Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius...

23
Guowei Wei Department of Mathematics Center for Mathematical Molecular Biosciences Michigan State University http://www.math.msu.edu/~wei SIAM Life Conference Charlotte, August, 2014 Grant support: NIH R01GM, NSF DMS (Focus Research Group), CCF, IIS Michigan State University Persistent Homology for biomolecular systems

Transcript of Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius...

Page 1: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Guowei Wei

Department of Mathematics

Center for Mathematical Molecular Biosciences

Michigan State University

http://www.math.msu.edu/~wei

SIAM Life Conference

Charlotte, August, 2014

Grant support:

NIH R01GM, NSF DMS (Focus Research Group), CCF, IIS Michigan State University

Persistent Homology for biomolecular systems

Page 2: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Möbius Strips (1858) Klein Bottle (1882)

Trefoil Knot

Classical topological objects

Torus Double Torus

Sphere

Page 3: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topological invariants: Betti numbers

0 is the number of connected components.

1 is the number of tunnels or circles.

2 is the number of cavities or voids.

Circle TorusPoint Sphere

0

0

1

2

1

0

0

1

1

2

1

0

1

0

1

2

1

0

1

2

1

2

1

0

Page 4: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topological invariants: Euler characteristic

c =V -E +F -C = -1( )k

åk

bk

Page 5: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Network topology

Page 6: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

(Zhang et al., Nature, 452, 198 (2008))

Topology in nano-bio systems

Page 7: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus
Page 8: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Mug Doughnut

Opportunities, challenges and promises

Challenges with topological methods:

Geometric methods are often inundated with too

much structural detail.

Topological tools incur too much reduction of

original geometric information.

Topology is hardly used for quantitative prediction.

Opportunities from topological methods:

New approach for big data characterization and classification.

Dramatic reduction of dimensionality and data size.

Applicable to a variety of fields.

Promises from persistent homology:

Embeds geometric information in topological invariants.

Bridges the gap between geometry and topology.

Page 9: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Vietoris-Rips complexes of planar point sets

dSvvvvdSS R },,),(|{)(V 2121 σεσε

Simplicial complex:

0-simplex 1-simplex 2-simplex 3-simplex

Page 10: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

kk

k

kk

kk

kk

H

BZ

H

B

Z

Rank

Im

Ker

1

ki

k

i

ik

k vvvv ,...,,...,,)1( 10

0

σ

k

i

i

ic

Simplicial complex:

0-simplex 1-simplex 2-simplex 3-simplex

Boundary operator:

Homology

Frosini and Nandi (1999),

Robins (1999),

Edelsbrunner, Letscher and

Zomorodian (2002),

Kaczynski, Mischaikow and Mrozek

(2004),

Zomorodian and Carlsson (2005),

Ghrist (2008),

……

k-chain:

Chain group: ),( 2ZKCk

Page 11: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Persistent homology is created through a

filtration process

r=1.0

r=4.0

r=2.8r=2.0

r=1.4

Distance filtration:

2

2

exp1

ij

ij

rM

Matrix filtration:KKKKK m 2100

Intrinsic

bar

(Xia, Feng, Tong & Wei, 2014)

0

1

2

Page 12: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

'

22

2

1

/1

j jLN

A

AE

Persistent homology prediction of

fullerence heat formation energies

(Xia, Feng, Tong & Wei, 2014)

Page 13: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Persistent homology prediction of

fullerence isomer total strain energies

CC=0.96

C44

2/1 βLE

C40

CC=0.95

(Xia, Feng, Tong & Wei, 2014)

Page 14: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topological fingerprints of an alpha helix

(Xia & Wei, IJNMBE, 2014)

Page 15: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Protein topological fingerprints

Beta sheet Alpha helix

All atom representation

vs

Coarse-grained model

(Xia & Wei, IJNMBE, 2014)

Page 16: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topological fingerprints of beta barrel

(Xia & Wei, IJNMBE, 2014)

Page 17: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topology-function relationship of

protein flexibility

j

jLA 11

2

2

exp1

ij

ij

rM

j

ij

i

rB

2

2

exp1

(Xia & Wei, IJNMBE, 2014)

Page 18: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topology-function relationship of

protein unfolding

j

jLE 1/1 β

1I2T

(Xia & Wei, IJNMBE, 2014)

Page 19: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Microtubule analysis with cryo-EM data

EMD_1129Molecular structure

fitted with tubulin 1JFF

Helix backbone

(Xia & Wei, 2014)

Page 20: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Topological fingerprints at different noise levels

Original data Ten-iteration

denoising

Twenty-iteration

denoising

Forty-iteration

denoising

(Xia & Wei, 2014)

Page 21: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Persistent homology aided structure prediction

Processed original

data

Fitted with one-

type of tubulins

Fitted with two-

types of tubulins

(Xia & Wei, 2014)

Page 22: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

Concluding remarks

Introduced molecular topological fingerprints. Introduced topology-function relationship. Introduced persistent-homology based quantitativepredictions of protein flexibility, protein folding andmicrotubule composition.

Page 23: Persistent Homology for biomolecular systems...Persistent Homology for biomolecular systems Möbius Strips (1858) Klein Bottle (1882) Trefoil Knot Classical topological objects Torus

P Bates

(MSU)

G Wang

(VPI)

N Baker

(PNNL)

Y Tong

(MSU)

Y Zhou

Colorado S

S.N. Yu

Boston

Y Wang

(MSU)J Wang

(NSF)

Zhan ChenMinnesota

Duan ChenUNCCS Yang

City U KH

W Geng

SMUShan Zhao

Alabama

Y.H. Sun

Denver

X Ye

(UKLR)Z Burton

(MSU)