Peter Konik

16
Monte-Carlo simulations of thermal neutron filter and neutron guide system for REVERANS reflectometer Peter Konik Petersburg Nuclear Physics Institute, Gatchina, Russia Saint-Petersburg State University, Saint-Petersburg, Russia

description

Monte-Carlo simulations of thermal neutron filter and neutron guide system for REVERANS reflectometer. Peter Konik. Petersburg Nuclear Physics Institute, Gatchina, Russia Saint-Petersburg State University, Saint-Petersburg, Russia. Contents. Our facilities REVERANS reflectometer - PowerPoint PPT Presentation

Transcript of Peter Konik

Page 1: Peter Konik

Monte-Carlo simulations of thermal neutron filter and

neutron guide system for REVERANS reflectometer

Peter Konik

Petersburg Nuclear Physics Institute, Gatchina, RussiaSaint-Petersburg State University, Saint-Petersburg, Russia

Page 2: Peter Konik

Our facilities

REVERANS reflectometer

Thermal neutron filter

Neutron guide

Current work

Conclusion

Contents

Page 3: Peter Konik

Our facilities

WWR-M

Operational since 195918 MWt3·1014 n/cm2·s

PIK

First critical 2011100 MWt4.5·1015 n/cm2·s3 cold neutron sources1 hot neutron source50 instruments

Page 4: Peter Konik

Vertical scattering plane Both free and interface surfaces Phase boundaries Liquids, solutions, suspensions, colloid

solutions of nanoparticles, liquid crystals

REVERANS reflectometer

Page 5: Peter Konik

REVERANS at WWR-M

+ more neutrons- direct view

Page 6: Peter Konik

Thermal neutron filter

Page 7: Peter Konik

MC simulations

Collimator and filter width 28 mm

Entry window height 80 mm

Exit window height 13.3 mm

Number of collimator channels

3

Entry collimator length 1.77 m

Exit collimator length 1.5 m

Mirror coating m = 2.25

Mirror width 0.38 mm

Critical wavelength 6 Å

Page 8: Peter Konik

PIK neutron guide hall

Page 9: Peter Konik

Guide simulations

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x [m]

[ReactorTubeXY] ReactorTube.XY: Intensity Position Position Monitor (Square) per bin I Ierr N=[1.03797 0.000341065 9.26192e+006]

Min=0; Max=4.23222e-005; Mean= 2.59492e-005; X0=2.77173e-006; dX=0.0346387; Y0=-7.0141e-006; dY=0.0576173;

y [m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10-5

-3 -2 -1 0 1 2 3-8

-6

-4

-2

0

2

4

6

8

[ReactorTubedXdY] ReactorTube.dXdY: Intensity Divergence Divergence Monitor (Square) per bin I Ierr N=[1.03797 0.000341065 9.26192e+006]

Min=0; Max=0.000176385; Mean= 2.59492e-005; X0=0.000416564; dX=0.975999; Y0=0.000104928; dY=2.4769;

Hor. Divergence [deg]

V

ert.

Div

erge

nce

[deg

]

2

4

6

8

10

12

14

16

x 10-5

Page 10: Peter Konik

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

[Coll4XY] Coll4.XY: Intensity Position Position Monitor (Square) per bin I Ierr N=[0.0518884 7.10727e-005 1.00685e+006]

Min=0; Max=1.03948e-005; Mean= 1.29721e-006; X0=1.01155e-005; dX=0.00875294; Y0=0.000123982; dY=0.0570388;

x [m]

y [m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 10-5

Guide simulations

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[Coll4dXdY] Coll4.dXdY: Intensity Divergence Divergence Monitor (Square) per bin I Ierr N=[0.0464921 6.87967e-005 729792]

Min=2.51253e-024; Max=4.66167e-006; Mean= 1.1623e-006; X0=-0.000604858; dX=0.437428; Y0=0.000314909; dY=0.601589;

Hor. Divergence [deg]

V

ert.

Div

erge

nce

[deg

]0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10-6

Page 11: Peter Konik

Guide simulations

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02-0.03

-0.02

-0.01

0

0.01

0.02

0.03

[BenderR1XY] BenderR1.XY: Intensity Position Position Monitor (Square) per bin I Ierr N=[0.00976103 3.02274e-005 223776]

Min=0; Max=1.60163e-006; Mean= 2.44026e-007; X0=0.000126811; dX=0.00898632; Y0=8.71252e-006; dY=0.0144685;

x [m]

y [m

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6x 10

-6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

[BenderR1dXdY] BenderR1.dXdY: Intensity Divergence Divergence Monitor (Square) per bin I Ierr N=[0.00976103 3.02274e-005 221347]

Min=0; Max=2.99619e-006; Mean= 2.44026e-007; X0=-0.000615002; dX=0.451814; Y0=-0.00760648; dY=0.5982;

Hor. Divergence [deg]

Ver

t. D

iver

genc

e [d

eg]

0

0.5

1

1.5

2

2.5

x 10-6

Divergence!

Page 12: Peter Konik

Hyperbolic mirror (i)

Cassegrain reflector

Page 13: Peter Konik

Hyperbolic mirror (ii)

0 10 20 30 400

5

10

15

20

25

30

Angle between beam direction and axe, deg

e = 0.8

m valuedivergence increase

0 5 10 15 20 25 300

5

10

15

20

25

30

Angle between beam direction and axe, deg

e = 0.5

m valuedivergence increse

Page 14: Peter Konik

MC simulation allow to:

Find optimal parameters

Handle complex geometry guides

Simulate new optical elements

Conclusion

Page 15: Peter Konik

Dr. Evgeny Moskvin

Vladimir Zabenkin

Dr. Alexander Ioffe

Acknowledgement

Page 16: Peter Konik

Thank you for attention!