Phase Separation of Liquid Crystal and Polymer …2009/04/28  · Polymer dispersed liquid crystals:...

34
1 Phase Separation of Liquid Crystal and Polymer Complex System and Its Applications 林怡欣 助理教授 交通大學光電工程學系 website: http://www.cc.nctu.edu.tw/~yilin 04/28/2009 2 Honors and Awards 2008 Glenn H. Brown Prize (Top 4 in the world) 2006 OSA New Focus/Bookham Award (Top 7 in the world) 2005 Newport Research Excellence Award 2005 SPIE Scholarship

Transcript of Phase Separation of Liquid Crystal and Polymer …2009/04/28  · Polymer dispersed liquid crystals:...

  • 1

    Phase Separation of Liquid Crystal and Polymer Complex System and Its Applications

    林怡欣 助理教授交通大學光電工程學系

    website: http://www.cc.nctu.edu.tw/~yilin

    04/28/2009

    2

    Honors and Awards

    2008 Glenn H. Brown Prize (Top 4 in the world)2006 OSA New Focus/Bookham Award (Top 7 in the world)2005 Newport Research Excellence Award2005 SPIE Scholarship

  • 3

    Glenn H. Brown Prize

    4

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

  • 5

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

    6

    Introduction: Liquid Crystal Displays

    100” LCD TV Philips

    Kent Display

  • 7

    LC-based Phase Modulators

    Airborne Laser Terminalhttp://www.seereal.com/

    Tunable focus LC lenses 3D holographic displays

    http://www.raytheon.com/http://alphamicron.com/

    An Air Force helmet Directed Energy Weapons

    8

    Introduction to Liquid Crystals

    Low temperature

    High temperature

    CNH2n+1Cn

    20Å

    n

    Crystal Nematic LC IsotropicTemperature

  • 9

    Optical and Dielectric Anisotropy

    ε∥

    LC director n

    ε⊥ ⊥ε−ε=εΔ ll

    Dielectric anisotropy

    E E

    Δε >0 positive LC Δε

  • 11

    Deformation of Liquid Crystals

    Twist (K22 )

    Splay (K11)

    Bend (K33)

    ( ) 0n ≠⋅∇ vv ( ) n//n vvv ×∇ ( ) nn vvv ⊥×∇Elastic constant: K33 > K11 > K22~S2The unit of Kii: pN=10-12 N

    12

    Reorientation of the Moleculesin Electric Fields

    Electric field (E)+ ++

    - --

    Induced dipole (μ)

    Torque E×= μτ

    Δε >0 positive LC

    •Liquid crystal directors reorient due to the torque.•Liquid crystal directors stop reorienting until they are parallel to the electric field.

  • 13

    Reorientation of the Molecules in Electric Fields

    Electric field (E)+ ++

    - --

    Induced dipole (μ)

    Δε >0

    Electric field (E) + ++

    - --

    Induced dipole (μ)

    Liquid crystals must be driven by AC fields; otherwise, ions accumulate on the alignment layer.

    14

    Induced Dipole

  • 15

    Polarizer

    Liquid Crystal Cells

    ITO

    Alignment layer

    LC

    Glass

    Glass

    Polarizer

    16

    Example: Twisted Nematic LCD

  • 17

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

    18

    Polymer-dispersed Liquid Crystals

    np

    np~no=1.52

    none

    no

    ne

    ITO glass

    LC droplet

    Polymer

    When voltage is off, the cell is translucent.When voltage is on, the cell is transparent.

    Y. H. Lin et al., Appl. Phys. Lett. 84, 4083-5 (2004).Y.H. Lin et al., Optics Express,13, 468-474 (Jan. 24, 2005)

  • 19

    電控毛玻璃

    20

    Fabrication Process

    LC /monomer = E48/NOA65

    Cell filling at T= 60oC (isotropic state)

    Thermal induced and Photo-inducedPhase separation

    UV curing at T= 20oC

    λ=365nmI = 60 mW/cm2

    UV

    Polymer-dispersed Liquid Crystal (PDLC)

    Glass

    ITO

    Glass

    ITO

  • 21

    TPDLC and PDLC Cells

    PI with orthogonal rubbing cell(TN cell)

    No PI cell

    ITO Glass

    Polyimide

    PDLC cell TPDLC cell

    22

    Morphologies

    100 μm 100 μm

    PDLC in TN cell (TPDLC)PDLC in no PI cell (PDLC)

    Microscope morphologies under crossed polarizersTPDLC has smaller droplet size and better uniformity.LC/monomer=70/30

    Y. H. Lin et al, Appl. Phys. Lett. 84, 4083-5 (2004).

    8 μm 6.5 μm

  • 23

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25Voltage, Vrms

    Ref

    lect

    ance

    , %0.00.40.81.2

    0 2 4 6Voltage, Vrms

    R,%

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25Voltage, Vrms

    Ref

    lect

    ance

    , %0.00.40.81.2

    0 2 4 6Voltage, Vrms

    R,%

    PDLC (8 μm)TPDLC (6.5 μm)

    EO Properties: Reflective Mode

    TPDLC has better dark state . CR~900:1 (TPDLC) and CR~250:1 (PDLC)Rise time~5ms and decay time~10 ms (TPDLC) Rise time~8ms and decay time~21 ms (PDLC)LC/Monomer=60/40

    Y. H. Lin et al., Appl. Phys. Lett. 84, 4083-5 (2004).

    λ=633nm

    24

    Application to Reflective Display

    Dye-doped(2 wt%) TPDLCReflector: white paper; Ambient lightLC/monomer= 60/40; Contrast ratio~10:1

    Voltage is on

    Voltage is off

  • 25

    Summary for the Four Cells

    Glass

    ITO

    Polyimide

    Homogeneous cell

    PI without rubbing cellNo PI cell

    TN cellCell gap = 8 μm

    26

    38oC37oC36oC35oC34oC33oC32oC31oC30oC29oC28oC27oC26oC25oC24.5oC 39oC38oC36oC35oC34oC33oC32oC31oC30oC29oC28oC27oC26oC25oC24.5oC

    Thermal-Induced Phase Separation (1)

    No PI PI without rubbing

    The LC droplets flow and coalesce.Cell gap= 8 μm.

    Y.H. Lin et al, Optics Express,13, 468-474 (Jan. 24, 2005)

  • 27

    38oC37oC36oC35oC34oC33oC32oC31oC30oC29oC28oC27oC26oC25oC24oC 36oC34oC32oC31oC30oC29oC28oC27oC26

    oC

    Thermal-Induced Phase Separation (2)

    Parallel rubbingOrthogonal rubbing

    The LC droplets are fixed and nucleated.Cell gap= 8 μm.

    28

    Thermal-Induced Phase Separation in Thin Cells

    Weak surface anchoring Strong surface anchoring

    Nucleation and coalescence Nucleation

  • 29

    λ=365nmI = 60 mW/cm2

    UV

    The Dynamics of PDLC in Thin Cells

    Thermal-induced phase separationPhoto-induced phase separation

    PDLC

    TPDLC

    30

    Surface Pinning Effect for PDLC

    No PI PI without rubbing

    Parallel rubbing Orthogonal rubbing

    Cell gap= 8 μm

    The polar anchoring energy must be larger than 2x10-4 J/m2 to have the surface pinning effects.

  • 31

    Cover Page on Optics Express

    Y.H. Lin et al., Optics Express,13, 468-474 (Jan. 24, 2005)

    32

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

  • 33

    2008 Cover Pagein Physical Review Letters

    •H. Ren, S. T. Wu, and Yi-Hsin Lin "In-situ observation of fringing field-induced phase separation in a liquid crystal and monomer mixture", Phys. Rev. Lett., 100, 117801 (2008).

    34

    Kelvin force:

    ])[(2

    20 EF monomerLC

    rεεε −∇=

    P. Penfield and H. A. Haus, Electrodynamics of Moving Media ( MIT, Cambridge,1967)

    E-field and UV-PIPS

    LC Monomer

    Monomer

    MonomerLC

    LC

    E-field

    EPFrrr

    ∇⋅= EPrr

    )1(0 −= εε

    )(21])[(

    20

    mm EEEEF εεεεε

    −∇⋅−⋅−∇=

  • 35

    VV

    J. West, APL 72, 2253 (1998)

    Polymer Wall Formation

    LC

    1.Phase separation induced by vertical electric field2.LC molecules are in verical alignment during phase separation process

    not easy trace the phase separation process

    CNM/NOA65 ~90/10 with no field

    (a) CNM/NOA65 ~90/10 with no field, (b) CNM/NOA65 ~90/10 with 17.8V/μm,(c) CNM/NOA65 ~80/20 with 17.8 V/μm, (d) (d) CNM/NOA65 ~70/30 with 17.8 V/μm

    36

    E-field Enforced Phase Separation

    Vertical field (1) Little information is known during

    phase separation (2) Forming polymer wall

    Lateral field (Fringing field):(1) Phase separation is easily observed (2) Produce new LC devices

  • 37

    0V (b)

    ITO LC Monomer

    (a)

    Phase Separation Process

    H. Ren, S. T. Wu, and Y. H. Lin PRL 100, 117801(2008) (Cover page)

    Cell Parameters:Width of ITO strip: 4 μmWidth of one period: 14 μmLC cell gap: ~7μmZig-zag=150o

    ε(LC)> ε(monomer)1.LC moves toward the electrodes.2.Monomers are pushed away from electrodes.

    38

    Fringing E-field on Phase Separation

    (c)

    LC/Monomer =30/70

    0V 3 V/μm 14 V/μm

    3 V/μm 0V

  • 39

    Lateral Field induced Phase SeparationBL-003/NOA65=30/70

    In situ Observation of Fringing-Field Phase Separation in LC/polymer Complex System

    Movie

    40

    LC Concentration

    (c)

    (b)

    LC Monomer PI ITO

    W

    (a)V 0

  • 41

    Phase Separation Before, Real-time, and After the Impact of Lateral E-field

    LC/Monomer=75/25

    0V 3 V/μm

    12 V/μm 0V

    42V. Vorflusev and S. Kumar, Science 283, 1903 (1999).

    Phase-Separated Composite Films for Liquid Crystal Displays

  • 43

    Single Glass Substrate Liquid Crystal Device Using Electric Field-enforced Phase Separation and

    Photoinduced Polymerization

    CR=200:1

    Mechanism: Electrodynamics of dielectric fluidsLC aggregates in strong EMonomer diffuses to weak EH. Ren, S. T. Wu, and Y. H. Lin,

    Appl. Phys. Lett. 90, 191105 (May 7, 2007)

    44

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

  • 4545

    Introduction

    1. K. Ichimura et. al., Science 299, 371 (2003).2. S. L. Gras et. al., Chemphyschem. 8, 2036 (2007).3. C. C. Cheng et. al., Opt. Express, 14, 4101 (2006).4.Y. H. Lin, et. al., Opt. Express, 16, 17591 (2008).

    Electrically controlled surface tension

    Photon-induced

    Electrochemical

    Thermal

    PHSwitchable Surface

    ElectrowettingEWOD

    DielectrophoresisDEP

    SAM

    Phase separation(LC/polymer composite film)

    Liquavista

    ADT

    46

    Motivation

    A switchable surface using the orientation of liquid crystal directors.

    V=0

    ITO

    LC/polymer composite film water

    z

    xy

    θa

    glass substrate

    V>Vth

    glass substrate

    waterθb

    Y. H. Lin, et. al., Opt. Express, 16, 17591 (2008).

    4um14um

    12um

    10nm

    國科會計畫:NSC 96-2112-M-009-019-MY2

  • 474747

    Mechanism

    )cos()'cos( θθ ⋅= wR

    Wenzel’s equation (1936)

    )cos()cos()cos( 2211 θθθ ⋅+⋅= ff

    Cassie’s equation (1944)

    Young’s equation (1805)

    LV

    SLSV

    γγγθ −=)cos(θ

    γLV

    γSV γSL

    θ’

    θ

    David Quere, Rep. Prog. Phys. 68 , 2495 (2005)

    4848

    )cos())(cos()](cos[ PPrmsLCLCrms fVfV θθθ ⋅+⋅=LC/Polymer composite film

    VaperLiquid

    rmsLiquidLCrmsVaperLCrmsLC

    VVV

    −− −=γ

    γγθ

    )()())(cos(

    Mechanism

    Liquid crystal/polymer composite film

    Liquid crystal/polymer composite film

    Y. H. Lin, et. al., Opt. Express, 16, 17591 (2008).

  • 49

    AFM Images

    10 wt% LC 20 wt% LC

    30 wt% LC 40 wt% LC

    50

    Optical Microscopy

    P

    A

    LC directors are reoriented by the electric field. Vth ~100 Vrms

    R

    70%LC

    0V50V100V150V200V250V

  • 51

    Definition of Contact Angle

    T. Young, Philos Trans. R. Soc. London, 95 , 65 (1805)

    θ

    LVγ

    SLγSVγ

    SLSVLV γγθγ −=cosYoung’s equation

    γLV : the surface tension between liquid and air

    γSV :the surface tension between surface and air

    γSL :the surface tension between surface and liquid

    Θ : contact angleContact angle: 代表著三相之間力平衡的狀態

    52

    0

    30

    60

    90

    0 1 2 3Time, second

    CA

    , deg

    ree

    -200

    -100

    0

    100

    200

    300

    400

    App

    lied

    Volta

    ge, V

    0

    30

    60

    90

    0 1 2 3Time, second

    CA

    , deg

    ree

    -200

    -100

    0

    100

    200

    300

    400

    App

    lied

    Volta

    ge, V

    0

    30

    60

    90

    0 1 2 3Time, second

    CA

    , deg

    ree

    -200

    -100

    0

    100

    200

    300

    400

    App

    lied

    Volta

    ge, V

    0

    30

    60

    90

    0 1 2 3Time, second

    CA

    , deg

    ree

    -200

    -100

    0

    100

    200

    300

    400

    App

    lied

    Volta

    ge, V

    1. The change of the contact angle increases with the applied electric field.

    2. Max. Δ(CA): 80o- 65o=15o (0-200 Vrms)Surface tension: 13x10-3-30x10-3 [N/m]Response time~200 ms at 200 Vrms , f=1 kHz

    Experimental Results

  • 53

    Tunable wettability

    The change of contact angle is because of the orientation of liquid crystal directors.

    0

    40

    80

    120

    0 1 2 3 4 5Time, sec

    Con

    tact

    ang

    le, d

    egre

    e

    -300

    0

    300

    600

    900

    1200

    Volta

    ge, V

    rms

    70%LC0%LCpure substrateapplied voltage

    54

    0

    2

    4

    6

    0 100 200 300Voltage, Vrms

    Foca

    l len

    gth,

    mm

    TheoryExperiment

    Other Applications: Liquid Lens

    )n-)(ncos-cos-)(2cos-(13Vf

    122

    3

    θθθπ=

    h

    h=R-Rcosθ

    r

    R=r/sinθ

    1. Electrically tunable focus liquid lens using LC/polymer composite film.f~ 4 mm-5.2 mm

    2. Focal length is independent of droplet volume. Movie

  • 55

    Outline

    1. Introduction2. Phase separation of liquid crystal and polymer complex system:

    a. Polymer dispersed liquid crystals: Surface pinning effect

    b. Electric field induced phase separation

    3. Other applicationsa. Tunable wettability of LC/polymer composite filmb. Polarizer-free display using dye-doped LC gels

    4. Summary

    56

    To mimic a white paper

    Red ink in a white paper Dye-doped LC gels

    Motivation

    Goal: Polarizer-free, fast response and high CRflexible LCDs in reflective mode.

    100μm

    Y. H. Lin et al., J. Display Technology 1, 230 (2005).Y. H. Lin et al., Mol. Cryst. Liq. Cryst. 453, 371(2006).Y. H. Lin et al., Opt. Express 16, 1777 (2008)

  • 57

    Dye Absorption

    When polarization // long axis of dye, light is strongly absorbed.When polarization // short axis of dye, light is weakly absorbed.

    polarization

    Dye

    58

    x x

    z

    Mechanism of Dye-doped LC Gels

    The dye-doped LC gel is polarization-independent !!

    V1

    V2

    ITO glass substrate

    Diffusive reflectorLCDye

    Alignment layerPolymer network

    V

    Y. H. Lin et. al., IEEE/OSA J. Display Technology ,1 230 (2005).Y. H. Lin et al., Mol. Cryst. Liq. Cryst. 453, 371(2006).Y. H. Lin et. al.,Opt. Express 16, 1777-1785 (2008)

    dd aveave eeR 2)(2)()( ⋅−⋅− ⋅≈ θβθαθ

    1. V=0 No scattering, little absorption (np~no)2. V>Vth : Multi-domain mode3. V>>Vth: Strong scattering + strong absorption

  • 59

    EO Properties

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 10 20 30Voltage, Vrms

    Ref

    lect

    ance

    10℃20℃30℃40℃

    10 oC

    20 oC

    30 oC

    40 oC

    Unpolarized light λ=543.5 nm

    EO properties depend on the curing temperature.

    CR: 450:1; R(0V)~55%, Vth~7 VrmsResponse time: 6.5 ms @10oC

    20oC curing

    30 Vrms 100 μm

    30oC curing

    30 Vrms 100 μm

    40oC curing

    30 Vrms100 μm

    30 Vrms 100 μm

    10oC curing 20oC curing

    30 Vrms 100 μm

    20oC curing

    30 Vrms 100 μm

    30oC curing

    30 Vrms 100 μm

    30oC curing

    30 Vrms 100 μm

    40oC curing

    30 Vrms100 μm

    40oC curing

    30 Vrms100 μm

    30 Vrms 100 μm

    10oC curing

    30 Vrms 100 μm

    10oC curing

    30 Vrms 100 μm

    10oC curing

    Typical GH LCD: CR~5:1; reflectance

  • 61

    0

    1

    2

    3

    0 10 20 30Voltage, Vrms

    Tran

    smitt

    ance

    , a.u

    .

    beforeafter

    A Polarizer-free Flexible Electro-Optical Switch

    T mode CR :20:1; response time :12ms;Min. Radius~21mm

    It is polarizaer-free, bendable and trim-able.

    30 Vrms30 Vrms 0 Vrms0 Vrms 30 Vrms30 Vrms

    Y. H. Lin et. al.,Opt. Express 16, 1777-1785 (2008)

    Movie

    62

    r = 0.5 μmr = 1.0 μmr = 2.0 μmr = 3.0 μm

    r = 0.5 μmr = 1.0 μmr = 2.0 μmr = 3.0 μm

    r = 0.5 μmr = 1.0 μmr = 2.0 μmr = 3.0 μm

    r = 0.5 μmr = 1.0 μmr = 2.0 μmr = 3.0 μm

    Simulation Results

    1. The dye-doped LC gel is polarization independent.2. The reflectance decreases with tilt angle.

    dd aveave eeR 2)(2)()( ⋅−⋅− ⋅≈ θβθαθ

    θ= 0o

    θ= 30oθ= 45o

    θ= 90oθ= 0o

    θ= 30oθ= 45o

    θ= 90oθ= 0o

    θ= 30oθ= 45o

    θ= 90oθ= 0o

    θ= 30oθ= 45o

    θ= 90o

  • 63

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 10 20 30Voltage, Vrms

    Ref

    lect

    ance

    High density

    Low density0 V

    9 V

    30 V

    3-Step Switch Using Distinct Dye-doped LC Gels

    10.68.6

    Response, ms

    220:1170:1

    CR

    4.60.50Low density5.40.49High density

    Vth, VrmsRmax

    Movie

    Y. H. Lin, and C. M. Yang,Appl. Phys. Lett. 94, 143504 (2009)

    64

    Flexible Displays

    Kent Display

  • 65

    Decorative Displays

    0 V 9 V 30 V

    0 V 5 V

    9 V 30 V

    1. The potential application is monochromatic decorative displays, and e-label.

    2. Increase the value of fashion products in a simple way.

    66

    Summary 1. We have introduce phase separation in LC/polymer complex

    system including surface pinning effect, electric field effect.

    2. Surface pinning effect results in smaller and uniform droplets and better scattering in PDLC, even though the cell gap is thin.

    3. The phase separation induced by fringing electric field depends on LC concentration. Such phase separation can in situ observe the process.

    4. Our LC/polymer composite film is electrically tunable due to theorientation of LC directors. The applications are polarizer-free displays and microfluidic channel.

    5. By combining scattering and absorption, dye-doped LC gels is polarizer-free and is useful in flexible displays.

  • 67

    Acknowledgment

    Thank you for your kind attention !!