Perturbation theory, linear response, and finite ... - VASP · VASP: Dielectric response...

37
VASP: Dielectric response Perturbation theory, linear response, and finite electric fields University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

Transcript of Perturbation theory, linear response, and finite ... - VASP · VASP: Dielectric response...

  • VASP:DielectricresponsePerturbationtheory,linearresponse,

    andfiniteelectricfields

    UniversityofVienna,FacultyofPhysicsandCenterforComputationalMaterialsScience,

    Vienna,Austria

  • Outline

    Dielectricresponse

    Frequencydependentdielectricproperties

    Thestaticdielectricresponse

    ResponsetoelectricfieldsfromDFPT

    Themacroscopicpolarization

    SCFresponsetofiniteelectricfields

    Ioniccontributionstodielectricproperties

  • Experiment: Staticandfrequencydependentdielectricfunctions:measurementofabsorption,reflectanceandenergylossspectra.(Opticalpropertiesofsemiconductorsandmetals.)

    Thelong-wavelengthlimitofthefrequencydependentmicroscopicpolarizabilityanddielectricmatricesdeterminetheopticalpropertiesintheregimeaccessibletoopticalandelectronicprobes.

    Theory: Thefrequencydependentpolarizabilitymatrixisneededinmanypost-DFTschemes,e.g.:

    GW)frequencydependentmicroscopicdielectricresponseneededtocomputeW.)frequencydependentmacroscopicdielectrictensorrequiredfortheanalyticalintegrationoftheCoulombsingularityintheself-energy.

    Exact-exchangeoptimized-effective-potentialmethod(EXX-OEP). Bethe-Salpeter-Equation(BSE)

    )dielectricscreeningoftheinteractionpotentialneededtoproperlyincludeexcitonic effects.

  • Frequencydependent

    Frequencydependentmicroscopicdielectricmatrix)IntheRPA,andincludingchangesintheDFTxc-potential.

    Frequencydependentmacroscopicdielectrictensor)Imaginaryandrealpartofthedielectricfunction.)In- orexcludinglocalfieldeffects.)IntheRPA,andincludingchangesintheDFTxc-potential:

    Static

    Staticdielectrictensor,Borneffectivecharges,andPiezo-electrictensor,in- orexcludinglocalfieldeffects.)Fromdensity-functional-perturbation-theory(DFPT).LocalfieldeffectsinRPAandDFTxc-potential.)Fromtheself-consistentresponsetoafiniteelectricfield(PEAD).LocalfieldeffectsfromchangesinaHF/DFThybridxc-potential,aswell.

  • Macroscopiccontinuumconsiderations Themacroscopicdielectrictensorcouplestheelectricfieldinamaterialto

    anappliedexternalelectricfield:

    E = 1Eext

    where isa33tensor

    Foralongitudinalfield,i.e.,afieldcausedbystationaryexternalcharges,thiscanbereformulatedas(inmomentumspace,inthelong-wavelengthlimit):

    vtot

    = 1vext

    vtot

    = vext

    + vind

    with

    Theinducedpotentialisgeneratedbytheinducedchangeinthechargedensity#$%.Inthelinearresponseregime(weakexternalfields):

    ind

    = vext

    ind

    = Pvtot

    where isthereducible polarizability

    whereP istheirreducible polarizability

    Itmaybestraightforwardlyshownthat:

    1 = 1 + = 1 P = P + P (aDysoneq.)

    where istheCoulombkernel.Inmomentumspace: = 4e2/q2

  • MacroscopicandmicroscopicquantitiesThemacroscopicdielectricfunctioncanbeformallywrittenas

    E(r,!) =

    Zdr01

    mac

    (r r0,!)Eext

    (r0,!)

    orinmomentumspaceE(q,!) = 1

    mac

    (q,!)Eext

    (q,!)

    Themicroscopicdielectricfunctionentersas

    e(r,!) =

    Zdr01(r, r0,!)E

    ext

    (r0,!)

    andinmomentumspace

    e(q+G,!) =X

    G0

    1G,G0(q,!)Eext(q+G0,!)

    Themicroscopicdielectricfunctionisaccessiblethroughab-initiocalculations.Macroscopicandmicroscopicquantitiesarelinkedthrough:

    E(R,!) =1

    Z

    (R)e(r,!)dr

  • MacroscopicandmicroscopicquantitiesAssumingtheexternalfieldvariesonalengthscalemuchlargerthattheatomicdistances,onemayshowthat

    E(q,!) = 10,0(q,!)Eext(q,!)

    and

    1mac(q,!) = 10,0(q,!)

    mac(q,!) =10,0(q,!)

    1

    Formaterialsthatarehomogeneousonthemicroscopicscale,theoff-diagonalelementsof,*

    +, (, ),(i.e.,for )arezero,and

    mac(q,!) = 0,0(q,!)

    Thiscalledtheneglectoflocalfieldeffects

  • Thelongitudinalmicroscopicdielectricfunction

    Themicroscopic(symmetric)dielectricfunctionthatlinksthelongitudinalcomponentofanexternalfield(i.e.,thepartpolarizedalongthepropagationwavevectorq)tothelongitudinalcomponentofthetotalelectricfield,isgivenby

    1G,G0(q,!) := G,G0 +4e2

    |q+G||q+G0|@

    ind

    (q+G,!)

    @vext

    (q+G0,!)

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|@

    ind

    (q+G,!)

    @vtot

    (q+G0,!)

    andwith G,G0(q,!) :=@

    ind

    (q+G,!)

    @vext

    (q+G0,!)PG,G0(q,!) :=

    @ind

    (q+G,!)

    @vtot

    (q+G0,!)

    sG,G0(q) :=4e2

    |q+G||q+G0|and

    oneobtainstheDysonequationlinkingP and

    G,G0(q,!) = PG,G0(q,!) +X

    G1,G2

    PG,G1(q,!)sG1,G2(q)G2,G0(q,!)

  • Approximations

    Problem: WeknowneitherP and

    Problem: ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:irreduciblepolarizabilityintheindependentparticlepicture3 (or45)

    0G,G0(q,!) :=@ind(q+G,!)

    @ve(q+G0,!)

    AdlerandWiserderivedexpressionsfor3 which,intermsofBlochfunctions,canbewrittenas(inreciprocalspace):

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

  • Approximations(cont.)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    = 0 + 0( + fxc

    )

    P = 0 + 0fxc

    P

    = P + P

    where istheCoulombkerneland89 istheDFTxc-kernel: fxc = @vxc/@ |=0

    1 = 1 + = 1 P

    Random-Phase-Approximation(RPA): P = 0

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = 0 + 0fxc

    P

  • Calculationofopticalproperties

    Thelong-wavelengthlimit( )ofthedielectricmatrixdeterminestheopticalpropertiesintheregimeaccessibletoopticalprobes.

    Themacroscopicdielectrictensor

  • Frequencydependent(neglectinglocalfieldeffects)

    LOPTICS=.TRUE.q 1(!) q lim

    q!00,0(q,!)

    Theimaginarypartof

  • First-orderchangeintheorbitals

    Expandinguptofirstorderinq

    |unk+qi = |unki+ q |rkunki+ ...

    andusingperturbationtheorywehave

    |rkunki =X

    n 6=n0

    |un0kihun0k|@[H(k)nkS(k)]@k |unkink n0k

    whereH(k)andS(k)aretheHamiltonianandoverlapoperatorforthecell-periodicpartoftheorbitals.

  • ExamplesGajdo etal.,Phys.Rev.B73,045112(2006).

    ThefrequencydependentdielectricfunctioniswrittentotheOUTCAR file.Searchfor

    frequency dependent IMAGINARY DIELECTRIC FUNCTION (independent particle, no local field effects)

    frequency dependent REAL DIELECTRIC FUNCTION (independent particle, no local field effects)

    and

  • Frequencydependent(includinglocalfieldeffects)

    FortheKohn-Shamsystem,thefollowingrelationscanbeshowntohold

    = 0 + 0( + fxc

    )

    P = 0 + 0fxc

    P

    = P + P

    where istheCoulombkerneland89 istheDFTxc-kernel: fxc = @vxc/@ |=0

    1 = 1 + = 1 P

    Random-Phase-Approximation(RPA): P = 0

    G,G0(q,!) := G,G0 4e2

    |q+G||q+G0|0G,G0(q,!)

    IncludingchangesintheDFTxc-potential: P = 0 + 0fxc

    P

  • IrreduciblepolarizabilityintheIPpicture:3

    ThequantitywecaneasilyaccessinKohn-ShamDFTisthe:irreduciblepolarizabilityintheindependentparticlepicture3 (or45)

    0G,G0(q,!) :=@ind(q+G,!)

    @ve(q+G0,!)

    AdlerandWiserderivedexpressionsfor3 which,intermsofBlockfunctions,canbewrittenas

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

  • AndintermsofBlockfunctions3 canbewrittenas

    0G,G0(q,!) =1

    X

    nn0k

    2wk(fn0k+q fn0k)

    h n0k+q|ei(q+G)r| nkih nk|ei(q+G

    0)r0 | n0k+qin0k+q nk ! i

    TheIP-polarizability:3

    W = + 0 + 00 + 000 + ... = (1 0)1| {z }1

    Oncewehave3 thescreenedCoulombinteraction(intheRPA)iscomputedas:

    1.ThebareCoulombinteractionbetweentwoparticles

    2.Theelectronicenvironmentreactstothefieldgeneratedbyaparticle:inducedchangeinthedensity3,thatgivesrisetoachangeintheHartreepotential:3.

    3.Theelectronsreacttotheinducedchangeinthepotential:additionalchangeinthedensity,33,andcorrespondingchangeintheHartree potential:33.

    andsoon,andsoon

    geometricalseries

    Expensive:computingtheIP-polarizabilityscalesasN4

  • TheOUTPUT

    Informationconcerningthedielectricfunctionintheindependent-particlepictureiswrittenintheOUTCAR file,aftertheline

    HEAD OF MICROSCOPIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE)

    Perdefault,forALGO=CHI,localfieldeffectsareincludedattheleveloftheRPA(LRPA=.TRUE.),i.e.,limitedtoHartree contributionsonly.SeetheinformationintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    ToincludelocalfieldeffectsbeyondtheRPA,i.e.,contributionsfromDFTexchangeandcorrelation,onhastospecifyLRPA=.FALSE. intheINCAR file.InthiscaselookattheoutputintheOUTCAR file,after

    INVERSE MACROSCOPIC DIELECTRIC TENSOR (test charge-test charge, local field effects in DFT)

  • Virtualorbitals/emptystatesProblem:theiterativematrixdiagonalizationtechniquesconvergerapidlyforthelowesteigenstatesoftheHamiltonian.Highlying(virtual/emptystates)tendtoconvergemuchslower.

    Doagroundstate calculation(i.e.,DFTorhybridfunctional).BydefaultVASPwillincludeonlyaverylimitednumberofemptystates(lookforNBANDS andNELECT intheOUTCAR file).

    Toobtainvirtualorbitals(emptystates)ofsufficientquality,wediagonalizethegroundstate Hamiltonmatrix(intheplanewavebasis: )exactly.FromtheFFG eigenstatesofthisHamiltonian,wethenkeeptheNBANDSlowest.

    YourINCAR fileshouldlooksomethinglike:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

  • Typicaljobs:3steps1. Standardgroundstate calculation

    2. RestartfromtheWAVECAR fileofstep1,andtoobtainacertainnumberofvirtualorbitalsspecify:

    inyourINCAR file.

    3. Computefrequencydependentdielectricproperties:restartfromtheWAVECAR ofstep2,withthefollowinginyourINCAR file:

    ..ALGO = ExactNBANDS = .. #set to include a larger number of empty states..

    ALGO = CHI or LOPTICS = .TRUE.

    N.B.:InthecaseofLOPTICS=.TRUE. step2and3canbedoneinthesamerun(simplyaddLOPTICS=.TRUE. toINCAR ofstep2).

  • TheGWpotentials:*_GWPOTCARfiles

  • ThestaticdielectricresponseThefollowingquantities:

    Theion-clampedstaticmacroscopicdielectrictensor< = 0(orsimply

  • ResponsetoelectricfieldfromDFPTLEPSILON=.TRUE.Insteadofusingasumoverstates(perturbationtheory)tocompute|?,onecansolvethelinearSternheimer equation:

    [H(k) nkS(k)] |rkunki = @ [H(k) nkS(k)]

    @k|unki

    for|?.

    Thelinearresponseoftheorbitalstoanexternallyappliedelectricfield|?,canbefoundsolving

    [H(k) nkS(k)] |nki = HSCF(k)|unki q |rkunki

    where5QF() isthemicroscopiccellperiodicchangeintheHamiltonian,duetochangesintheorbitals,i.e.,localfieldeffects(!):thesemaybeincludedattheRPAlevelonly(LRPA=.TRUE.)ormayincludechangesintheDFTxc-potentialaswell

  • ResponsetoelectricfieldsfromDFPT(cont.)

    Thestaticmacroscopicdielectricmatrixisthengivenby

    q 1 q = 18e2

    X

    vk

    2wkhq rkunk|nki

    wherethesumoverv runsoveroccupiedstatesonly.

    TheBorneffectivechargesandpiezo-electrictensormaybeconvenientlycomputedfromthechangeintheHellmann-Feynmanforcesandthemechanicalstresstensor,duetoachangeinthewavefunctionsinafinitedifferencemanner:

    |u(1)nki = |unki+s|nki

  • TheOUTPUT Thedielectrictensorintheindependent-particlepictureisfoundintheOUTCAR

    file,afterthelineHEAD OF MICROSCOPIC STATIC DIELECTRIC TENSOR (INDEPENDENT PARTICLE, excluding Hartree and local field effects)

    ItscounterpartincludinglocalfieldeffectsintheRPA(LRPA=.TRUE.)after:MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in RPA (Hartree))

    MACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects in DFT)

    andincludinglocalfieldeffectsinDFT(LRPA=.FALSE.)after:

    ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR for field in x, y, z (e Angst)

    c.q.,PIEZOELECTRIC TENSOR for field in x, y, z (C/m^2)

    TheBorneffectivechargetensorsareprintedafter:BORN EFFECTIVE CHARGES (in e, cummulative output)

    (butonlyforLRPA=.FALSE.).

  • Examples

    Gajdo etal.,Phys.Rev.B73,045112(2006).

  • Moderntheoryofpolarization(Resta,Vanderbilt,etal.)

    Thechangeinthepolarizationinducedbyanadiabaticchangeinthecrystallinepotentialisgivenby

    P =

    Z 2

    1

    @P

    @d = P(2)P(1)

    whereP() = fie

    (2)3

    Z

    k

    dkhu()nk |rk|u()nk i

    Toillustratethis,consideraWannier function

    k(r) = uk(r)eikr|wi = V

    (2)3

    Z

    k

    dk| ki

    withwell-defineddipolemoment

    ehri = eZ

    drhw|r|wi

    =eV 2

    (2)6

    Z

    k

    dk

    Z

    k0

    dk0X

    R

    Z

    Vdruk(r)(R+ r)uk0(r)e

    i(kk0)(R+r)

  • =eV 2

    (2)6

    Z

    k

    dk

    Z

    k0

    dk0X

    R

    Z

    Vdruk(r)uk0(r)(irk0)ei(kk

    0)(R+r)

    = i eV(2)3

    Z

    k

    dkhuk|rk|uki

    whereweusedintegrationbypartstoletR workonR insteadofontheexponent,andthefollowingrelation

    X

    R

    ei(kk0)R =

    (2)3

    V(k k0)

    Thefinalexpression,proposedbyKing-SmithandVanderbilt,toevaluatethepolarizationonadiscretemeshofk-points,reads:

    Bi P() =f |e|V

    AiNk?

    X

    Nk?

    ={lnJ1Y

    j=0

    det|hu()nkj |u()mkj+1

    i|}

    where

    kj = k? + jBiJ

    , j = 1, ..., J and u()nk?+Bi(r) = eiBiru()nk?(r)

  • kj = k? + jBiJ

    , j = 1, ..., J and u()nk?+Bi(r) = eiBiru()nk?(r)

  • Self-consistentresponsetofiniteelectricfields(PEAD)

    Addtheinteractionwithasmallbutfiniteelectricfield totheexpressionforthetotalenergy

    E[{ (E)}, E ] = E0[{ (E)}] E P[{ (E)}]

    where () isthemacroscopicpolarizationasdefinedinthemoderntheoryofpolarization

    P[{ (E)}] = 2ie(2)3

    X

    n

    Z

    BZdkhu(E)nk |rk|u

    (E)nk i

    AddingacorrespondingtermtoHamiltonian

    H| (E)nk i = H0| (E)nk i E

    P[{ (E)}]h (E)nk |

    allowsonetosolvefor () bymeansofadirectoptimizationmethod(iterateintil self-consistencyisachieved).

    R.W.Nunes andX.Gonze,Phys.Rev.B63,155107(2001).R.D.King-SmithandD.Vanderbilt,Phys.Rev.B47,1651(1993).

  • PEAD(cont.)

    Lc

    ZEg

    VB

    CB

    L

    Souzaetal.,Phys.Rev.Lett.89,117602(2002).

    e|Ec Ai| Eg/NiNiAi < LZ

  • PEAD(cont.)Oncetheself-consistentsolution () hasbeenobtained: thestaticmacroscopicdielectricmatrixisgivenby

    (1)ij = ij + 4(P[{ (E)}]P[{ (0)}])i

    Ej andtheBorneffectivechargesandion-clampedpiezo-electrictensormay

    againbeconvenientlycomputedfromthechangeintheHellman-Feynmanforcesandthemechanicalstresstensor.

    ThePEADmethodisabletoincludelocalfieldeffectsinanaturalmanner(the self-consistency).

    INCAR-tags

    LCALPOL =.TRUE. Computemacroscopicpolarization.LCALCEPS=.TRUE. Computestaticmacroscopicdielectric-,Borneffectivecharge-,

    andion-clampedpiezo-electrictensors,includinglocalfieldeffects.EFIELD_PEAD = E_x E_y E_z ElectricfieldusedbythePEADroutines.

    (DefaultifLCALCEPS=.TRUE.:EFIELD_PEAD=0.010.010.01[eV/].)LRPA=.FALSE. Skipthecalculationswithoutlocalfieldeffects(Default).LSKIP_NSCF=.TRUE. idem.LSKIP_SCF=.TRUE. Skipthecalculationswithlocalfieldeffects.

  • Example:ion-clamped< usingtheHSEhybrid

    J.Paier,M.Marsman,andG.Kresse,Phys.Rev.B78,121201(R)(2008).

  • PEAD:Hamiltonianterms

    TheadditionaltermsintheHamiltonian,arisingfromthe V termintheenthalpyareofthefrom

    P

    j ={ln det|S(kj ,kj+1)|}unkj

    =

    i2

    NX

    m=1

    |unkj+1iS1mn(kj ,kj+1) |unkj1iS1mn(kj ,kj1)

    Snm(kj ,kj+1) = hunkj |umkj+1iwhere

    Byanalogywehave

    @|unkj i@k

    12k

    NX

    m=1

    |unkj+1iS1mn(kj ,kj+1) |unkj1iS1mn(kj ,kj1)

    i.e.,afinitedifferenceexpressionfor|?.

  • TheOUTPUT ThedielectrictensorincludinglocalfieldeffectsiswrittentotheOUTCAR

    file,afterthelineMACROSCOPIC STATIC DIELECTRIC TENSOR (including local field effects)

    ThepiezoelectrictensorsarewrittentotheOUTCAR immediatelyfollowing:PIEZOELECTRIC TENSOR (including local field effects) (e Angst)

    c.q.,PIEZOELECTRIC TENSOR (including local field effects) (C/m^2)

    TheBorneffectivechargetensorsarefoundafter:BORN EFFECTIVE CHARGES (including local field effects)

    ForLSKIP_NSCF=.FALSE.onewilladditionallyfinf thecounterpartsoftheabove:

    ... (excluding local field effects)

  • Ioniccontributions

    Fromfinitedifferenceexpressionsw.r.t.theionicpositions(IBRION=5 or6)orfromperturbationtheory(IBRION=7 or8)weobtain

    ss0

    ij = @F si@us

    0j

    sil = @l@usi

    theforce-constantmatricesandinternalstraintensors,respectively.

    TogetherwiththeBorneffectivechargetensors,thesequantitiesallowforthecomputationof theioniccontributiontothedielectrictensor

    ionij =4e2

    X

    ss0

    X

    kl

    Zsik (ss0)1kl Z

    s0lj

    andtothepiezo-electrictensor

    eionil = eX

    ss0

    X

    jk

    Zsij (ss0)1jk

    s0

    kl

  • TheEnd

    Thankyou!