Phase transition in finite systems

229
1 4 C 3 2 India, 2006 C

description

Phase transition in finite systems. Philippe CHOMAZ, GANIL. Finite systems Zeroes of the partition sum Bimodal event distributions Negative heat capacity Abnormal fluctuations Experimental results Melting of Na clusters Superfluidity in atomic nuclei Fragmentation of nuclei - PowerPoint PPT Presentation

Transcript of Phase transition in finite systems

Page 1: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 2: Phase transition   in finite systems

1 4 C32India, 2006

C

Phase transition in finite systems

Philippe CHOMAZ, GANIL

Finite systems Zeroes of the partition sum Bimodal event distributions Negative heat capacity Abnormal fluctuations

Experimental results Melting of Na clusters Superfluidity in atomic nuclei Fragmentation of nuclei Fragmentation of H-clusters

2

Page 3: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 4: Phase transition   in finite systems

1 4 C32India, 2006

C

*****Chapitre 1

Page 5: Phase transition   in finite systems

1 4 C32India, 2006

C

- I -Introduction

Phase transitionAnomaly in thermo

Page 6: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 7: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 8: Phase transition   in finite systems

1 4 C32India, 2006

C

EOS:

<E>=−∂β logZ

Ex: first order:discontinuous

Phase transition in infinite systems

R. Balian, Springer (1982)

Order n:discontinuity in

Ehrenfest’s definition

∂β

nlogZ

Caloric curve

Z = e−βE ( n)

(n )∑ ⎛

⎝ ⎜ ⎞

⎠ ⎟

L.E. Reichl, Texas Press (1980)

N→ ∞Thermodynamical potentials:

e.g. F = −T logZ

βEOS

Temperature-1

Ene

rgy

<E

>

Thermodynamical potentials:non analytical at

4

Page 9: Phase transition   in finite systems

1 4 C32India, 2006

C

Thermodynamical potentials:non analytical at

Phase transition in infinite systems

No phase transition continuous

Ehrenfest’s definition

EOS:

<E>=−∂β logZ

Ex: Continuous

N→ ∞

βEOS

Temperature-1

Ene

rgy

<E

>

≠Caloric curve

Thermodynamical potentials: Z >0,

∂β

nlogZ

Phase transition in infinite systems

Z = e−βE ( n)

(n )∑ ⎛

⎝ ⎜ ⎞

⎠ ⎟

e.g. F = −T logZ

6

Page 10: Phase transition   in finite systems

1 4 C32India, 2006

C

But anomaly in the entropy Ex: negative heat capacity

Thermodynamical potentials:non analytical at

Phase transition in infinite systems

No phase transition continuous

Ehrenfest’s definition

N→ ∞

βEOS

Temperature-1

Ene

rgy

<E

>

Caloric curve

Thermodynamical potentials: Z >0,

∂β

nlogZ

Phase transition in infinite systems

Z = e−βE ( n)

(n )∑ ⎛

⎝ ⎜ ⎞

⎠ ⎟

e.g. F = −T logZ

EnergyTem

pera

ture

E1 E2

Caloric curve

K. Binder, D.P. Landau Phys Rev B30 (1984) 1477; Lynden-Bell, D. & Wood, R. 1968, Mon. Not. R. Astr. Soc. 138, 495.; W. Thirring, Z. Phys. 235, 339 (1970), D.H.E. Gross, Rep. Prog. Phys. 53, 605 (1990),

C−1 = ∂ET€

T−1 = ∂E S

8

Page 11: Phase transition   in finite systems

1 4 C32India, 2006

C

1st order in finite systems PC & Gulminelli Phys A (2003)

Zeroes of Z reach real axis Yang & Lee Phys Rev 87(1952)404

Re

Im

Complex

k /

T2 Back Bending in EOS (T(E))

K. Binder, D.P. Landau Phys Rev B30 (1984) 1477Lynden-Bell, D. & Wood, R. 1968, Mon. Not. R. Astr. Soc. 138, 495.

Energy

Tem

pera

ture

E1 E2

Caloric curve

Abnormal fluctuation (k(E)) J.L. Lebowitz (1967), PC & Gulminelli, NPA 647(1999)153

EnergyE1 E2

Ck(3/2)

c

c

c

c Free order param. (canonical)

Fixed order para. (microcanonical)

Bimodal distribution (P (E)) K.C. Lee Phys Rev E 53 (1996) 6558

Pβ0 E( )

E1 E2

E distribution at

Energy

10

Page 12: Phase transition   in finite systems

1 4 C32India, 2006

C

*****Chapitre 2

Page 13: Phase transition   in finite systems

1 4 C32India, 2006

C

- II -Origin of singularities

Zeroes of Z ()

Bimodal P(E)

Page 14: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 15: Phase transition   in finite systems

1 4 C32India, 2006

C

, then logZ remains analytical=> No phase transition

Discontinuities from zeroes of Z

Re zeroes of Z

Im

Phase transitions are defined by the asymptotic distribution of zeroes of the partition sum Z

(C.N.Yang T.D.Lee 1952)

If, when , no zeroes of Z converge on the Real axis

N→∞

Complex plane

Page 16: Phase transition   in finite systems

1 4 C32India, 2006

C

, then logZ remains analytical=> No phase transition

Discontinuities from zeroes of Z

Re zeroes of Z

Im

Phase transitions are defined by the asymptotic distribution of zeroes of the partition sum Z

(C.N.Yang T.D.Lee 1952)

If, when , no zeroes of Z converge on the Real axis

N→∞

Complex plane

0 First order phase transitions

A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Im

Re

Yang - Lee theorem

12

Page 17: Phase transition   in finite systems

1 4 C32India, 2006

C

0 First order phase transitions

A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Im

Re

Yang - Lee theorem

Page 18: Phase transition   in finite systems

1 4 C32India, 2006

C

A theoretical definition Only valid asymptotically: V = How to extend it, V ≠ ?

How to use it experimentally ?

0 First order phase transitions

A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Im

Re

Yang - Lee theorem

∞∞

Page 19: Phase transition   in finite systems

1 4 C32India, 2006

C

0 First order phase transitions

A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Im

Re

Yang - Lee theorem

Page 20: Phase transition   in finite systems

1 4 C32India, 2006

C

First order phase transitions A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Link with energy distribution P(E)

0Im

Re

Zβ( )=Zβ0( ) dEPβ0 E( )e−β0−β( )E∫

Z Laplace transform of P:

Pβ E( )=W(E)e−βE/Zβ( )

Ph. Ch., F. Gulminelli, Physica A 2003

Zβ( )= dEW E( )e−βE∫

Page 21: Phase transition   in finite systems

1 4 C32India, 2006

C

First order phase transitions A uniform density of zero's on a line crossing the real axis perpendicularly at 0

Link with energy distribution P(E)

0Im

Re

P1(E)

P2(E)

Bimodal P with EN

Z Laplace transform of P:

Pβ E( )=W(E)e−βE/Zβ( )

<=

> Ph. Ch., F. Gulminelli, Physica A 2003

Zβ( )= dEW E( )e−βE∫

Zβ( )=Zβ0( ) dEPβ0 E( )e+β0−β( )E∫

14

Page 22: Phase transition   in finite systems

1 4 C32India, 2006

C

Fin Zero=>bimodalite

Page 23: Phase transition   in finite systems

1 4 C32India, 2006

C

Closest neighbors interaction

Metropolis Boltzmann weight e-E

Average volume <V> (pressure)

Lattice gas model

Page 24: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Lattice-gas Model

Closest neighbors interaction

Metropolis Boltzmann weight e-E

Average volume <V> (pressure)

Lattice gas model

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

<E> smooth fonction of (canonical caloric curve)

16

Page 25: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Lattice-gas Model

Closest neighbors interaction

Metropolis Boltzmann weight e-E

Average volume <V> (pressure)

Lattice gas model

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

<E> smooth function of (canonical caloric curve)

Page 26: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Lattice-gas Model

En

erg

y D

istr

ibu

tio

n

1

10

100

0.1

Liquid Gas

Energy distribution at a fix temperature

Canonical(Most Probable)

Lattice gas model

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

18

Page 27: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Canonical(Most Probable)

Lattice-gas Model

En

erg

y D

istr

ibu

tio

n d

1

10

100

0.1

Liquid Gas

Energy distribution at a fixed temperature

Discontinuity of the most probable

Lattice-gas model

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

18

Page 28: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Canonical(Most Probable)

Lattice-gas Model

Dis

trib

uti

on

d ’

éne

rgie

1

10

100

0.1

Energy distribution at a fixed temperature

Discontinuity of the most probable

Liquid GasLattice-gas model

Bimodal distribution

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

Page 29: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 30: Phase transition   in finite systems

1 4 C32India, 2006

C

A first order phase transition in finite systems

A bimodal (event) distribution of energy

If the energy is free to fluctuate (canonical - energy reservoire)

<=

>

20

Page 31: Phase transition   in finite systems

1 4 C32India, 2006

C

A first order phase transition in finite systems

A bimodal (event) distribution of an observable (order parameter)

If this observable is free to fluctuate (intensive ensemble)

<=

>

Page 32: Phase transition   in finite systems

1 4 C32India, 2006

C

Access to order parameters Nature of order parameter:

Is it collective? Scaling of the jump with N:

What happen at the thermo limit (N = ∞) ?

Is it a macro. phase transition?

A bimodal (event) distribution of an observable (order parameter)

If this observable is free to fluctuate (intensive ensemble)

A1

A2

A3

Page 33: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 34: Phase transition   in finite systems

1 4 C32India, 2006

C

Tem

per

atur

e,

Pro

bab

ilit

y P

(E

)

Energy

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na Cluster

Liquid-gas in lattice-gas

M

Ising model

Fragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Bimodal distributions

Page 35: Phase transition   in finite systems

1 4 C32India, 2006

C

***** bébut Na

Page 36: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

energy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Variable THelium

Heat Bath

E*(T) Cluster beam

Page 37: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

energy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

+4h

Page 38: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

6h5h3h

3h +4h 6h

Number of evaporated atoms

cou

nts

+4henergy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

Page 39: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

3h 4h 5h 6h

Number of evaporated atoms

cou

nts

3h 4h 5h 6henergy

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

P(E

)

Page 40: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

3h 4h 5h 6h

Number of evaporated atoms

cou

nts

3h 4h 5h 6henergy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

Tem

per

atu

re

Number of evaporated atoms

3h 4h 5h 6h

Number of evaporated atoms

Melting

Page 41: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

3h 4h 5h 6h

Number of evaporated atoms

cou

nts

3h 4h 5h 6henergy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

Tem

per

atu

re

Number of evaporated atoms

Page 42: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

3h 4h 5h 6h

Number of evaporated atoms

cou

nts

3h 4h 5h 6henergy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

Tem

per

atu

re

Number of evaporated atoms

Energy distribution

Expected Photo-dissociation

Page 43: Phase transition   in finite systems

1 4 C32India, 2006

C

Melting of Na147 .

++

3h 4h 5h 6h

Number of evaporated atoms

cou

nts

3h 4h 5h 6henergy

P(E

)

M.Schmidt et al, Nature 1999, PRL 2001

Photo-disintegration

Variable THelium

Heat Bath

E*(T)

E*(T)+ nh

Laser E=nh

Cluster beam

dete

ctor

dete

ctor

Tem

per

atu

re

Number of evaporated atoms

Energy distribution

Expected Photo-dissociation

Observed

Page 44: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 45: Phase transition   in finite systems

1 4 C32India, 2006

C

Tem

per

atur

e,

Pro

bab

ilit

y P

(E

)

Energy

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na Cluster

Liquid-gas in lattice-gas

M

Ising model

Fragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Bimodal distributions

24

Page 46: Phase transition   in finite systems

1 4 C32India, 2006

C

*****Fin bimodalité

Page 47: Phase transition   in finite systems

1 4 C32India, 2006

C

*****Chapitre 3

Page 48: Phase transition   in finite systems

1 4 C32India, 2006

C

- III -Convex S

Back bending T

Negative heat capacity

Page 49: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Canonical(Most Probable)

Lattice-gas Model

En

erg

y D

istr

ibu

tio

n

1

10

100

0.1

Liquid Gas

Energy distribution at a fixed temperature

Discontinuity of the most probable

Lattice-gas model

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

Page 50: Phase transition   in finite systems

1 4 C32India, 2006

C

Lattice-gas model

Canonical(Average)

Canonical(Most Probable)

Lattice-gas Model

En

erg

y D

istr

ibu

tio

n

1

10

100

0.1

Liquid Gas

E distribution P =W(E)e - E/ Z

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

Page 51: Phase transition   in finite systems

1 4 C32India, 2006

C

Canonical(Average)

Canonical(Most Probable)

Lattice-gas Model

En

erg

y D

istr

ibu

tio

n d

1

10

100

0.1

Liquid Gas

Convex Entropy

Microcanonical

Microcanonic: S=logW log Z P =S(E) - E

Entropy

Negative Heat Capacity

Energy (A MeV)-2 -1 0 1 2 3

3.6

3.5

3.4

3.3

3.2

Tem

per

atu

re (

MeV

)

Decreasing T: T-1= dES

T-1 = - dE(logP

Lattice-gas model

26

Page 52: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 53: Phase transition   in finite systems

1 4 C32India, 2006

C

A first order phase transition in finite systems

A negative heat capacity

If the energy is fixed (microcanonical)

<=

>

28

Page 54: Phase transition   in finite systems

1 4 C32India, 2006

C

A first order phase transition in finite systems

A inverted curvature of the thermodynamical potential

If the observables (order param.) are fixed (intensive ensemble)

<=

>

Page 55: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 56: Phase transition   in finite systems

1 4 C32India, 2006

C

Negative Heat Capacity

First Order Phase Transition in Finite Systems .

Lynden-Bell et al, -on. Not. R. Astr. 138(1968)495, cond-mat/9812172

STARS

30

Page 57: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 58: Phase transition   in finite systems

1 4 C32India, 2006

C

Excitation Energy (MeV)

10 2 3 4 5 6

Tem

per

atu

re (

MeV

)

0

0.4

0.8

0.

0.4

0.8

0.

0.4

0.8

1.2172Yb

166Er

162Dy

Mel

by-

1999

Nuclear superfluidity

Gob

et-2

002

Fragmenting H-clusters

F. G

ulm

inel

li, P

h. C

h. P

RL

(199

8)

Canonical liquid-gas

Abnormal curvatures

Convex entropy T decreasing with E

Compressibility < 0Susceptibility < 0

30

Page 59: Phase transition   in finite systems

1 4 C32India, 2006

C

***** bébut superfluid

Page 60: Phase transition   in finite systems

1 4 C32India, 2006

C

At low energy

Melby et al, PRL 83(1999)3150

Decay: level density

X(3He, 3He ’)X*

W(Ef)

32

Page 61: Phase transition   in finite systems

1 4 C32India, 2006

C

Excitation Energy (MeV)10 2 3 4 5 6

Mic

roca

no

nic

al T

(M

eV

)

0

0.4

0.80.

0.4

0.80.

0.4

0.8

1.2

166Er

162Dy

172Yb

Breaking of pairs

Superfluid Nuclei

Melby et al, PRL 83(1999)3150

Decay: level density

Heat

Cap

aci

ty(k

B)

T(MeV)0.5 1.00.0

20.

0.

40.

172Yb

Canonical

T1 logWE

Microcanonical

Superfluid

A.Schiller et al. 2000

X(3He, 3He ’)X*

W =

exp

S

33

Page 62: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 63: Phase transition   in finite systems

1 4 C32India, 2006

C

Excitation Energy (MeV)

10 2 3 4 5 6

Tem

per

atu

re (

MeV

)

0

0.4

0.8

0.

0.4

0.8

0.

0.4

0.8

1.2172Yb

166Er

162Dy

Mel

by-

1999

Nuclear superfluidity

Gob

et-2

002

Fragmenting H-clusters

F. G

ulm

inel

li, P

h. C

h. P

RL

(199

8)

Canonical liquid-gas

Abnormal curvatures

Convex entropy T decreasing with E

Compressibility < 0Susceptibility < 0

Page 64: Phase transition   in finite systems

1 4 C32India, 2006

C

*******Fin C neg

Page 65: Phase transition   in finite systems

1 4 C32India, 2006

C

Negative heat capacities Abnormal energy fluctuations

Multifragmentation

- IV-

Page 66: Phase transition   in finite systems

1 4 C32India, 2006

C

Microcanonical: fluct. partial energy

Wtot = Wk Wp

E2 = 0, k

2 = p2

2 log Wtot = -1/C f(k

PC, Gulminelli NPA(1999)

Heat capacity from energy fluctuation

Canonical: fluct. EtotZtot = Zk Zp

E2 k

2 + p2

2 log Zi = Ci / i

2

2

1can

kk

C

C

−=

Page 67: Phase transition   in finite systems

1 4 C32India, 2006

C

Microcanonical:fluct. partial energy

Wtot = Wk Wp

E2 = 0, k

2 = p2

2 log Wtot = -1/C f(k

PC, Gulminelli NPA(1999)

Heat capacity from energy fluctuation

Canonical: fluct. EtotZtot = Zk Zp

E2 k

2 + p2

2 log Zi = Ci / i

2

2

1can

kk

C

C

−=

35

Page 68: Phase transition   in finite systems

1 4 C32India, 2006

C

Microcanonical:fluct. partial energy

Wtot = Wk Wp

E2 = 0, k

2 = p2

2 log Wtot = -1/C f(k

PC, Gulminelli NPA(1999)

Heat capacity from energy fluctuation

Canonical: fluct. EtotZtot = Zk Zp

E2 k

2 + p2

2 log Zi = Ci / i

2

2

1can

kk

C

C

−=

35

Excitation Energy (AMeV)

MULTICS

MULTICS

D’Agostino et al.

Page 69: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 70: Phase transition   in finite systems

1 4 C32India, 2006

C

Sort events in E* (Calorimetry)

Multifragmentation experiment

Page 71: Phase transition   in finite systems

1 4 C32India, 2006

C

Sort events in E* (Calorimetry)

Multifragmentation experiment

Reconstruct a freeze-out partition

• E2=

iB

i+E

coul

1- Primary fragments: mi

• <E1>=<

ia

i> T2+ 3/2 <M-1> T

3- Kinetic EOS:

• E1=E*- E

2=> <E1>, 1

T, C1 ,2 = C1 T2can

2

2

1can

kk

C

C

−= Deduce C:

Ecoul2- Freeze-out volume:

37

Page 72: Phase transition   in finite systems

1 4 C32India, 2006

C

Heat capacity from energy fluctuation

Large fluctuations

D’Agostino et al.

C12

C1 2/ T2 C =

Page 73: Phase transition   in finite systems

1 4 C32India, 2006

C

Large fluctuations

Heat capacity from energy fluctuation

Ck T2

Ck T2 2

2

D’Agostino et al.

Negative CPeripheral Au+Au eventsC1

2

C1 2/ T2 C =

39

Page 74: Phase transition   in finite systems

1 4 C32India, 2006

C

Flu

ctu

atio

n, C

1

Heat capacity from energy fluctuation

Excitation Energy (AMeV)

D’Agostino et al.

MULTICS

Hot Au, ISIS collaboration

ISIS

ISIS

MULTICS

Ni+Ni, 32 AMeV Quasi-Projectile

Excitation Energy (AMeV)

INDRA

Bougault et al Xe+Sn central

0 2 4 6 80

2

1

INDRA

2

2

1can

kk

C

C

−=Multics E1=20.3 E2=6.50.7Isis E1=2.5 E2=7.Indra E2=6.0.5

Excitation Energy (AMeV) Excitation Energy (AMeV)

Flu

ctu

atio

n, C

1H

eat

Cap

acit

y

Hea

t C

apac

ity

Page 75: Phase transition   in finite systems

1 4 C32India, 2006

C

Au+Au 35 EF=0

Comparison central / peripheral

Up to 35 A.MeV the flow ambiguity is a small effect

Au+Au 35 EF=1

M.D

 ’A

gost

inoI

WM

2001

CCkinkin==dEdEkinkin/dT/dT

peripheral

central

Page 76: Phase transition   in finite systems

1 4 C32India, 2006

C

***** bimodal fragments 2

Page 77: Phase transition   in finite systems

1 4 C32India, 2006

C

Ni+Au INDRA data O.Lopez 2001

B. Borderie, 2001

Xe+Sn INDRA data

Distribution of events.Largest fragment/second largest

Charge big - small

Bimodality in event distribution Multifragmentation of nuclei

Page 78: Phase transition   in finite systems

1 4 C32India, 2006

C

Bimodality in event distribution Multifragmentation of nuclei

Page 79: Phase transition   in finite systems

1 4 C32India, 2006

CO.Lopez et al. 2001, B.Tamain et al. 2003

Z1

Z2 "reservoir" "reservoir"

T

197Au

197AuAu+Au 80 A.MeVINDRA@GSI data

Z1-Z2

Z1

Order parameter Z1-Z2 (big-small)

cf

ρL−ρG

Largest fragment/second largest

Bimodality in event distribution Multifragmentation of nuclei

Page 80: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Chapitre 5

Page 81: Phase transition   in finite systems

1 4 C32India, 2006

C

Conclusion

Negative heat capacitiesBimodality, fluctuations

- V -

Page 82: Phase transition   in finite systems

1 4 C32India, 2006

C

1st order in finite systems PC & Gulminelli Phys A (2003)

Zeroes of Z reach real axis Yang & Lee Phys Rev 87(1952)404

Re

Im

Complex

c Order param. free (canonical)

Page 83: Phase transition   in finite systems

1 4 C32India, 2006

C

1st order in finite systems PC & Gulminelli Phys A (2003)

Zeroes of Z reach real axis Yang & Lee Phys Rev 87(1952)404

Re

Im

Complex

k /

T2 Back Bending in EOS (T(E))

K. Binder, D.P. Landau Phys Rev B30 (1984) 1477

Energy

Tem

pera

ture

E1 E2

Caloric curve

Abnormal fluctuation (k(E)) J.L. Lebowitz (1967), PC & Gulminelli, NPA 647(1999)153

EnergyE1 E2

Ck(3/2)

c

c

c

c Order par. free (canonical)

Order par. fixed (microcanonical)

Bimodal E distribution (P (E)) K.C. Lee Phys Rev E 53 (1996) 6558

Pβ0 E( )

E1 E2

E distribution at

Energy

36

Page 84: Phase transition   in finite systems

1 4 C32India, 2006

C

D’A

gost

ino

PL

B 2

000

Boiling nuclei

Tem

per

atur

e, P

roba

bili

ty P

(E

)

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na ClusterFragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Excitation Energy (MeV)

10 2 3 4 5 6

Tem

per

atu

re (

MeV

)

0

0.4

0.8

0.

0.4

0.8

0.

0.4

0.8

1.2172Yb

166Er

162Dy

Mel

by-

1999

Nuclear superfluidity

Gob

et-2

002

Fragmenting H-clusters

Seen in experiments

Energy

4

Page 85: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 86: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 87: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 88: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 89: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 90: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 91: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 92: Phase transition   in finite systems

1 4 C32India, 2006

C

**** Debut V-E lattice-Gas

Page 93: Phase transition   in finite systems

1 4 C32India, 2006

C

Liquid-gas

Phase transitionand bimodality

Isobare ensemble

P(i) exp-V(i)

Page 94: Phase transition   in finite systems

1 4 C32India, 2006

C

Liquid-gas

Phase transitionand bimodality

Negative heat capacity

Isobare ensemble

P(i) exp-V(i)

Page 95: Phase transition   in finite systems

1 4 C32India, 2006

C

Liquid-gas

Phase transitionAnd bimodality

Negative compressibility

Negative heat capacity

Isobare ensemble

P(i) exp-V(i)

Page 96: Phase transition   in finite systems

1 4 C32India, 2006

C

Liquid-gas

Phase transitionAnd bimodality

Negative compressibility

Order parameter

Negative heat capacity

Isobare ensemble

P(i) exp-V(i)

Page 97: Phase transition   in finite systems

1 4 C32India, 2006

C

Liquid-gas

Phase transitionAnd bimodality

Negative compressibility

Order parameter

Negative heat capacity

Isobare ensemble

P(i) exp-V(i)

Page 98: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 99: Phase transition   in finite systems

1 4 C32India, 2006

C

Tem

per

atur

e,

Pro

bab

ilit

y P

(E

)

Energy

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na Cluster

Liquid-gas in lattice-gas

M

Ising model

Fragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Bimodal distributions

Page 100: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 101: Phase transition   in finite systems

1 4 C32India, 2006

C

**** Ising début

Page 102: Phase transition   in finite systems

1 4 C32India, 2006

C

Magnetization in Ising Model

One Phase

Page 103: Phase transition   in finite systems

1 4 C32India, 2006

C

Magnetization in Ising Model

One PhaseBimodalTwo Phases

Page 104: Phase transition   in finite systems

1 4 C32India, 2006

C

Magnetization in Ising Model

One PhaseBimodalTwo Phases

Second Order

Page 105: Phase transition   in finite systems

1 4 C32India, 2006

C

Magnetization in Ising Model

One PhaseBimodalTwo Phases

Second Order

Page 106: Phase transition   in finite systems

1 4 C32India, 2006

C

5) Ising

Page 107: Phase transition   in finite systems

1 4 C32India, 2006

C

Magnetization in Ising Model

Phase transitiona bifurcation

M

Page 108: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 109: Phase transition   in finite systems

1 4 C32India, 2006

C

Tem

per

atur

e,

Pro

bab

ilit

y P

(E

)

Energy

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na Cluster

Liquid-gas in lattice-gas

M

Ising model

Fragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Bimodal distributions

Page 110: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Début bimod frag

Page 111: Phase transition   in finite systems

1 4 C32India, 2006

C

Ni+Au INDRA data O.Lopez 2001

B. Borderie, 2001

Xe+Sn INDRA data

Distribution of events.Largest fragment/second largest

Charge big - small

Bimodality in event distribution Multifragmentation of nuclei

Page 112: Phase transition   in finite systems

1 4 C32India, 2006

C

Bimodality in event distributionMultifragmentation of nuclei

Page 113: Phase transition   in finite systems

1 4 C32India, 2006

CO.Lopez et al. 2001, B.Tamain et al. 2003

Z1

Z2 "reservoir" "reservoir"

T

197Au

197AuAu+Au 80 A.MeVINDRA@GSI data

Z1-Z2

Z1

Order parameter Z1-Z2 (big-small)

cf

ρL−ρG

Largest fragment/second largest

Bimodality in event distribution Multifragmentation of nuclei

Page 114: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 115: Phase transition   in finite systems

1 4 C32India, 2006

C

Tem

per

atur

e,

Pro

bab

ilit

y P

(E

)

Energy

Energy distribution

Photo-dissociation

3h 4h 5h

Number of evaporated atoms

Haberland-PRL 2001

Melting of Na Cluster

Liquid-gas in lattice-gas

M

Ising model

Fragment asymmetry (Zbig-Zsmall)

INDRA

Multifragmentation of nuclei

INDRA-2001

Bimodal distributions

Page 116: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 117: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 118: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 119: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 120: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 121: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Début neg comp

Page 122: Phase transition   in finite systems

1 4 C32India, 2006

C

Density: Order parameter: Usually V=cst

(“box”) Isochore

ensemble Negative

compressibility

Canonical Lattice-Gas

Density 0

0 0.2 0.4 0.6 0.8

Pre

ssu

re (

MeV

/fm

3)

-4

-2

0

2

4

6

8

4

68

T=10 MeV

Canonical lattice gas at constant V

Page 123: Phase transition   in finite systems

1 4 C32India, 2006

C

Generalization: inverted curvatures

Negative Susceptibility and Compressibility

Canonical Lattice-Gas

Canonical Lattice-Gas

Particle Number

Pressure

Ch

emic

al P

oten

tial

Gulminelli, PC PRL99

Page 124: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 125: Phase transition   in finite systems

1 4 C32India, 2006

C

Excitation Energy (MeV)

10 2 3 4 5 6

Tem

per

atu

re (

MeV

)

0

0.4

0.8

0.

0.4

0.8

0.

0.4

0.8

1.2172Yb

166Er

162Dy

Mel

by-

1999

Nuclear superfluidity

Gob

et-2

002

Fragmenting H-clusters

F. G

ulm

inel

li, P

h. C

h. P

RL

(199

8)

Canonical liquid-gas

Abnormal curvatures

Convex entropy T decreasing with E

Compressibility < 0Susceptibility < 0

Page 126: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 127: Phase transition   in finite systems

1 4 C32India, 2006

C

***** début H clusters

Page 128: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 129: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 130: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 131: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 132: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 133: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n

He

Page 134: Phase transition   in finite systems

1 4 C32India, 2006

C

H2

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

He

H2H2

HH

Page 135: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

He H2

H2H2

H

H

Page 136: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

HeH2

H2H2

H

H

Page 137: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

HeH2

H2

H2

HH

Page 138: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

He

H2H2

H2

HH

Page 139: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

H3+(H2)n’

He

H2H2

H2

HH

Page 140: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

Partition => energy Partition => energy

Page 141: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

Partition => energy

Largest => Temperature

Page 142: Phase transition   in finite systems

1 4 C32India, 2006

C

Fragmentation of hydrogen clusters

Gobet et al, PRL (2002)

Partition => energy

Largest => Temperature

Cooler

Hotter

Page 143: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 144: Phase transition   in finite systems

1 4 C32India, 2006

C

Excitation Energy (MeV)

10 2 3 4 5 6

Tem

per

atu

re (

MeV

)

0

0.4

0.8

0.

0.4

0.8

0.

0.4

0.8

1.2172Yb

166Er

162Dy

Mel

by-

1999

Nuclear superfluidity

Gob

et-2

002

Fragmenting H-clusters

F. G

ulm

inel

li, P

h. C

h. P

RL

(199

8)

Canonical liquid-gas

Abnormal curvatures

Convex entropy T decreasing with E

Compressibility < 0Susceptibility < 0

Page 145: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 146: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 147: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 148: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 149: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 150: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Appendixe flow

Page 151: Phase transition   in finite systems

1 4 C32India, 2006

C

-Appendix - I -Phase transition under flows

Exact theory for radial flow Isobar ensemble required Phase transition not affected

Example of oriented flow (transparency) Exact thermodynamics Effects on partitions

Page 152: Phase transition   in finite systems

1 4 C32India, 2006

C

p(n)∝exp−βEint(n) −β

(r p i(n)−mα

r r i (n))2

2mi=1

A∑ +βmα2

2 ri(n)2

i=1

A∑

Radial flow at “equilibrium”

Equilibrium = Max S under constrains

Additional constrains: radial flow <pr(r)> Additional Lagrange multiplier (r)

Self similar expansion <pr(r)> = m r => (r) = r

Does not affect thermo is flow subtracted Gulminelli, PC, Nucl-Th (2002)

x

zExpansion

p(n)∝ exp−βE(n)− γ(r)r p i(n)

r r i (n)/ri(n)i=1

A∑( )

Thermal distribution in the moving frame

Negative pressure Isobar ensemble

Page 153: Phase transition   in finite systems

1 4 C32India, 2006

C

Radial flow at “equilibrium”

Does not affect thermo is flow subtracted Gulminelli, PC, Nucl-Th (2002)

xz

Expansion

Does no affect r partitioning

Only reduces the pressure

Shifts p distribution Changes fragment

distribution: fragmentation less effective

pres

sure

Page 154: Phase transition   in finite systems

1 4 C32India, 2006

C

Transparency at “equilibrium”

Equilibrium = Max S under constrains

Additional constrains: memory flow <pz> Additional Lagrange multiplier

EOS leads to <pz> = Ap0 with

Affects p space and fragments,

Does not affect the thermo if Eflow subtractedGulminelli, PC, Nucl-Th (2002)

p(n)∝ exp−βE(n)−α τi(n)pzi

(n)i=1

A∑

px

pzTransparency

=-1 target =1 projectile {

<τpz>=∂αlogZβα

r p 0=

r k mα/β

p(n)∝exp−βEint(n) −β

(r p i(n)−τi

(n)r p 0)2

2mi=1

A∑ Thermal distribution in moving frame

Page 155: Phase transition   in finite systems

1 4 C32India, 2006

C

Transparency at “equilibrium”

Affects p space and fragments

Gulminelli, PC, Nucl-Th (2002)

px

pzTransparency

Does no affect r partitioning

Shifts p distribution Changes fragment

distribution: fragmentation less effective

Page 156: Phase transition   in finite systems

1 4 C32India, 2006

C

Transparency at “equilibrium”

Affects p space and fragments

Gulminelli, PC, Nucl-Th (2002)

px

pzTransparency

Fragmentation less effective If Eflow not subtracted

Affect <E> Affect T from <Ek>

Ex: Fluctuations of Q values All thermal (from E = - 2) All relative motion

Up to 10-15% no effect

(T≠23<Ek>)

Page 157: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 158: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 159: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Appendix Coulomb

Page 160: Phase transition   in finite systems

1 4 C32India, 2006

C

- Appendix -II-Thermo with Coulomb

Coulomb reduces coexistence and C<0 region

Statistical treatment of Coulomb (EN,VC) a common phase diagram for

charged and uncharged systems

Page 161: Phase transition   in finite systems

1 4 C32India, 2006

C

Coulomb reduces L-G transition

Reduces coexistence Bonche-Levit-Vautherin

Nucl. Phys. A427 (1984) 278

Reduces C<0 Lattice-Gas

OK up to heavy nuclei

A=207Z= 82

Gulminelli, PC, Comment to PRC66 (2002) 041601

Page 162: Phase transition   in finite systems

1 4 C32India, 2006

C

A unique framework: e-E = e-NEN -CVC

Introduce two temperatures N= and C =q2 O two energies EN and VC

Statistical treatment of Non saturating forces interactions

PβNβC EN,VC( )=W EN,VC( )

ZβNβCexp−βNEN−βCVC( )

C Uncharged C N Charged

Pβ E( )= Pβ,βC =0 E,VC( )∫ dVC

Pβ E( )= Pβ,β E−VC,VC( )∫ dVC

H =HN+q2VC- Effective charge q = 1 charged system -- Effective charge q = 0 uncharged system -

Page 163: Phase transition   in finite systems

1 4 C32India, 2006

C

With and without Coulomb a unique S(EN,VC)

Gulminelli, PC, Raduta, Raduta, submitted to PRL

E=EN+VC, chargedE=EN, uncharged

0.4

0.8

1.2

1.6

2C

oulo

mb

inte

ract

ion

VC

0 2 4 6 8 10 12 14

Pro

bab

ilit

y

0 4 8 12Energy

(EN ,VC) a unique phase diagram

Coulomb reduces E bimodality different weight

rotation of E axis

Energy

C N Charged

C Uncharged

Page 164: Phase transition   in finite systems

1 4 C32India, 2006

C

Correction of Coulomb effects

If events overlap

Gulminelli, PC, Raduta, Raduta, submitted to PRL

Reconstruction of the uncharged distribution from the charged one

Energy distribution: EntropyReconstructed

Exact

0.8

1.2

1.6

2C

oulo

mb

inte

ract

ion

VC

0 2 4 6 8 10 12 14Energy

Pro

bab

ilit

y

0 2 4 6 8 10 12 14Energy

0.8

1.2

1.6

2C

oulo

mb

inte

ract

ion

VC

C N Charged

C Uncharged

Page 165: Phase transition   in finite systems

1 4 C32India, 2006

C

Energy

12

34

Cou

lom

b in

tera

ctio

n V

C

0 2 4 6 8 10 12 14

C N Charged

C Uncharged

Partitions may differ for heavy nuclei Channels are

different (cf fission)

Re-weighting impossible

However, a unique phase diagram

(EN VC)

Gulminelli, PC, Raduta, Raduta, submitted to PRL

Page 166: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 167: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 168: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Appendix equilibrium

Page 169: Phase transition   in finite systems

1 4 C32India, 2006

C

-Appendix - III -Equilibrium in finite systems

Macroscopic One realization (event) at equilibrium

Microscopic Statistical ensemble and information Ergodicity versus mixing dynamics Multiplicity of equilibria What is temperature?

Page 170: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 171: Phase transition   in finite systems

1 4 C32India, 2006

C

Equilibrium : What Does It Mean? Finite systems

In time In space

Isolated open systems No reservoir or bath No container

Page 172: Phase transition   in finite systems

1 4 C32India, 2006

C

Equilibrium : What Does It Mean?

Thermodynamics : infinite system

One ∞ system = ensemble of ∞ sub-systems

Page 173: Phase transition   in finite systems

1 4 C32India, 2006

C

Equilibrium : What Does It Mean?

Finite system

Cannot be cut in sub-systems

Page 174: Phase transition   in finite systems

1 4 C32India, 2006

C

if it is ergodic

Equilibrium : What Does It Mean?

One small system in time

Cannot be cut in sub-systems

Is a statistical ensemble

Page 175: Phase transition   in finite systems

1 4 C32India, 2006

C

if it is chaotic

if it is ergodic

Equilibrium : What Does It Mean?

One small system in time

Many events

Page 176: Phase transition   in finite systems

1 4 C32India, 2006

C

Dynamics: global variables Statistics: population

Many different ensembles

Statistics from minimum information

“Chaos” populates phase space

MicrocanonicalE <E> V <r3> <Q2> <p.r> <A> <L>

CanonicalIsochoreIsobareDeformedExpandingGrandRotating

... Others

Page 177: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 178: Phase transition   in finite systems

1 4 C32India, 2006

C

What is temperature ?T

W equiprobable microstates

S=klogW

L. Boltzmann

Entropy = disorder (-information)

R. Clausius

T is the entropy increase

dS=dQT

Page 179: Phase transition   in finite systems

1 4 C32India, 2006

C

What is temperature ?

The microcanonical temperatureS =T-1 ES = k logW

Page 180: Phase transition   in finite systems

1 4 C32India, 2006

C

What is temperature ?

It is what thermometers measure.

E = Ethermometer + Esystem

The microcanonical temperatureS =T-1 ES = k logW

Page 181: Phase transition   in finite systems

1 4 C32India, 2006

C

What is temperature ?

It is what thermometers measure.

E = Ethermometer + Esystem

The microcanonical temperatureS =T-1 ES = k logW

Distribution of microstates

Page 182: Phase transition   in finite systems

1 4 C32India, 2006

C

S = k logW

What is temperature ?

The microcanonical temperature

It is what thermometers measure.

Distribution of microstates

S =T-1 E

Eth

E

P(E

th)

0 0

E = Eth + Esys

Page 183: Phase transition   in finite systems

1 4 C32India, 2006

C

Most probable partition: Tth = sys

What is temperature ?

The microcanonical temperature

It is what thermometers measure.

Equiprobable microstates

max P => logWth - logWsys =0

S =T-1 E

Eth

E

P(E

th)

0 0

P(Eth) Wth (Eth)* Wsys(E-Eth)

E = Eth + Esys

S = k logW

max P => Sth - Ssys =0

Page 184: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 185: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 186: Phase transition   in finite systems

1 4 C32India, 2006

C

****** Appendix volume

Page 187: Phase transition   in finite systems

1 4 C32India, 2006

C

-Appendix -IV-C<0 in Liquid gas transition

Negative heat capacity in fluctuating volume ensemble

Difference between CP and CV

Difference between C and E(T) Role of the thermo transformation

Negative heat capacity in statistical models and Channel opening

Page 188: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 189: Phase transition   in finite systems

1 4 C32India, 2006

C

- a -Role of volume fluctuationsFixed volume Cv>0 but K<0 Open systems Cp<0

Page 190: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume: order parameter L-G in a box: V=cst

Lattice-Gas Model

Negative compressibility

Density 0

0 0.2 0.4 0.6 0.8

Pre

ssu

re (

MeV

/fm

3)

-4

-

2

0

2

4

6

8

4

6

8 T=10 MeV

Canonical lattice gas at constant V

Gulminelli & PC PRL 82(1999)1402

Page 191: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume: order parameter L-G in a box: V=cst

CV > 0

Lattice-Gas Model

Negative compressibility

Thermo limit

Density 0

0 0.2 0.4 0.6 0.8

Pre

ssu

re (

MeV

/fm

3)

-4

-

2

0

2

4

6

8

4

6

8 T=10 MeV

Canonical lattice gas at constant V

Thermo limit

Gulminelli & PC PRL 82(1999)1402

See specific discussion for large systems Pleimling and Hueller, J.Stat.Phys.104 (2001) 971 Binder, Physica A 319 (2002) 99. Gulminelli et al., cond-mat/0302177, Phys. Rev. E.

Page 192: Phase transition   in finite systems

1 4 C32India, 2006

C

Open systems (no box)Fluctuating volume

Bimodal P(V) Negative

compressibility

Bimodal P(E) Negative heat

capacity Cp<0

Isobar ensemble

P(i) exp-V(i)

PC, Duflot & Gulminelli PRL 85(2000)3587

Isobarcanonicallattice gas

microcanonicallattice gas

Page 193: Phase transition   in finite systems

1 4 C32India, 2006

C

Constrain on Vi.e. on order paramameter

Suppresses bimodal P(E) No negative heat

capacity CV > 0

See specific discussion for large systems Pleimling and Hueller, J.Stat.Phys.104 (2001) 971 Binder, Physica A 319 (2002) 99. Gulminelli et al., cond-mat/0302177, Phys. Rev. E.

Isochorecanonicallattice gas

microcanonicallattice gas

Page 194: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 195: Phase transition   in finite systems

1 4 C32India, 2006

C

- b -Pressure dependent EOSCaloric Curves not EOS Fluctuations measure EOS

Page 196: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume dependent T(E)

Energy

Tem

per

atu

re

Pressu

re

2-D EOS

E TV P

Page 197: Phase transition   in finite systems

1 4 C32India, 2006

C

Lattice-Gas Model

Volume dependent T(E)

2-D EOS

Energy

Tem

per

atu

re

Pressu

re

E TV P

Page 198: Phase transition   in finite systems

1 4 C32India, 2006

C

Lattice-Gas Model

Volume dependent T(E)

2-D EOS

First orderLiquid gasPhase Transition

Critical point

Energy

Tem

per

atu

re

Pressu

re

E TV P

Page 199: Phase transition   in finite systems

1 4 C32India, 2006

C

Lattice-Gas Model

Volume dependent T(E)

Energy

Tem

per

atu

re

Pressu

re

Negative Heat Capacity

TransformationdependentCaloric Curve

- P = cst

- <V> = cst

Page 200: Phase transition   in finite systems

1 4 C32India, 2006

C

Temperature

Ck

Fluctuations

Volume dependent EOS

<V> = cst

P = cst

Page 201: Phase transition   in finite systems

1 4 C32India, 2006

C

Ck

P = cst <V> = cst Volume dependent EOS

Page 202: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume dependent EOS P = cst <V> = cst

The Caloric curvedepends on thetransformation

measures EOSAbnormal inLiquid-Gas

C is not dT/dE

Page 203: Phase transition   in finite systems

1 4 C32India, 2006

C

Caloric curve are not EOSFluctuations are P = cst <V> = cst

The Caloric curvedepends on thetransformation

measures EOS

abnormal inLiquid-Gas

C is not dT/dE

Page 204: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 205: Phase transition   in finite systems

1 4 C32India, 2006

C

- c -Negative curvaturesChannel opening Ex: Statistical models

Page 206: Phase transition   in finite systems

1 4 C32India, 2006

C

C<0 in statistical modelsLiquid-gas and channel opening

q = 0 =>

no-Coulomb

Many channel opening

One Liquid-Gas transition (Vc related to V) 0.

40.

81.

21.

62

Cou

lom

b in

tera

ctio

n V

C

0 2 4 6 8 10 12 14Nuclear energy

Pro

bab

ilit

y

Probability

H =HN+q2VCBimodal P(EN)

Page 207: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 208: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 209: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Appendix iteration et correlations

Page 210: Phase transition   in finite systems

1 4 C32India, 2006

C

-Appendix -V-How to progress

Correcting errors in reconstruction

Iterative procedure

C from other observables Using correlated observables

Page 211: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 212: Phase transition   in finite systems

1 4 C32India, 2006

C

Correction of experimental errors

2

2

1can

kk

C

C

−=

Heat capacity from fluctuations

can can be “filtered”

(apparatus and procedure)

Page 213: Phase transition   in finite systems

1 4 C32India, 2006

C

Correction of experimental errors

2

2

1can

kk

C

C

−=

Heat capacity from fluctuations

can can be “filtered”

(apparatus and procedure) k can be corrected

Iterate the procedure Freeze-out reconstruction Decay toward detector

Reconstructed freeze-out fluctuation

Corrected freeze-out fluctuation

Page 214: Phase transition   in finite systems

1 4 C32India, 2006

C

Heat capacity from any fluctuation

2

2

1can

kk

C

C

−=

From kinetic energy

Page 215: Phase transition   in finite systems

1 4 C32India, 2006

C

Heat capacity from any fluctuation

2

2

1can

kk

C

C

−=

From kinetic energy

From any correlated observable (Ex. Abig)

220

2 11

A

Ak

CC

−=

k k correlation “canonical” fluctuations

Ek

Page 216: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 217: Phase transition   in finite systems

1 4 C32India, 2006

C

noir

Page 218: Phase transition   in finite systems

1 4 C32India, 2006

C

***** Appendix test hypothèses

Page 219: Phase transition   in finite systems

1 4 C32India, 2006

C

-Appendix -VI-Test of freeze-out reconstruction

Volume Coulomb boost

Temperature Isotope ratios Particle-fragment correlations

Alternative extraction

Page 220: Phase transition   in finite systems

1 4 C32India, 2006

C

Multifragmentation experiment

Sort events in energy (Calorimetry)

Reconstruct a freeze-out partition

• E2=

im

i+E

coul

• E1=E* -E

2

• <E1>=<

ia

i> T2+ 3/2 <M-1> T

1- Primary fragments:2- Freeze-out volume:

mi

Ecoul

3- Kinetic EOS: T, C1

=> <E1>, 1

Page 221: Phase transition   in finite systems

1 4 C32India, 2006

C

Multifragmentation experiment

Sort events in energy (Calorimetry)

Reconstruct a freeze-out partition

• E2=

im

i+E

coul

• E1=E* -E

2

• <E1>=<

ia

i> T2+ 3/2 <M-1> T

1- Primary fragments:2- Freeze-out volume:

mi

Ecoul

3- Kinetic EOS: T, C1

=> <E1>, 1

E*

Page 222: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume

From Coulomb boost C Weakly sensitive to V

Au QP

6V0

3V0

M.D

 ’A

gosti

no N

PA

2002

<E

k>

Eflow (A.MeV)

3 4 5 6V0

exp.

central Xe+Sn

R.B

ou

gau

lt 2

002

Ambiguity with expansion

Tiny influence on C

Need isotopic resolution

mass number

<E

k> Z=cte

Page 223: Phase transition   in finite systems

1 4 C32India, 2006

C

Volume

From Coulomb boost C Weakly sensitive to V

Au QP

6V0

3V0

M.D

 ’A

gosti

no N

PA

2002

<E

k>

Eflow (A.MeV)

3 4 5 6V0

exp.

central Xe+Sn

R.B

ou

gau

lt 2

002

Ambiguity with expansion

Tiny influence on C

Need isotopic resolution

mass number

<E

k> Z=cte

Page 224: Phase transition   in finite systems

1 4 C32India, 2006

CM.D’Agostino et al. 2001

3V0

6V0

a=12 a=8

C Ck/(Ck-k/T2)

Ek = E*-Q-Vc(V)

<Ek> = aiT2 + 3/2(<m>-1)T

Ck = d <Ek>/dT Ck<1.5 Atot

2 2Au+Au 35 A.MeV

MULTICS data

Influence on C

Page 225: Phase transition   in finite systems

1 4 C32India, 2006

C

T C isotope

M.D ’Agostino NPA2002

Evaporation and temperature

<Ek> = ai(T)T2 + 3/2(<m>-1)T

Consistency of T

Correlation

Au QPS.Hudan 2002

A/8

A/13

Page 226: Phase transition   in finite systems

1 4 C32India, 2006

C

Heat capacity from the translational energy

( )( )2

2 2)2/3(1)2/3(1

1

1)2/3(

tr

tr

E

mmT

C

m

ET

−−−=

−=

int* EVQEE ctr −−−=

calorimetry

Coulomb trajectories

LCP-IMF correlations

NPA699(02)795

Multics Au+Au 35A.MeV

E.M.Pearson 1985, A.Raduta 2002

Page 227: Phase transition   in finite systems

1 4 C32India, 2006

C

Au+Au 35 EF=0

Comparison central/peripheral

Up to 35 A.MeV the flow ambiguity is a small effect

Au+Au 35 EF=1

M.D

 ’A

gosti

noIW

M2

00

1

Page 228: Phase transition   in finite systems

1 4 C32India, 2006

C

Page 229: Phase transition   in finite systems

1 4 C32India, 2006

C

noir