h

90 %10:1 dr

•Frank, S. A.; Mergott, D. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 2404-2405.

PBu3

R1

O

Bu3P

R2O

R1

OR2O

O

R1

O R2

O R2O

R1

H

Bu3P

n

n

n

n

•With acetone-d6, not deuterium incorporation was observed

OR

R'

O

OR

R'

O25 - 100 % PMe3

R R'

Me OMe

Me Me

H Me

H OMe

83 %

46 %

45 %

47 %(67 % in MeCN)

23 % aldol

20 % aldol

O O

O OHMe3PH

O

O

Me3P O O

OO

Me3P

HH

PMe3 H+ transfer

•Presumably PMe3 is slow to eliminate allowing for proton transfer

HSEt

OSEt

O

O

O

O

OH

O

O

O

20 % PBu3tBuOH, 135 °C

81 %

Ricciocarpin

3 steps

•Agapiou, K.; Krische, M. J. Org. Lett. 2003, 5, 1737-1740.

•Thioenolates work well with MBH reactions

•Keck, G. E.; Welch, D. S. Org. Lett. 2002, 4, 3667-3690.

[3+2]

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

CO2Et• CO2Me+ 10 % PPh3, rtPhH, rt81 % CO2Et CO2Et

CO2Me

CO2Me

+

80 : 20

CO2Et•CO2Et

EtO2C+

CO2Et CO2Et

CO2Et CO2Et

CO2EtCO2Et +10 % PPh3

CO2Et

trans

cis

trans

cis

+ 10 % PBu3

67 %

46 %

88 %

91 %

1

0

:

:

0

1

1

1

0

0

:

:

" " "

•Ketones & nitriles

•Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906-2908.

PR3CO2Et•CO2Et CO2Et

CO2Me

CO2Me

+

CO2Et CO2Et

CO2Me

CO2Me

+

Ph3P Ph3P

CO2Et CO2Et

CO2Me

CO2Me

+

Ph3P Ph3P

Ph3PCO2Et

Ph3PCO2Et

Ph3PCO2Et

Ph3PCO2Et

+

CO2Me CO2Me

CO2Et• + CO2R

PPh

Pri

iPrCatalyst =

CO2Et CO2Et

CO2R

CO2R10 % CatalystPhH, rt +

R %yield %ee A:B

A B

Et 87 79 (R) 96:4iBu 92 88 (R) 100:0iBu 88 93 (R) 100:0tBu 75 88 (R) 95:5

0 °C

•Zhu, G.; Chem, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc.1997,119, 3836-3837.

CO2Et•

R

NTs+ 10 % PPh3

PhHN

CO2Et

Ts R

RH

OMeNO2

98 %98 %88 %

Ph3PCO2Et

NTs

Ph3P CO2Et Ph3P CO2EtPh3P

CO2Et

NR

NTs

RTs

RR

NTs

•Ts protection is necessary•One regioisomer

•Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461-3464.•Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041.

CO2Et•R NPhTs+

N

CO2Et

TsN

CO2Et

Ts

+20 % PBu3PhH, rt1.5 - 8 h

Me 89 % 91 : 9Et 99 % 95 : 5iPr 99 % 100 : 0tBu 99 % 100 : 0Ph 99 % 100 : 0

R

PhRPhR

•Aryl aldimines only•PBu3 necessary for initial 1,4-addition

•Zhu, X.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276-6282.

•Zhu, S.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387-1390.

CO2iPr• R H

O

R

O O

R

CO2iPr

Ph3PCO2

iPr

CO2iPr

Ph3P Ph3PCO2

iPr

R O

Ph3PCO2

iPr

ORO

R

R

R

Ph3PCO2

iPr

+

R H

O

R H

O

4-Py 99 %4-CF3-C6H4 99 %3-CF3-C6H4 90 %2-CF3-C6H4 65 %3-MeO-C6H4 47 % n-Pr 0 %

R

20 % PMe3, CHCl3, rt

•Wang, J.; Ng, s.; Krishe, M. J. J. Am. Chem. Soc. 2003, 125, 3682-3683.•Wang, J.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 5855-5857.

MeO

OO R O

MeO H

H

RO

10 % PBu3, 110 °CEtOAc (0.1 M)

40 - 48 h

RPhSEt

2-furylc-Pr

76 %78 %74 %86 %

MeO2CO

10 % PBu3, 110 °CEtOAc, 88 %

MeO2C H

H

HH

H

O

6 steps

Hirsutene

1 isomer

•Pyne, S. G.; Schafer, K.; Skelton, B. W.; White, A. H. Chem. Commun. 1997, 2267-2268.

CO2Et• BzN O

O

Ph BzN O

O

Ph

BzN O

O

Ph

EtO2C

CO2Et

+ 10 % PPh3 + + dimer

49% 17 % 27 %

CO2Et•

CO2EtPPh3

BzN O

O

Ph

+ 10 % PPh3

BzN O

O

Ph

CO2Et

H 38 % singe isomer

O

N

O

BzH

Ph

[4+2]

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

Free hydroxyl or pyrrolyl groups were disastrousAliphatic imines, if stable to reaction conditions, gave 85 %with NaCO3

R NTs CO2Et•+

N

CO2Et

TsR20% PBu3

DCM, rt

R = aryl, alkyl

NArTs CO2Et•+

Ar'

N

CO2Et

TsAr20% PBu3

DCM, rtAr' quant.

>9:1 dr

>85 %

•Zhu, X. F.; Lan, P.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716-4717.

CO2Et•

CD3

PBu3

CO2Et+PBu3 +PBu3

CO2Et

R NTs

N ND ND

+PBu3

CO2Et

TsD

TsR

CO2Et+PBu3

+PBu3

CO2Et

RTs

N

N

DCO2Et

R DD

Ts

CO2Et+PBu3

RTs

R

D

- -

--

-

-

H+ transfer

H+ transfer

•Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289-4291.

NN

Ts CO2Et•+N

N CO2EtTs

CO2Et

CO2Et30% PBu3

DCM, rt

73 %3:1 dr

NNMe

OH

H

H

NNMe

OH

H

H

NNMe

O

H

HO

O

H

H

H

H

(+)-Macroline

(-)-Alstonerine

9 steps

31 %(26 %, 12 steps)

•When BOC protected indole was used, 84 %, 1.1:1 dr

CO2Et•+

CO2Et

NPhTs

5 % (R)-1DCM, rt

NTs

CO2Et

CO2EtPh

P

(R)-1

93 %, 91:1 dr98 % ee

•>5 % catalyst needed without 2nd ester group•Various aromatic aldimines tolerated•Yields 75-99 %, >96 % ee, >9:1 cis:trans

•Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234-12235.

Umpolung

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

EWG

E2

E1+ cat. PPh3

HOAc/NaOAcPhCH3, 80-110 °C

E1 EWGE2

EWG = ester, ketone, amideE1, E2 = ketone, ester, nitrile, SO2R

Phosphine acts as a nucleophilic triggerSuitable pronucleophiles: pKa < 16

Less EWG reacts better with less acidic nucleophile

•Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167-3168.

Ph3P

PPh3

EWG

PPh3

EWG

Nu-H

EWG

EWGPPh3

Nu

EWGPPh3

Nu

EWGPPh3

Nu

EWG Nu

H+-transfer H+-transfer

OH CO2Me OH OCO2Me

CO2Me+

PPh3, HOAc, PhCH3, 110 °CPPh3, HOAc, DMSO, 110 °Cdppp, HOAc, PhCH3, 85 °C

47 %91 %3 %

53 %9 %97 %

OH

CO2MeH CO2Me

OH

H

O CO2Menn n

+

Hdppp, HOAcPhCH3, 85 °C

n = 1 trans cis

n = 2 trans cis

84 %-

--

-69 %

75 %55 %

•Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819-10820.

PPh2Ph2P

OMeO

PPh2Ph2POH

PPh2O

OMe

Ph2POH

CO2MeOH

PPh2O

OMeOH

Ph2P

OPPh2

OMe

OPh2PH

OPPh2

OMe

OPh2P

OOMe

O

H

H+

CO2Et•

E1 E2 E1 CO2Et

PhO CO2Et

E2

56 - 87 %

98 %PhOH

PhH, rt, 5 % PPh3

CO2Et•5 % PPh3, PhH, rt

BnO CO2Et BnOCO2Et

BnOH

BnOH, 20 % AcOH

20 %

90 %

35 %

-

•α-substituents require more nucleophilic phosphine andlonger reaction times

•γ-substituents give redox products

•Protonation of initial enolate requires higher acidity•Zhang, C.; Lu, X. Synlett 1995, 645-646.

PPh3

CO2Et•CO2Me

CO2Me

Ph3P

CO2MePh3PPh3PCO2Me

BnO CO2Me BnO CO2Me BnOCO2Me

Ph3PCO2Me

Ph3PCO2Me

PPh3

BnOH

BnO

BnOH

Path A Path B

BnO BnO

PPh3 PPh3

90° rotation

BnO BnO

CO2Et + HN

O

O

CO2EtPh +

+ H2NTs

10 % Ph3P, PhMe, 105 °C50 % HOAc/NaOAc, 18 h

Nu

CO2Et

Nu

CO2EtPh

PhNu

CO2Et

CO2Et

"

"

"

"

95 %

82 %

82 %

+ H2NTs HOAc/NaOAcPhMe, 105 °C

PPh3 (92 %)

dppp (45 %)

CO2Et CO2Et+

HNTs

1 : 7.3

1 : 0

•Phthalimide requires phenol as cocatalyst•Trost, B. M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595-7596.

•Highly stereoselective•PM3 calculations:

O

O

Ph

O

RR

H

n n-120 % PBu3

12 h, THF, rtPh

O

n = 2

3

4

63 %

73 %

0 %

O

H

H

O

PMe3O

H

H

O

PMe3vs.

-54.05 kcal/mol-93.44 kcal/mol

2.44 Å

1.45 Å

•Kuroda, H.; Tomita, I.; Endo, T. Org. Lett. 2003, 5, 129-131.

Michael Reaction

R3P+

O-

X

R'

R' X

O

R"

OH

X

O

R'

EWGX

O

YX

OR"

R'

Y

X OR"

R'

R'X

O

Nu

R'X

Nu

Oor

NuR'

O

X

R'

EWGNO2 NO2 EWG+ PR3, rt

0.2-0.4 M THF

CO2Et

O

CN

CN

CN

Entry Olefin Cat. (mol %) Time (h) % yield

1 PBu3 (0.5) 1.5 82

2 “ PMePh2 (1) 1.5 79

3 “ PMe2Ph (5) 20 80

4 “ PPh3 (0.5) 160 36

5 “ “ 24 78

6 PBu3 (1) 1 70

7 PBu3 (0.5) 1 21

8 PBu3 (1) 16 75

9 PBu3 (10) 20 33

NO2in

•White, D. A.; Baizer, M. M. Tetrahedron Lett. 1973, 14, 3597-3600.

OZ

Z ZO

Z20 - 95 %MeCN or THF

3-20 % PR3, rt+

Z = ester, ketone

•PPh3, PBu3, PCy3, dppf•Discovered while studying Ru catalyzed Michael reaction

-phosphine ligand thought to dissociate

•Gómez-Bengoa, E.; Cuerva, J. M.; Mateo, C.; Echavarren, N. M. J. Am. Chem. Soc. 1996, 118, 8553-8565.

CO2MeMeO2CO

MeO2CO

CO2Me

MeO2C

MeO2C

O

CO2MeMeO2C

OO

O

O

O

+

+

+

MeCN, rt

3 % PBu3

3 % PCy3

3 % dppf

0.1 h, 95 %

0.1 h, 82 %

8 h, 84 %

95 %

55 %

MeCN, rt3 %, PPh3, 12 h

THF, rt20 % PCy3, 48 h

"

"

R NOH R

OSO2Ph

YSO2Ph+

Y

MeCN (2.0 M)20 % PPh3, 65°C, 2 h

N

Entry R Y % yield

1 H 90

2 H 96

3 py H 88

4 iBu H 89

5 Cy H 88

6 H 90

7 Me 84

8 Et Me 84

O2N

MsO

MsO

•Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis, 2003, 7, 1018-1024.

R NOH R N

OEWG

YEWG+

Y

MeCN (2.0 M)20 % PPh3, 65°C, 2 h

A: R = m-NO2C6H4, Y = HB: R = Ph, Y = Me

Entry Oxime EWG % yield

1 A CO2Et 80

2 B “ 50 (75)a

3 A CN 80

4 B “ 62 (75)a

5 A SO2Ph 95

6 B “ 87

7 A COMe 87

8 B “ 85a Reaction in parenthesis run with 3 eq. acceptor for 16 h

@ rt.

O O

OMe

5 % catalystMeOH, 45 °C

M-BPE =

PP

2 2

Entry Catalyst Time (h) % conv.

1 PMe3 6 95

2 PBu3 6 95

3 Me-BPE 4 93

4 Quinuclidene 48 54a

5 DABCO 16 0a

6 O=PMe3 20 0a

a 10 % catalyst.

•Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696-8697.

Entry EWG R1 ROH Time (h) % yield

1 COEt Me H2O 20 77

2 “ “ MeOH 24 85

3 COMe H MeOH 1 56

4 “ “ Me2CHOH 1 83a

5 “ “ PhOH 16 59a

6 CO2Me Me MeOH 36 71

7 CN H MeOH 4 79a MeCN as solvent.

R1

EWG

R1 OR

EWG5 % PMe3ROH (1 M)

Ph

O5 % PMe3

MeOH NR

O O

Ph3P

O

O

RO

O

RO

O

Ph3P

O

Ph3P

Ph3P

ROH

O5 % PMe3

CD3OD

5 % PMe3CD3OD

O

no exchange

O

D DD Dquant.

RO

Conclusions

• Simple & readily available

• Various reactions stemming from phosphonium enolate

• Efficient reactivity

• Lesson: Always run the control experiment