PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és...

42
2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund *** **Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben ***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY

Transcript of PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és...

Page 1: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader

PETER PAZMANY CATHOLIC UNIVERSITYConsortium members

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

PETER PAZMANY

CATHOLIC UNIVERSITY

SEMMELWEIS

UNIVERSITY

Page 2: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 2

Peter Pazmany Catholic University

Faculty of Information Technology

Neuromorph Movement Control

Application of biomedical measurements and modeling in medical diagnostics

www.itk.ppke.hu

Neuromorf mozgás szabályozás

(Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

József LACZKÓ PhD; Róbert TIBOLD

Page 3: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 3

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Main points of the lecture• The importance of quantitative comparison of healthy and

patients suffering from movement disorder• Anatomical planes• Movement disorders and their symptoms

• Dystonia• Parkinsonian• Stroke

• Case studies on healthy, dystonic and stroke subjects• Upper limb analysis (touching; target tracking)• Gait analysis

Page 4: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 4

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

• Measured movement patterns of healthy subjects and of patientswith neural based movement disorders are quite different.• One branch of motor control deals with the investigation of

variances of healthy movement patterns and variances of pathologic movement patterns.

• Using this method, scientists reveal control principles employed bydistinct groups of subjects with different illnesses. These contribute toclassification of patients.

• Patients’ neural control usually leads to less movement stability that can be quantitized by the variance of repetitvely excuted motor tasks.

Page 5: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 5

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

The importance of quantitative comparison of healthy and pathologic movement patterns

• Three-dimensional (3D) motion analysis turned out to be apowerful tool for the quantitative assessment of movements.• Thanks to several important features:

• non invasive• within a short period of time measurements can be repeated

and evaluated• provides quantitative and 3D data in kinematics (trajectories,

velocity, accelerations, angles),

Page 6: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 6

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

The importance of quantitative comparison of healthy and pathologic movement patterns

Kinetics (forces, joint moments, joint powers) Quantitative evaluation of muscle activity (EMG)

• Because the comparison of healthy and patients suffering fromdifferent movement disorders/disfunctions is a powerful tool:• Thus: quantitative evaluation of motion represents a fundamental

tool in human movement analysis.• Neural disorders revealed at the level of motor performance.

Page 7: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 7

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

• Application in different fields such as:

• Clinical applications; kinesiology• Quantitative comparision helps to diagnose movement

disorders, e.g. dystonia, Parkinson Disease• It may help to plan the rehabilitation method applied• Thus rehabilitation may focus on the improvement of the

precision of movements of individual body parts or on individual joint rotations, or on improving the cooperation (synergy) of the individual elements.

• Biomechanical studies•

Page 8: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 8

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Clinical applications and kinesiology

• In clinical applications: the breakthrough of 3D motion analysis isattributed to gait analysis• More precisely: the quantitative analysis of walking

• Gait analysis is an important method to represent information:• Crucial in establishing the level of functional limitation due to a

pathology and in following its evolution in time.• The effect of rehabilitation can be followed, monitored.

Page 9: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 9

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

• The clinical importance of quantitative motion analysis:• is demonstrated by the increasing number of laboratories

• Clinical applications are used for diagnosing a pathology;planning of rehabilitation treatment in patients with e.g.:• Cerebral Palsy (Lee et al., 1992; Gage, 2004). • Parkinson disease (Keresztenyi et. al.,2009)• Dystonia • Other movement disfunctions

(hemiplegics,paraplegics,tetraplegics)• Multiplex sclerosis• Down syndrome

Page 10: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 10

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Main anatomical planes in humans

• Transverse (horizontal) plane: is an X-Z plane, parallel to the ground.

• Coronal (frontal) plane is a Y-X plane, perpendicular to the ground, which separates the anterior from the posterior.

• A sagittal (lateral) plane is an Y-Z plane, perpendicular to the ground, which separates left from right.

Horizontal

Sagittal

Frontal

x

y

z

Page 11: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Dystonia: as a disorder and symptoms of itDystonia: is a neurological movement disorder,

• in which sustained muscle contractions cause twisting and repetitivemovements or abnormal postures.

• The disorder may be hereditary or caused by other factors such asbirth-related or other physical trauma, infection, poisoning (e.g., leadpoisoning)

or• reaction to pharmaceutical drugs, particularly neuroleptics• Treatment is difficult and has been limited to minimizing the

symptoms of the disorder, since there is no cure available.

Page 12: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 12

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Parkinson’s disease: as a disorder and symptoms of it

• Parkinson's disease (Parkinson's, PD): a degenerative disorder of the central nervous system.

• It is characterized by: muscle rigidity, tremor, postural abnormalities, gait abnormalities, slowing of physical movement (bradykinesia) and a loss of physical movement (akinesia). Parkinsonian motor control yields higher variability than healthy one .Healthy motor control may reduce biomechanicallz available number of degrees of freedom by empolying joint-synergies and muscle synergies.

Page 13: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 13

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Parkinson’s disease: as a disorder and symptoms of it

– Primary symptoms are the results of decreased stimulation of the motor cortex by the basal ganglia.(It involves insufficient formation and thus action of dopamine produced in the dopaminergic neurons of the midbrain (substantia nigra).

– Secondary symptoms include high level cognitive dysfunction and subtle language problems.

Symptoms at the level of the motor system:– Motor:tremor, rigidity, bradykinesia and postural instability– Neuropsychiatric:cognition, mood and behavior problems

Page 14: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 14

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Stroke as a disorder and symptoms

• Stroke: previously known medically as a cerebrovascular accident(CVA)

• It is the rapidly developing loss of brain function(s) due todisturbance in the blood supply to the brain.

• This can be due to:• ischemia (lack of blood flow) caused by blockage (thrombosis,

arterial embolism),• leakage of blood.

• Result: the affected area is unable to function, leading to inability tomove limbs on one side of the body; inability to understand orformulate speech; inability to see one side of the visual field.

Page 15: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 15

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Comparison of healthy and dystonic patients• A case study of healthy subjects and patients suffering from dystonia

is investigated:• Subjects were asked to perform reaching arm movements:

• Reaching an object placed in front of the subject was executed repetitively.

• Biomedical measurements were performed• EMG (muscle activities of arm muscles(elbow flexor-extensor)) was recorded• 3D joint coordinates were measured to determine joint angles

• Joint angles:• Intersegmental joint angles: elbow;wrist• Shoulder angle: computed with respect to the frontal plane

Page 16: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 16

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Comparison of healthy and dystonic patients• Results of the study concerning kinematics and muscle activities are

presented in the next 3 slides• In the left side of these slides: (Healthy)

• Angular changes of the shoulder,elbow,wrist• Measured and processed (filtered and smoothed) EMG’s of the

• Biceps• Triceps

• In the rigth side of these slides: (Patients with dystonia)• Angular changes of the shoulder,elbow,wrist• Measured and processed (filtered and smoothed) EMG’s of the

• Biceps• Triceps

• Obvious differents in movement execution are present

Page 17: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 17

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Ang

le [o ]

Time [ms]

Shoulder Elbow Wrist

Healthy

1. 2. 3.

t=88

Page 18: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 18

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Ang

le [o ]

Time [ms]

Shoulder Elbow Wrist

Patient with dystonia

1. 2. 3.

Page 19: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 19

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Movement description based on figures of angular changes

• The given motor task: the subjects had to reach an object placedin front of them.

• The movement is partitioned into 3 phases:1. Before touching the object (the time interval lasting from the

starting position till touching the object)2. Touching the object (the time interval between touching the

object and releasing it)3. After touching the object (the time interval elapsed from

releasing the object till the arm is returned in the startingposition)

Page 20: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 20

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Movement description based on figures of angular changes

• It is presented that:• In both healthy and dystonic patients the elbow and the shoulder

joints dominate the movement execution.• The changes of elbow and shoulder amplitudes are much higher than the

wrist• Dystonic patient started shoulder rotation earlier than elbow rotation.

In contrast, healthy subject started elbow rotation earlier than shoulderrotation. Their neural control employed quite different joint synergies.

• Interesting: touching the object interval is not highly effected by thedystonia

Page 21: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 21

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Movement description based on figures of angular changes

• Other obvious differences between healthy and dystonic patients:• In the dystonic patients no exact touching the object can be discerned in all

angular changes• In shouder angle (dystonic subject) there are 2 local maxima opposing to

healthy shoulder angle• It is explained by the symptomes of dystonia

• In the wrist angle (dystonic patient) local minima’s in 1. and 3. occures whenthe elbow reached its local minima’s• In dystonic patients the wrist doesn’t have „self motion” it is synchronized

with the elbow while in the healthy subject 2 local maximas are present inthe wrist angle.

Page 22: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 22

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Healthy Biceps vs. Dystonic BicepsHealthy

Biceps EMG

EM

G

[mV

]

Time [ms]

Page 23: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Healthy Biceps vs. Dystonic BicepsPatient with dystonia

Biceps EMGE

MG

[m

V]

Time [ms]

Page 24: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 24

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Healthy Triceps vs. Dystonic TricepsHealthy

Triceps EMG

EM

G

[mV

]

Time [ms]

t=177

Page 25: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 25

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Healthy Triceps vs. Dystonic TricepsPatient with dystonia

Triceps EMG

EM

G

[mV

]

Time [ms]

Page 26: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 26

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Movement description based on figures of muscle activities

• Other obvious differences between healthy and dystonic patients:• In healthy biceps and triceps the flexor and extensor muscles

are in different phases• It means: if the flexor reaches its local maxima then the

extensor is at a local minima• Such different activity phase is present at t=177 ms• Healthy biceps activity started to increase when the internal

elbow angle was decreasing (t=88 ms);triceps started to reach its top out when the internal elbowangle was incresing (t=177 ms).

Page 27: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 27

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Such normal behavior is not present in the dystonic subject– Chaotic characteristics are the results of muscle twisting and

repetitive movements

Comparion at kinematic level:

– Phase diagram of the elbow and shoulder rotations is presented on the next slide. The motos task was to reach a target and than repose the arm to its initial position

In the case of the healthy subject the relation between the elbow and shoulder angle was very similar in the reaching phase and in the reposing phase of the movement.

Page 28: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 28

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

2D joint space (defined by elbow and shoulder angles) in

„touch the object” movements

• Useful: to investigate the theeffect of dystonia on elbow-shoulder trajectory

• In the dystonic subject thetrajectory in the joint space ishighly effected by the symptomsof the movement disorder.

Shoulder [o]

Elb

ow[o ]

Elb

ow[o ]

Shoulder [o]

Healthy

Patient with dystonia

Page 29: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 29

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Measured knee and ankle joint angle changes during

one step of a rat and predicted motoneuron pool

activity (discharge rate)

Page 30: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 30

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Human Gait analysisHealthy and dystonic subjects

• The movement task: the subject had to perform one step.• 3D coordinates of lower limb joints were recorded in both healthy and

dystonic subjects (on their right lower limbs)• Joint angles of the hip, knee and the ankle were computed

Foot lift swing Foot contact

•1 step of the right leg ( stance and swing phases have the same meaning inrats and humans)

• with different limb kinematics

Hip level

Page 31: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 31

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Gait analysis of healthy and dystonic subjects

• Upper panel: the 3 movementphases show normal behavior

• Lower panel: The obviouseffects of the dystonia (muscletwisting) are present• Angular trajectories are highly

effected by the movementdisorder

Ankle Knee Hip

Normalized Time

Normalized Time

Ang

le[o ]

Ang

le[o ]

Healthy

Patient with dystonia

Stance Swing

Page 32: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 32

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Target tracking of healthy and stroke patients

• The subjects saw a small moving disk on a computer display. Theyhad to follow it with the mouse pointer on the screen controlled byan A/3 size digitizer tablet.

• Two paths were applied(circle and rectangle) and two speed (normaland fast) parameters for the target.

• During the movement:• the spatial (3D) position of the subject’s arm• EMG activities of Deltoid anterior, Deltoid posterior, Biceps and Triceps were

recorded.

Page 33: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Target tracking of healthy and stroke patients (control group)

Calculated arm angular changes during the movement of one representative subject from the control groupCondition: normal circle

Page 34: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 34

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Target tracking of healthy and stroke patients (control group)

Calculated muscle activity values during the movement of the same subject as in the previous slide (Condition: normal circle)

Page 35: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 35

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Target tracking of healthy and stroke patients (patient group)

Calculated arm angular changes during the movement of one representative subject from the patient groupCondition: normal circle

Page 36: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 36

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Target tracking of healthy and stroke patients (patient group)

Calculated muscle activity values during the movement of the same subject as in the case of Fig.3.

Page 37: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 37

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Comparison of healthy and stroke subjects

• In the control subject: thanks to the task (tracking a given trajectory)in almost all joints except „lower arm rot” and „wrist side” sinusoidangular changes are present• Trajectory = circle

• Furthermore: sinusoid muuscle activity patterns were observed• These effects are normal: because the shape of the trajectory to be

followed• However, in stroke the patient: the normal sinusoid angular changes

and muscle activity patterns are not present• Reason: it is originated from the typical symptoms of stroke as a movement

disorder

Page 38: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 38

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Joint & limb angles of stick figure in different gait analysis (rat)

knee ∠

ankle

tip of toefoot

3D mapping of the limb

Page 39: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 39

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Footcontact

FootcontactSwingFoot lift“Loading”

swing phasestance phase

A step cycle (stance and swing phase) in the case of a rat

Page 40: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 40

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Summary• It is really important to deal with 3D motion analysis and the

quantitative comparison of healthy subjects and patients (sufferingfrom either movement disfunction or movement disease)• If we know the symptoms of the movement disorder after

executing a series of measurements on both healthy people andpatients by doing proper analysis we may be able to understandwhich „good motor control feature” (healthy motor control) iseffected by the disease.

• This information can be applied in planning rehabilitation prosessfocusing on the improvement of the discerned dysfuntion.

Page 41: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 41

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Summary (continued)

• Then: a proper method for rehabilitation purposes can be defined andapplied on the patient

• In the lecture: such quantitative comparisons were presented fordystonic, Parkinsonian and stroke patients for both the upper andlower limbs

• In all cases: comparisons were performed based on 3D kineamticsand muscle activities

• The relation of individual angular changes in te joints of 3-jointsystems were presented

Page 42: PETER PAZMANY CATHOLIC UNIVERSITY · Neuromorf mozgás szabályozás (Biomed mérések és modellezés alkalmazása az orvosi diagnosztikában)

2011.09.14.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 42

Neuromorph Movement Control:Application of biomedical measurements and modeling in medical

diagnosticswww.itk.ppke.hu

Suggested Literature

• Lee E.H., Goh J.C., Bose K. (1992). Value of gait analysis in the assessment of surgery in cerebral palsy.Arch Phys Med Rehabil. 73 (7): 642-6

• Gage J.R. The treatment of gait problems in cerebral palsy. Gage JR editor. London: CambridgeUniversity Press Cambridge University Press (known colloquially as CUP) is a publisher given a RoyalCharter by Henry VIII in 1534, and one of the two privileged presses (the other being Oxford UniversityPress);2004

• Keresztenyi, Z., Cesari, P., Fazekas, G., Laczko, J. (2009). The relation of hand and arm configuration variances while tracking geometric figures in Parkinson's disease: aspects for rehabilitation. International Journal of Rehabilitation Research, 32(1), 53-63.

• Thomas T. Warner,Susan B. Bressman, Clinical Diagnosis and Management of Dystonia

• Sándor Gy: 1991