PERA Containment Data Report - Digital Library/67531/metadc627721/m2/1/high...i I Oq 330 q 900 m...

77
UCRL-ID-128633 * , PERA Containment Data Report T. Stubbs R. Heinle

Transcript of PERA Containment Data Report - Digital Library/67531/metadc627721/m2/1/high...i I Oq 330 q 900 m...

UCRL-ID-128633

*

, PERAContainment Data Report

T. StubbsR. Heinle

DISCLAIMER

This document was prepared as an account of work sponsored by an agency ofthe United States Government. Neither the United States Government nor theUniversity of California nor any of their employees, makes any warranty,express or implied, or assumes any legal liability or responsibility for theaccuracy, completeness, or usefulness of any information, apparatus, product, orprocess disclosed, or represents that its use would not infringe privately ownedrights. Reference herein to any specific commercial products, process, or serviceby trade name, trademark, manufacturer, or otherwise, does not necessarilyconstitute or imply its endorsement, recommendation, or favoring by the UnitedStates Government or the University of California. The views and opinions ofauthors expressed herein do not necessarily state or reflect those of the UnitedStates Government or the University of California, and shall not be used foradvertising or product endorsement purposes.

‘Ms report has been reproduceddirectly from the best available copy.

Available to DOE and DOE contractors from theOffice of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831Prices available from (615) 576-8401, FTS 626-8401

Available to the public from theNational Technical Information Service

U.S. Department of Commerce5285 Port Royal Road

Springfield, VA 22161

Fietded on Data Present inInstrumentation this Event Return this Report

yes yes yes(a)

~ yes yes yes

Stemming yes yes yes

Challenge no .

Cavity no . -

Atmospheric no

MQtiM

Free Field yes yes yes

Suriace yes yes yes

Plug yes yes yes

Stemming no .

Surface Casing no .

Emplacement Pipe no

no .

-(b) ves yes yes

yes yes yes

w(c) yes yes no

no

(a) Descriptiononly.(b) EXCORorCLIPERinemplacementandsatelliteholes.(c) Strain bad on emplacement pipe.

Per-

6. Hudson LLNL L. Starrh LLNLL. Dreling LLNL F. Siwa EG&WAVOJ. Kalinowski EG&WAVO L. Davies EG&WNVOT. Stubbs EG&WAVO A. Moeller EG&WNVO

Contents*

1. Event Description1.1 Site1.2 Instrutintation”. :1.3 Emplacement . .

2. Stemming Pedormanoe2.1 Pressure and Radmtion2.2 Motion

3. Collapse Phenomena3.1 Pressure and Radiation “3.2 Motion . .

4. Satelliie Hole Measurements .4.1 Motion4.2 Collapse Phenomena :4.3 Stress Measurements .

References . . . .

.

..

112

910

3031

434444

70

.

,

LuitQ

The PERA event was detonated in hole U1Obdof the Nevada Test Site as indiiated in

figure 1.1. The PERA device had a depth-of-burial(DOB) of 201 m in the Paintbrushtuff of

area 10, about 300 m above the Paleozoicformationand 550 m above the standingwater

tevel, as shown in figures 1.2 and 1.3(’). Stemmingof the 2.44 m diameter emplacement

hole followedthe plan shown in figure 1.4. A log of the stemmingoperations was maintained

by Holmes& Natve~2).

Detonation time was 10:00 PDT on August 8, 1979 and collapse progressed to the

surface about 12 minutesafter detonation.The resultingsurface crater had an average radius

of 39.6 m and a maximumdepth of 4.9 m.

No radiationarrivalswere detected above ground and the PERA containmentwas

considered successful.

Figure 1.5 is a schematic layoutof the instrumentationdesigned to monitorthe

emplacement procedures and stemming performance of the PERA event.

Pressureand radiationwere monitoredat eight places inthe stemming material,as shown in

figure 1.5. Four of the stationswere in the stemmingbelow the deepest rigidplug with two of

the eight being of an experimentaldesign. The experimental stationswere placed immediately

below each plugand each experimentalstationwas accompaniedby a standardstationat nearly

the same elevation.

Vertical motionwas monitoredin both rigidplugs, the ground surface, 15.42 m from SGZ and

in the recordingtrailer.

Vettical free-field motionwas monitoredat twelve elevations (stations) in the satellite hole

UelObd and eight of these stationsincluded“flat-pack”Ytterbium stress transducers. See

figure 1.6.

1

Data from each of the above instrumentswere transmittedto the recordingtrailerby an

anafog system and recorded on magnetictape.

D-cabfe informationwas used for qualityassurance duringthe stemmingoperations. One

CLIPER sensor was mounted in the emplacement hole on the containment gauge pendant

abng with the D-cable to monitorthe progressionof cavitycollapse. Another CLIPER was

fielded in the satellite hote.

A historyof the fielding operations of the instrumentationis outlined in reference 3.

Details of the instrumentationare given in reference 4.

1.3. F~

Both stemming plugs above the PERA event consistedof “LAE 59” rigidcoal-tar epoxy

(CTE) tayers.The top plugwas composedof a 3.0 m layerof rigii foam cubes and sand,

sandwichedbetween layers of CTE. The total thickness of the two layers of CTE inthe top

plug was 4.8 m whch was designed to be completely containedwithin the bottomportionof

the surface casing, beginning about 2 m above the bottomof the casing.

A drag ringwas mounted rigidlyto the pipe at the bcatbn of the deepest CTE plug and the

emplacement pipe was coated with hydroseal in the regionof the top plug to allowfree motion

of the pipe through that structure. The bottom plug was expected to couple the emplacement

pipe to the geologic formation at the elevation of the plug.

Stemming between the plugs consistedof layers of fines and coarse gravel. The top of

the hole (above the top plug) was filled with coarse gravel and the inside of the emplacement

pipe stemmed with Overton sand from the diagnosticscanisterto the Tau can and was grouted

for the remainderof its full length above the Tau can. See figure 1.3.

Instrumentationfor the satellite hole was hung on a fiber glass pipe, oriented to the device,

and then grouted from depth to the ground surface. See figure 1.6.

2

*

.

.

19

2

18

30

29

12

17

25

16

14

1 I 3

Cp-1*

I6

426

5

L 27

28

T23

22

.

Figure 1.1 Map of the Nevada Test Site indicatingthe locationof hole UIObd.

3.

.

iI

Oq

330 q

900 m

GZNESALIZED CSOSS SZCTIONOF

Ulobd - Ulobc

EXPLWVATIOV Revision 2 01-25-78

QTal - Quaterna?y and Tert%ary Alluvi~Tmr - Tertiary Saner Mesa Heaber

Q - Tertiary Paintbrwh Tuff

~q - Tertiary Grouse Canyon Tuffl-u - Tertiary T.nnol beds and older tuffmPz - Pale.azoic rocks undividedSWL - Static Water Level

● - Bend in scctm”

@ - Coil.vium

-Pl,k!v VIEW

Om 45

Ad Gravity inferrsd

scarps on Pale.az.oic

bb surface

]1 surface scsrps

A Gravity refer~ce point

#

YY

YY

YY

Yv

Y

4 ‘,

i k

+

f“ { 4

#4

: 7 4v f

E 207000i

E 206000 E 209000

.

Figure 1.2 East-West geobgic cross sectionthrough hole U1Obdincludinga plan map of thevicinity. Uel Obdis 18.3 m due East of UIObd.

4

-1902.

‘u:~2

Qml

I

QTal146

17 .-.* - __

.%,=- 1329 .’qN, ,;

*9* 2s : ~%9 :

Ii * 1335 *U%... ;

~la-

S42 pz .>

SWL lest) 754*1SMP; 33

]/Surface s.cups

G)XCML12ED CSCSS SECTION0P

L 6 GravityX. f.rence pint

4

QTal - @aternary ●nd Tertiary Alluvium‘1’mr- Tertiary Same.r msa SsrLmr

m - Tertlaq lalntbr.sh Tuff

* - Tertiary Cmus. Canyon TuffW - Tertiary Tunnel Be-d.and older tuffsP* - Paleozoic rocks undlvideOSWL - St.tmwater Level. - Bend in Section

S?&- Co,lu”lum

N 268W0Y

Y

Yv

YY

Y

: i

+3U11X \

: 4 44 i

0: 4f

N 266E 207000 z Nlaxlo E ’209 bo

Figure 1.3 North-southgeologiccross sectionthrough hole U1Obd includinga plan map of thevicinity. Uel Obdis 18.3 m due East of UIObd.

5

S.IRFACE-- ——-.—.

-e- -m- -r]!&.- –98”D SURFACE,*-m*amac=m. ,

CGNZIUCTOR

-.-r75

FAN

k::!

. –. -.-_ —...-.

.,. .-:..””.. ? “-. .. .. . . .+.:-~...o,~;,~; ,.

***..=..’**.●* .*? *6.-*-

● e --

OUT -L124 \LAE 59PLASTIC PLUG

LLL COARSE F ILL165 TYP 6 PLC,

216LLL STEMMING MIXTYP 6PLCS -

246

,.

FAN

[

167 .

OUT. .

211

—ZJG9K

OUT L2965

267

b

:-i:,-.

283 .4. ~LAE 59,

+.

‘:.: :.*-.9..::. -*:”: .*-... .“...: -. . PLASTIC PLUG. .-.. ”.-*.-?

●** ● ●

lx —TAU CANISTER327.53

39 I,..... .

427 t .-

8 .. ...s..

FAN344.5

[‘UT 388.5

5’;X201bs/ftr28FAN

OUT

72

CA-SIN G--i)ii-RTONSAND FROM( 327:5 -629.:

● 9 --. e-*● ●-. . ..

Ill r●:00:.. 96”0 UNCASEDD

●* ●. . .0 HOLE..** em*

●● ...*

.O: O.:..●* ●*O ●.

● ..* *o*

H

● *.e*O’**. .:* :.* ●*:*9:..

● * ●●O**..*..* :*’.*!*.-*. /_-OVERTON SAND

615

EXPERIMENTCANJSTER

670688

COLEMANITEOVERTON SAND

LLL COARSE FILL

700

Figure 1.4 As-builtstemming plan for the event PERA in Hole U1Obd.

6

.

,

.

.

Figure 1.5

. . .

QKJJFEET ~—

W“ “0 SWAS2 -TOR P :‘r

PLASTIC SEILIN& PLLIG

.74.0 (Z.$$) —

nlelo PAA2TIC PLUO

2s7.0 hl. m)

‘)

f219.0(m.2s).,.

PLASTIC PLm‘4ml CM. --/

O CABLE SARKERSOSPTN IN FEET

-sn-sm~ ..—

w .$ Xo.s

521,1 241.011,0 II.0

TW OF OIWIEWIC CA*.

-1I

29. S’F1.

m lm.I (llo.14i __ll

,

I~ 84 — Tll

i.

T

sc

Ip.o ( 3.04) -03—ss m6

&

100.1 (30.40) — m — TM (A, I,C,O)

;h10s.8 (s2.00) — 22 — Av4,dv, nl

lm.o (m.lo) —24 — SA,PSlbI 12; .0 (s0.71) - 2iA — SAYS

I

IA!- “’Im. o (s6.$1) — Ss — SA,PS

&IL 2s2.0 (70.11)— S4 — IVA,PX

274.s (ss.ss)— c1 - 1+!!(0)

274,5 (03, tC)— 21 ‘— UV,AV,TN

I

Zm.o (1s.ss) — 3S _ RA,PK

io~:o (en.ss)— s2A — 84, PS

sSS.0 (l!z.41~ S2 — RA. PX

4$9.0 (13 MS+-- 31 _ M,PK

0s0.0 (lM.12+--- : -c :Lms”.o (lis.B4~ 01 — o

I

!,

SssnnK

1 STWING CtN I STER

d T21ESNIS70R

I STEM I FIGRELEASEChlAISTER

STRAIN 6A6E

I .0, CABLE

I CLIPER

+STEUU I W MoPPC3

Lf6EI(u

L - CLIPER

- ‘o, C4BLE

A - RAOIATION

i - PRESSURE TR4NSOUC[R

v - VERTICAL VELOCITY

V - VERTICAL ACCELER:MSIE -

N- TEUPERATUREC - STRAIN GAGE

As-buittcontainmentinstrumentationplan for the emplacement hole (UI Obd)onthe PERA event.

7

% IL-...CONhGUi’AT~ON

!?

sAVSILIT[FIOL4 VolObd00.$$1. fsoo ulob4

p me’-—

13--01 l/2”$fuL Plvs —

Pln 1R4NSITISW —SS- 0 LIWR —

WITOS OS L12ER WO’-

15”# SssSS—

a 1/2” FIS4SOL4SS PIFS ~tllmsolc SEC?ImsPL41n MIS SLOSVEO

Ms. o’—

NOM : lMIsSS OIHISS I Sf SVECIFlfO1. s7flfss CAGES 8sS LOCATED

t o n. SS102 RSFESSSCE0EPV2 SIIW

E.*. —

12. E” C WLE —

on.o’-

ELEvNIOS MsswnsuswlFfEl (Wn4) STA OR $IWSL

:.0 —(0.0) — 01 —S~.~~

0s.0 —(s0.23> =-~~.~

1s1.0 —(43.s4)— w —av,us

221.I —(s0.22- S4-sv, us

20s.1 —(n.sov- 40 —w,uscr

12=ns.i lm. oo- so-ov,wu

Soo.s +!0s.44+ 41—ov,w@

If-f- ‘sl”O‘(’’o”)- “–’’”””ap+--- 444.0 –,,s0..> 4S-,V,US

F4ss.1 —(151 .s2)— a—~~.~u

S14.O —(104.04& 42 —AV,UV~

lFt-5s1.2 —(101.01> 42 —~v!ova

i

I

I 1E6EN0 1

CL — CLIVSR

Iv — vER!ICALACCELERCUSTER

uv— VERTICAL vELOCIT1

0- — *,~s~

& CLl?Sh

0– C04PSSS

J– S14SSS ssss

0– SATFLLI IE C4NlSlfR

Figure 1.6 As-buittinstrumentationplan for the satellite hole (Uel Obd)on the PERA event.

8

.

.

I

,.

Pressureand radiationwere monitoredon the PERA event at eight stations in the

stemmingof the emplacement hole and the first 5 secondsof the wave forms of six of these

stationsthese are shown in figures2.1-2.6. Two of the eight stations(33A and 36A) were a

test of an experimental data system. Unfortunately,there were no calibrationsteps d~itized for

these stationsso, at this time, the magnitudeof the wave forms observed can not be accurately

determined and the data are thus not presented. Wave forms spanning 1,000s of recording

time, includingthe mllapse at about 720s, are showninf~ures2.7-2.12. Station 31 (the

deepest) and station 36 (just below the top plug) both appeared to survive collapse (figures2.7

and 2.12) althoughit is unlikelythat station31 actuallydid suwive, in view of the behavior of the

stationsbetween it and station36 (figures 2.8-2.11). Figure 2.13 includes the entke recording

time of greater than 5,000s for station36 and indiiates a sliiht jump in radiationafter 1,000s

probablycaused by a shift in positionof the source chip relativeto the detector.

Oscillationsseen in all pressure remrds priorto 0.6s are due to ground shock in the

recordingtrailer. Station 31 shows a peak in the pressureof 16 psia at about 2.5s (about 3.6 psi

above ambient), decaying to about 0.3 psi above ambient at collapse time (figures2.1 and 2.7).

Each of the stationsabove this had similarbehavior, butwith much lower ampliiude,

equilibrating,at collapse time, to ambient pressure. It is suggestedthat all pressurechanges

can be attributedto ground mot-km.

Most of the radiatiin transducerswere driven off scale by the EMP and dti not recoverfor

more than 40s and so do not show meaningfuldata after time zero infigures 2.1-2.6. No

radiationarrivalwas detected before collapse at any stationwhen they did recover.

No radiationarrivalswere obsetved above groundat any time after the PERA event and

the data are consistentwith satisfactorycontainment.

9

Explosion-inducedhistoriesof the motion measured in the emplacement hole and

recordingtrailer on the PERA event are shown in figures2.14-2.17. Characteristicsof the

associated motion and transducersare given in tables 2.1-2.3. Note that the tables also

include data from the satellite hole, discussedin a later section.

An early arrival seen at station21 (figure2.14) is likelydue to motionof the emplacement

pipe coupled to the @ii plug throughthe drag ringand is not ground motion. Its influence is

seen to decrease with each successivestage of integration. The explosion-inducedmotion

at other stationswas unremarkable.

10

.

.

UIObd

o-

50-

E100 –

s-

g

n

150 –

200 –

cd.-U3Q

18

r

116 -“------

4 ‘“-”--”--

2 .........

10L10°

5ii? 10-’ ~........

0-~al

g 10-2~.......

n

10-3~

..........................+ .................

........

........................... .......................... ...................+.....-................... ............ ..........-

)Illlt’ltitl’’lt’” “’’’’’’’’’’’’’’’” “ i 1 I I IIIILJ

n-r

.........

l-n-

........

rlllillllillllllljll

..........................+............--------------

.......................... ..........................

r

,..

.. 1..................@4yu&-Q3J--yJ-+5

Time, s

Figure 2.1 The first 5s of pressureand radiationdetected in the deepest fines plug of theemplacement hOle(Station 31atadepth of139.9 m). Theoscill.ations.inthe pressurerecordbefore 0.6s were caused by groundmot.kmin the recordingtrader and theradiationdetectorwas drivenoff-scale by the EMP.

11

UIObd

.

.

o–

50 –

E1oo-

C“

g

n

150–

200 –

-o32

116 -.

14 ...

12 .-

“’’i’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’” “’’’’’’’’look,,,,

10- 7 ........

P10-’

q10-’AJAl

m

........

........

Lu

[

...

...

L

T

....

....

u

.............-

.............-

11 I 1 I

5

Figure 2.2 The first5s of pressure and radiationdeteoted in the second fines plug of theerrplacement hole (Station32 at a depth of 112.5 m). The oscillationsinthepressure record before 0.6s were caused by ground motion in the recordingtrailerand the radiationdetectorwas driven off-soale by the EMP.

12

I*

UI Obd

o-

50

1

nI

I 150

I4

200

.

-o33

10°

10-’

1

.....

10-2

10-3

1 I I 1111(

........................

........................

11111111(

11 1 IIllf

........................

........................

l~illlllt

I I 1 llllr

........................

U1llIIII

2

Time, s

I i I IJllll’JJllll”~

.......................... .......................—

...................................................

)I1*I1*lI1ll!IIII’14 5

Figure 2.3 The first5s of pressure and radiationdetected inthe fines layer belowthe rigidpluginthe emplacement hole (Station 33 at a depth of 89.9 m). The oscillationsin thepressure reocmfbefore 0.6s were caused by ground motion in the recordkigtrailerand the radiationdetectorwas driven off-scale by the EMP.

13

UIObd

9

o–

50 –

E1oo-

c-

g

n

150-

200 –

18 -l-Ill

16 . .......

14 -“-”””--

~12 --------

10 ~

10-’ . ........

10-2

(

..........

.........

4

....................................

.....................................

!::....... .......................................................................... ............................ ......................._

llllllllllilllll~ll Ilktlllllliliillll I till 1 I 11111

n

......

,.....,

u

r

..

,..

JIJ . . .

.1-.-,

1

1

1

Time,

r

..

..

s

Figure 2.4 The first 5s of pressure and radiationdeteoted in the fines iayer atme the rgidpiuginthe emplacement hole (Station 34atadepth of76.8 m). Theosciiiationsinthe pressure reoordbefore 0.6s were caused by ground motion in the reccmiingtraiierand the radiationdetectorwas driven off-soaleby the EMP.

14

.

UIObd.

o–

50 –

E1oo-

r“

g

n

150-

200 –

035

10-’ ~ .......

11111111(

........................

.......................

I I 1 llil~

Time, s

Fgure 2.5 The first5s of pressure and radiationdetected in the fines layer intermediatebetween the rigidpfugand the top plug (Station 35 at a depth of 56.4 m). Theoscillationsin the pressure recordbefore 0.6s were caused by ground motioninthe recordingtrailer and the radiationdetectorwas driven off-scale by the EMP.

15

o

50

E100

150

200

.

UIObd .

18 ~

16 -----”--”

14 - ........

12 ---””-”-”

10 ~

bllsllrlf

+............ ..........

II11N811(

100E,,,,,,,,, I,,, (

10-’ ~:.....................................

10-2p ..........................

10-3 ’11’ 11I 1Ilillo

111111111

.......................... ..........................

.........................+................................................

111:11111

Time, s

........................

........................

J41118111

5

Figure 2.6 The first5s of pressure and radiationdetected in the fines layer befowthe top plug

in the emplacement hole (Station36 at a depth of 36.1 m). The oscillationsin thepressure record before 0.6s were caused by groundmotion in the reoordingtrailerand the radiationdetectorwas driven off-scale by the EMP.

16

0-

50-

E’1oo-

G“

g

n

150-

200-

10-’ ~........

10-2~ .......

10-3~

Time, s

Fgure 2.7 The first 1,000s of pressure and radiation detected in the deepest fines plug of theemplacement hole (Station 31 at a depth of 139.9 m). The radiationdeteotor,driven off-scale by the EMP, reooversat about 50s.

17

.

,

o–

50 –

E1oo-

C“

g

n

150–

200 –

-o32100E... F

10-’ . .........

10-2~.........

10-3 ,*,,

r

,...

.. ...............

~, I 1,, ,,1,,,,

200 400 6

Time, s

t,,, 1 , a !“*’f ’’”j

.......................... .......................—ti

.......................... ....................-

! 1,, , 1,, ,,,,,,,

) 800 1000

F~ure 2.8 The first 1,000s of pressure and radation detected in the seoond fines plug of theemplacement hole (Station 32 at a depth of 112.5 m). The radiationdetector,drivenoff-scale by the EMP, recoversat about 320s.

18

.

.

0

50

E100

150

200

UIObd

20 -“’’ l’’’’’’’’’ l’’’’’’’’’ l’’’’’’’’’ l’”” ‘“’’~’’’’’’’”-

15 -; .........+...........................y.......................... ........................... ---------------............ .......... .............

10 . .......... ............... j............!......................................................... ............... ............ ........................

5 -;. ;......................”....................................................................... ......... ...........7........................

.:O “’’’’’’’’’’’’L’’’’”’’’’’’’’’”’’’’’’” ““’’’’’’’’’”

1o&lll

10-’ ~ ........

10-2&

10-3~

11111111 m111811111r

....................... ..........................-.,

....................... ............................

II1lllM1 l,, 111[11200 4

.........................

i-

m

... . . . ..

-%

.....................—

.....................—

I8III111O) 1000

Time, s

,

,.

1

UIObd

o–

50 –

Eloo–

c“

~

n

150–

200 –

034

20 :“’’!’’’’’’’’’ ~’’’r’’’’’:’’’’’’’’’:’”” “’’:’’’’’’’”-

15 ---””-”-””"-"""""""--""-"-"--"""-"-"""~""-'"-""-""""""--""""""-"-j"-"---"""""-"-"----“”---”-”--””””””””-””””-”---”

!

10 -; .......... ......................................................... ...................+.............. ............ .......................—

5 -!~’~........+..........................+........................... ............................ ............... ......................--------------

0 “’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’” “’’i’’’’’’’”

Ill IIIIIr )1111 1 1 t I“’’l ’’”j

.............. ..........+........................

.............. .........------------...............-

JIIII1lIII1’lllllll

0 800 1000

Time, s

Fgure 2.10 ~efimtl,OOO sofpressure atiradiatbn det@tiin the fines iayer *vethe@@piug in the errpiacement hoie (Station 34 at a depth of 76.8 m). The radiationdetector, driven off-scaie by the EMP, reooversat about 250s.

20

I

UIObd

50-1

r- 1 pjj

150+

200 -i

J

20 :“’I’’’’’’’’’ 1’’’’’’’’’!’’’’’’’’’;’’’” ‘“r

15 -""""-""-------"""""""-""-"""""""""""-."""----"""""""""""""""""--""~"""-"--"---‘-”-”-””-

f

10 -"---"""""\-"---"-"-""-""-""-"""-"'--""""""-""--""""-""--"""~--"-"-"--'"--"--""""-“---”-

5 -::;;.........” ...............................................................................i............... ..........

0 “’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’=’”

10-’ ~ .........

111111111

......................

......................

......................

1*1*111M1

)111111 I I 1 I 1“’’l”q

.................... ...........7 ------------- ---------

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-

JI1lI1l ill s 1 I 111111111911111111111 fllllllltllll’.200 400 600 800 1000

Time, s

Fgure 2.11 The first 1,000s of pressure and radiationdetected in the fines layer intermediatebetvveen the rigidplu gandthetopphg (Station35atadepthof56.4m). Theradiationdeteotor, drivenoff-scaleby theEMP,recovers atabout230s.

21

.

.

0-

50 –

E1oo-

C“

g

n

150–

200-

cd.-(4)Q

20 ;'''' ~'''' '`''' /`'`' '"'`` !''' '' fl''l'` ''''' "`l'' ''l'"''-

15 -"-"""""""~"-`"""-""".-"""""-----.--.............--.--------.--.---'----------------------------

4

10 -"""""-.."-""".".""".--""-""""-"--""""~""""""""""-"""---"-"""-"--"~--"--.-"-.""-"--------.--”------.”.--.----”--

5 -""""""-"----"-""""""""""-""-----------------------------------------------------------------

0’ ''''i ''''' ''''''''''''''''`'''''''''''''''m'''''''''''-

loot,,,,,,,l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,J#

10-1 ~: .........r .............................................................. .................+..... ....................+ ......................

10-2 F4 .....................................................................................................

10-3- ““ 1 1 1 1 1111,111111,111

0 200 400 600 800 1000

Time, s

Figure 2.12 The first 1,000s of pressure and radiationdeteoted in the fines layer below the toppfug in the emplacement hole (Station 36 at a depth of 36.1 m). The radiationdetector,driven off-scale by the EMP, recoversat about 420s. A brief spike ofradiationis seen at collapse near 71Os.

22

,

UIObd

E

. 1n

iJ

-o36

10° ,111,, [!ll,ll rJ,ll JJ,l Ilcltll i]l IJJIl Itll 1111 1111 Jlll~lj

10-’ /.-.--"."""""--""--"--"."--""-"--""-""-"-""-"--f""-"-"""""`""-"-""""--"---"--""-""--"---'`""~-"-"""""-""""-----'-""----""-"":

10-3 *11 111111111111111111111111 llllllliilllilliltllilll [I

o 1000 2000 3000 4000 5000

Time, s

Figure 2.13 The full reoordW timeofahut5,000s of pressure and radiatbndeteded inthefineslayer bebw the top plug inthe emplacement hole (Station36 at a depth of 36.1 m).The radiatbn deteotor,drivenoff-scale by the EMP reooversat about 420s. A briefspike of radiationis seen at collapse near 71Os and the offset in the radiationrecmlafter 1,000s is Iikeiydue to a mechanicalshfi of the souroechip relativeto thedetector.

23

o–

50 –

Eloo–

x“

g

n

150–

200 –

_,

Ec)

4 1 T 1 1 ! 1 1 1 I ! I 1 I 1 I I r 1 1 ! 1 I 1 1 I I n 1 1I

1111~.0.2 ,... .,

0 ~ : ; ~--”----~’ “..... ..... ... ...... ...... ..... ............../......... ......

-n 9

~p)-0.4, :.......... .......... ........................ .................................................... ......................... ....................

1El I I 1 1 a 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 I I 1 I I 1 1 1 I

r m s 1 , I , m , , 1 , , n 1 , n 1 , I , 1 m I 1 , m 1 1

I’i4-’:

2 ....................... ..................

0

, ,i

.

,

‘t i

~~-2 –-----------+-------- .................. ..................................+......................... ......................i

* , I n 1 1 1 m # I a 1 , m I # * t # I , 1 [ m I , , , 1

0 1 2 3

Time, s

F@ure 2.14 Expbsion-induced verticalmotionof the rigidplug (station 21 at a depth of 63.6 m).When there is morethan one traoe in a pbt, the heavier is deiwed fromthe associatedvelocimeter.

24

o’

50

E100

150

.

-o22

.

8LJIIIIIJIIIJTIBII’JJ 1“’’l””~

I“:’!’’ ’’!’ ’’’! ’’’’’’’’’’’’Al.................

.................1........................................................................ ................................................

1-. ....................... ..... ... .... ..........................

-4~“ # n I 1 1 1 1 1 1 1 1 11 2 3

Time, s

Figure 2.15 Explosion-inducedveflia lmotbnofthe top plug (statbn 22atadepthof32.O m).VVhenthereismOm thanonetraceina plot,theheavieris derivedfromt~atiatedveiocimeter.

25

o–

50-

Eloo–

c“

g

n

150–

200 –

T61

0 1

Time, S23

.

Figure 2.16 Explosion-induCedveItiCal motionof the ground surface, 15.24 from SGZ (station 61at a depth of 0.9 m). When there is more than one trace in a plot,the heavier isderived from the associated vebcimeter.

26

.

UIObd.

0-

50-

E100”

c“

E

150

200

.

m

b................

0....... .....

................. ..

-1 ---”””””---”’”-””-”

1 , # # ! 1 , , , I r 1 t , I , m 1 m I 1 , ,

4

, , , 1 1 1 , 1 1 I 1 a 1 t 1 I 1 , s I , 1 , 1 1

8 I I [ Im , , 1 I , 1 , 1

Eo

.z ..........................7 ..-..

. . . . . . . . . . . . . . . . . . . . . . . . . . ---------------- :

a

Jn

E-lo ~’ 1 2 3

w

Time, s

Figure 2.17 Explosion-inducedvertical motionof the reconin9 trailer (station 71 approximately224 m from SGZ). When there is morethan one trace in a pbt, the heavier is derivedfrom the associated vetochneter.

27

Gww SlantRange ArrivalTime Acceleration VebcityPeak Displacement Displacement(m) (ins) Peak(g) (m/s) Peak(cm) Residual(cm)

21av 116.3 ~(a) 3.0 0.372 3.8 -1.3

21UV 88(a) 0.440 4.3 -0.522av 167.9 120 0.86 0.44 5.0 -2.022UV 124 . 0.42 4.7 -1.041av 37.6 23 17 4.4 23 041 Uv . 6.0 55 (b)42av 42.2 24 16 5.9 44 3742UV 27 . 5.4 43 3843av 46.8 (b) . .

43UV 32 3.9 23 2044av 51.5 (c) -

44UV 35 3.1 16 12

45av 66.9 45 6.5 0.95 7.8 1o(d)

45UV 44 0.94 7.5 1.546av 82.6 50 2.9 0.63 5.5 -1046UV 60 0.66 5.6 -347av 92.3 62 2.4 0.54 5.0 -0.347UV 65 . 0.54 4.8 -1.2

48av 102.7 ~(e), 70 2.1 0.52 5.7 0

49av 112.1 7000,79 1.6 0.415 3.9 -0.5

49UV 78 . 0.53 4.8 0

50av 132.0 89(e), 95 1.3 0.40 3.8 -1.350UV 93 0.37 3.4 -0.6

51av 151.8 105(9),111 1.0 0.35 3.8 -1.3

51UV 111 0.35 3.6 -0.8

52av 171.7 123 0.9 0.46 4.9 0.8

61av 200.4 160 1.72 0.55 5.8 -3

71av Zzt$(f) 182 1.3 0.70 6.5 -5

71Uv 190 - 0.70 6.51 -5

(a) Emplacementpipearrival.(b) Signalnotbeiiivableat thistime.(c) Channelmissing.(d) Approximate.(e) Anomabusprecursor,seetext.(f) Approximate:inrecordingtrailer.

28

.

*

.

[e 2.2 d ~ter ~

Gauge NaturalFrequency DampingRatio SystemRange{a’s)

21av 500 0.65 30

22av 370 0.65 14

41av 1900 0.65 4000

42av 1900 0.65 3000

43av

44av

45av

46av

47av

48av

49av

50av

51av’

52av*

61av

71av’

‘ WhittakerCorporationtransducer.

2200

1700

1850

930

535

620

320

275

190

168

410

185

0.65

0.55

0.65

0.62

0.65

0.70

0.65

0.65

0.65

0.65

0.75

0.75

29

2W0

1200

400

150

75

50

30

15

10

10

20

10

GaugeNatural Time to 0.5 Calibration

Frequency Amplitude Temperature

(Hz) ~ J“L21 Uv 3.47 8.2 73.6

22UV (a) (a) 73.0

41Uw 4.05 43.7 74.1

42uv(b) 4.08 28.7 75.5

~uv(b) 4.18 18.35 75.2

44UV 3.55 10.10 74.8

45UV 3.50 11.90 75.3

46UV 3.67 9.3 75.0

47UV 3.45 9.75 74.7

46UV 3.50 8.30 74.1

49UV 3.52 7.70 74.8

50UV 3.55 5.90 74.8

51UV 3.57 7.20 74.7

52UV 3.33 8.60 74.7

61 UV 3.44 8.15 74.5

71Uv 3.00 11.06 74.2(a) Not availabie.(b) Aluminumpendulum.(c) Measuredvaluenotavailable:Interpolatedfromsurroundingpoints.

OperateTemperature

-J”L

90.99

92.99

77.o@)

76.3

75.2(C)

73.97

72.2(C)

70.1

66.7

68.o@)

67.41

65.7

64.7

64.3

75.02

59.67

SystemRange

(m/s)

4

10

39

30

20

15

7.3

4.3

3.0

2.4

1.8

1.5

1.5

1.5

2.4

4.9

30

All stations in the emplacement hole registeredthe effects of a surface collapse occurring

about 712s after detonation. No collapse motionwas detected at the instrumentationtrailer

and station 71 is not represented here..

Pressureand radiationwave formsobtainedfromthe six standard stationsduringthe

collapse episode (a periodspanning 700s to 720s) are shown infigures 3.1-3.6. Pressure

historiesfrom these six stationsare also shown in figure3.7 along with the output from the

CLIPER cables (station92, inthe emplacement hole and station53, in the satelliie hole). All

stationsat elevations deeper than the one just below the top plug (station 36) were lost,

presumablydue to cable breakage.

Survivalof station 31 throughcollaose is suggested by the data of figures 3.1 and 2.7.

However, since no other stationbelow those protectedby the surface casing survived, it is

improbablethat 31, the deepest elevation in the hole dd. The characteristicsof the pressure

wave form of station31 duringcollapse are of a slowdecrease in pressure due to stemming

loss followed by an abrupt change due to cable breakage. The waveform of the radiation

suggests some slight motionof the sourcechip relativeto the detector during collapse.

Similarpressurebehaviorwas seen at station32 (fiiure 3.2), but at stations33 and 34 the

pressure behaved quite differentlyduringcollapse (figures3.3 and 3.4). The radiationwave

formsfor these two stationsboth indiiate a small radiationintroductionafter collapse and prior

to stationloss. At station33 the peak radiationdose ratewas about 0.5 R/Hr and at station it

was 0.1 R/Hr. No conclusionscan be made concerningstation35 (figure 3.5).

The survivingstation 36 (fgures 3.6 and 2.12) showsthe characteristicpressurewave

form of stemmingfall and recompactiin due to collapse. Associatedwith the collapsewas a

small (0.07 R/Hr) pulse of radiationwhich quicklyattenuated to the level of the source chip.

The slight rise in radiation level indicatedinfgure2.12 at about 1000s is attributedto motion

of the source chip relative to the detector.

No radiationarrivalswere observed above groundat any time after the PERA event and

the data are consistentwith satisfactorycontainment.

31

39 Mo.tiQR

The collapse-induced motion associated with the emplacement hole detected on PERA

is shown in figures 3.8-3.10. The system limitswere exceeded on the velociiy channels for

stations21 and 61 but the associated accelerationsshow the full range of the displacement

duringcollapse. Of the three stations reporting,only the deepest, in the bottom rigidplug,

was lost. The other two, in the sutface casing and on the surface,were associated withthe

surface motion. Both of these indicateda permanent sutface downward displacement of

about4m.

32

.

.

.

0

50

150

200

UIObd

20 : 1 1 v 8

,5 L ..................................

10 : ..................................

5 -------------------------------

0’ I 1 1 S

10°

10-’ . ...................................

4- ~

10-2 F ....................................

10-3. n 1 1 1 1700

1 1 1 1

.................................

..................................

..................................

k I I 1

1 I

U........................

~

...........

?T.................

Time, s

1 , 1 1

..................................

.................................

.................................

1 1 n 1

I I t 1 4

..................................

.................................

I 1 1 1

720

Fgure 3.1 Collapse epoch pressure and radiationmeasured at the deepest fines stemming layer(station31 at a depth of 139.9 m).

33

UI Obd

o–

50 –

E1oo-

Ji”

g

n

150-

200 –

20 . I I I I I I I 1 1 I I 1 m 1I

n 1 1 1

,5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . .. .;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _~

10 -".""."""-------------------------------------------------------------------------- .............. ..................................-

5 . ................................... ......................................l.......................-.............. ..................................-

0 1 1 1 1 1 I 4 1 1 I 1 t 1 I 1 I 1 1

10° 1 I I I ! I i I I

10-’

t

........................................................................

10-L.........................................................................

1o-~ I 1 1 1 I I I 1 1

700 7’

Time, s

Figure 3.2 Collapse epoch pressureand radiation measured in the second fines layer (station32at adepthof 112.5 m).

34

.

UIObd.

0-

50-

E1oo-

t!”

g

n

150-

200 “

20 : 1 1 I I I 1 I I 1 I 1 1 I I 1 I 1 1

5 - ........-.--......---.-.-.-.-...-.-~--..-...-..-----.---------...-..--.-.-~"""""""-"--"""""-""

0 1 1 1

10° I I I 1 I I I I I

,0-1 ..................................~ ...............................

1OA I t t I I I 1 I I I 1 I I

700 710

Time. s

J...........-......................................1 I I I

f

. . .. . . . . . . .. . .. .. . . .. .. . . . . .. .. . ..

. .. . . . . .. . . . . . . . . . . . . . . .. .. . . . . . . .

t I 1 I

720

#

,

.

Figure 3.3 Collapse epoch pressureand radiationmeasured in the fines stemmingbelow therigidplug (station33 at a depth of 89.9 m).

35

UIObd

J

20~ 1 I 1 1 I i 1 1 1

15 - ..................................&....................................

r

10°r1

10-’ ---------------------------

10-k===IO-L

700

--!

1 1

......................................................

J...................................................!

-

Time, s

i

......

.......

. .......

I 1 I 1 1 d

.......... ...........................

......................................._

I 1 I 1 1

720

.

1 1 1 1

.. . . .. . .. . .. . .. . . .. . . . . . . . . . . . . . ..

. . . . . . . .. . .. . . .. . . . . .. . . . . .. .. . . .

. . . . . .. . . . . .. . .. . . . . . .. . . . . . . . .. .

L 1 1 1

Figure 3.4 Collapse epoch pressure and radmtionmeasured in the fines stemming above therigii plug (station34 at a depth of 76.8 m).

36

UIObd

o–

50-

E100 -

s“

~

n

150 –

200 -

-1

20 .#

,5 L ...............................

,() . ................................

5 --”””---””-”--”””--”--”””””-r

, ,

..................................

..................................

104 L 1 t 1 I I I I I I

104 ~ ................................... ....................................

, , i , , , ,

.................... .............. .......... .......................—

..................... .............. ........ .......................—

..................... .............. ...................................

I I I 1

.. . . . . . . . . . . .. . . . . .. . .. . .. . .. . . . . .

,o-LJ--700

Ti~e, s

I 1 1 I

o

I I I 1 4

.................................

1 1 1 I

720

.

.

Fqure 3.5 Collapse epooh pressureand radiation measured in the fines stemming intermediatebetween the rigii plug and the top plug (station35 at a depth of 56.4 m).

37

UIObd

.

0

50

E100

150

200

20 : I I 1 I I 1 I I I

15 - ............................._.+....................................

10 “ ................................... ...................................

5 -..- .......------.--..----.--..--.-i-------------------------------------

o-1 1 I I I I I 1 1

10° I I i I I I I I I

10-’ ~ ................................... .....................................

10-2:~ p----------------------------..................................0

1os~ I I 1 1 i I 1 I 1

700 71

I I I I

T.............................

1 I I I

J................................................................-

Time, s

I I I J

.. .. . . . . . . .. . . . . .. . .. . .. . .. . . . .. . .

... . . . . . . . . .. . . .. .. . .. . .. . . . . .. . ..

. . . .. . . .. . .. . .. . . . . .. .. . . . . . .. . ..

1 1 1 I

1 I I If

................................=

.................................

1 I 1 I

720

Fgure 3.6 Collapse epoch pressure and radiationmeasured in the fines stemmingbebw thetop plug (station 36 at a depth of 36.1 m).

38

. 0-

50-

E1oo-

150-

200 “

.

1I I i 1 I I I I I I I I I 1 I t I I I I I I

I

‘“E’:’.

36-----*>)>b.......f.fi 35 ----

34 ----

,,..::{..:?.; 33----- \E,.++0:,,

I,.:.:,,.:.,::::+::::~::,, ‘a9 ----

uQ1’L---~ Ilr -1

M’II

-11

Y [/LY I r+ 1

()53

l;] I1, I 1 I I I I I I I 1 I I I I I I I 1-. .

700 710

Time, s/zu

Figure 3.7 Progressionof the collapse as indicatedby the CLIPER record in the emplacementhole (station92) and the CLIPER recordfromthe sateiliie hole (station53). Alsoincludedare pressure historiesas measured in the stemming.

39

o

50

E100

150

200

UIObdu)

Iw 0 -“----”---”-- ....i.......................................f ....................................+ .................................-

1 1 n 1 1 I 1 I 1 1, I 1 1 1 I, ln#la#a tlo##tl n&as-

Lo’’’’’’’ ”’’’’’’’’’ !’’’’’’’’’ !’’’’’’’ ”-l

-121’’’’’’’’’’’’’’’’’’’’” “’’’’’’’’’’’’’”1

1 1 a 1 1 I 1 I 1 i 1 1 I 1 I 1 1 v I ! 1 I 1 1 I I 1 1 1 I # 1 1 1 I * 1 i I

E. - ......................................... ....................................... ....................................

Eii! -2 ----------”” -"-j"---""--""""""---------"-"""""-"--"""""--"-"-""`:

aljij -4 ----------------”- "".-"-"-.--"""-"--"-""""`---""--"-"--"-------"--"-""-""$.-n

........................-----------------.--..--..)..-------------------------...----

-8 ‘11111111111111’ 11’’ 1’’’’” II’lIIIIIRIII-710 712 714 716 718

Time, s

.

Figure 3.8 Collapse-induoedvetiiOSlmotiinoftherigklplug (station 21atadePth of83.7m).When there is more than one traoe in a plot, the heavier is derivedfrom the associatedvelocimeter. Themissing pOdiOnofthevel@y remdise~im~W to@adtoanadditional permanent displaoemeti of about 1.8 m.

40

.

0-

50-

E1oo-

L“

g

n

150-

200-

.

UIObd.................................... .....................................F...................................... .................................

t“’’’’’’’’’’’’’’’’’’’’’’’’’’r’’’’’’””i

-8111’ l’1lll[ ’’’1 ’’’’ ’1’’”1 “’’[’’’’’’’”1

Fgure 3.9 Collapse-inducedvedical motionof top plug (station 22 at a depth of 32.0 m). Whenthere is morethan one trace in a pbt, the heavier is deriied from the associatedvelocirneter.

41

o

50

E100

150

200

-1

UIObd

(!)61

E

2 -n l, w, ~,, ,,, ,sr, l,, l,lr, l,l ,11, lmnv, trtl”

o “...............

-2 - ............................................................... ..............................................*....................................

-4 -“”-””’-””””--”””””””””J”-----J”-----”---"-""--"-""""-"-""--""-'";"-"--"""""-""-"-""""-"

-6 ----------------------------------------------------..........--..-..--.-..------..-.-j-----------------------------

-8-“’’’’’’’’1’” ‘s ’’’’’’’l’’’’’’’”-

r“’’’’’’’’’’’’’’’r’’’’’’’”’’’’’’””i

. .................................+...................................... ..................................................................—

-4 :’tmalmmmlltstnl~fmsllmla tNaallfialalaaN~-710 712 714 716 718 ‘

Time, s

Figure 3.10 Collapse-inducedverticalmotionofthe ground surface, 15.24fmm SGZ(station 61atadepthofO.9m). Whenthere is morethanonetrace in aplot, the heavierisderivedfromthe associated velodmeter.

42

,

.

A 24.5 cm diameter exploratoryhole located 18.3 m due East of the emplacement hole

was instrumentedwith an array of 12 motionvetlical motionstationsthat also contained eight

stresstransducers. A CLIPER cable was alsofieldedto monitorthe progressionof the cavity

collapse.

4.1

Explosion-inducedhistoriesof the motion measured in the satellite hole Uel Obdon the

PERA event are shown in figures4.1-4.12. Characteristicsof the associated motion and

transducersare given intables 2.1-2.3. Note that the tables also includedata from the

emplacement hole, the ground surface and the recordingtrailer, discussed earlier. Two of the

motionsensors in the satellite hole failed to produceuseful information;the accelerometers at

stations43 and 44 (figures4.3 and 4.4). Althoughapparently meaningless, the record

producedby the accelerometerat station43 is shown in figure 43. The velocimeter at station

41 (fiiure 4.1) required excessive base-line de-trendingfor times greater than 0.6s and the

data should not be accepted later than that. Accelerometerand velocimeterrecords compare

favorablyfor all other stations.

At station49 and above (figures4.9- 4.12), the accelerometerwaveforms show a

“noise”contributionbetween 0.2 and 0.3s. For emplacement, the stations are hung in the

hole on a fiber glass pipe and then grouted in place. The explosion-inducedstress wave

reflectsfromthe surface and places the mediumin dilatation,relievingthe stress in the fiber

glass pipe that was locked in by the grouting. See figure4.13. The signature of this stress

relief shows up as “noise”inthe accelerationrecords.

Figure 4.14 shows the range dependence of the peak acceleration while the range

dependence of the firstpeak vefocityis shown in figure 4.15. A least-squares ffi to the data

represented by the stra”~htlines shown in figures 4.14 and 4.15 gives the following results:

Acceleration A = 461 lR-i”c7[MM]g’s

.

where 1? is slant range in meters.

43

Only the velociiy channels were d~itized duringthe collapse e~ch and the wave forms

from the even-numbered stations are shown in figures 4.15-4.20. Statiins 50 and 52 (figures

4.18 and 4.19) survived collapse but exceeded the system limitsand the full collapse

displacement is not computed. An estimate of the final permanent displacement, accounting

for the missingportionsof the veiocii wave forms, increasesthe final downwarddisplacement

by 0.84 and 0.46 m for stations50 and 52, respectively.

4.3 Str~

An array of eight YttertXumgrid “flat-pack”stresstransducerswas fielded in eght of the nine

deepest stations(station 45 was skipped). The active element of each gauge was a grid of

Ytterbkim measuring about 10x 2.5 cm and had a resistanceof 100 Q, mounted on kapton

sandwiched between two thin, copper-clad sheets of fiberglass. Conductive tape was wrapped

aroundthe sandwiih edges to form a Faraday cage. Thin sheets of stainlesssteel and epoxy

replaced the copper-clad fiber glass on two of the devices.

These transducerswere pressuretested in a bath of “He*oflex” oil to a maximumpressure

of about 0.25 Kbar and subjectedto dynamic historyhaving arise time of about 130 ms and a

decay time of about 2s. A gauge resistancesensitivityof 6.1 %/Kbar was obtained for thiswotlt,

translatingto a uniaxial sensitivityof about 4.1 %/Kbar

The wave forms obtained from the eght transducers are shown in fgures 4.21-4.24. No

attemptwas made to adjustthe data for strain.

44

.

.

0-

50-

Eloo–

c“

g

n

150-

200-

.

401 r 1 1 1 I I I 1 I I 1 I 1 1 I 1 1 I I i 1 1 I 1 I 1 1 1 I1 I

............................................... ............................................................................................

.............................. ............+.......................... ........................ .........................+..................—

-20 - ‘“}:;;:................... .......................... .................................................... ...............................................

Ill llillli ill llilltlilllli ,1111m.

1 # r 1 1 1 1 1i 46M-------r--4 .......................+........................ .....................

1.;

~

1-2 .’

11-------&kii-%u--ii

J= m’, 1 I 1 I 1 1 I n I 1 1 I I I t 1 I I I I 1 , 1 I

40 [t

FI 1 I 1 i I 1 1 I i 1 1 1 a i 1 1 I a I 1 I t 1 1 1 1 1 130 1 2 3

Time, s

Figure4.1 Explosion-inducedvefi@Imotbn measured at167.l mdepthin thesateltite hole(station41,37.6 m distantfrom workingpoint). When there is more than one trace ina pbt, the heavier is derived from the associatedvebcimeter. At times greater than0.6s, data from the vebcii gauge record should not be accepted.

45

UIObdP 18 .3 m 4

0

50

E100

c“

g

n

150

200

30 -,, ,,, 1 t 1 1 I I 1 I 1 i 1 1 I 1 I I 1 1 1 I 1 1 1 1

a 20 : ................................................ .................................................... ............. ........... .......................

“Q 10 .....................}.... ............+.......................... ......................+.......................... ....................-

500

.................... .......................7........................ ......................... ........................ ...............

-20 -“ ’’l ’’’’ i’ ’’’ii’” i 1 # 1 1 I I 1 1 1

1 u 1 r I 1 ? 1 1 I 1 1 r 1 I 1 P , n I 8 1 1 1 I 1 u 1 1

---"----.--...-.....".-..----""-..."-.+-."""".-""..--..-...."+..'""-:..........................................

4 - “-.............................................. .................................................... .................................................

1 n 1 1 I 1 I 1 1 I 1 1 1 1 I 1 t I I I 1 1 B 1 I 1 n , 1

60 1 [ 1 1 ! 1 1 n 1 ! 1 1 1 1 ! I m1 t ! 1 m1 1 ! 1 r 1 1

E . ......................p........................ .........................~.......................=+......................... ......................0

.~..................................................&. .................... .............E

E.............................................. ........................*.....................

8 20 -’ .................... .........................7........................+........................ ........................7......................Jga ...................... .... ...................7........................+........................+.........................+.......................-: () l ...................... .........................~........................}.........................\.........................\......................

I I 1 1 I 1 n 1 1 I 1 1 1 1 I I n 1 t I 1 I 1 1 I 1 s 1 10 1 2 3

Time, s

Figure 4.2 Explosion-inducedvertiil motion measured at 161.9 m depth in the satellite hole(station42,42.2 m distantfrom wotitng point). When there is more than one traoe ina pfot, the heavier is derivedfrom the associatedvelocimeter.

46

.

.UIObd

b 18.3 m do–

50-

Eloo–

x“

g

n

150 -

200 -

.

b r 1 1 1

... . . . . .. . ..\ . . . . .. . . . . .. .

I

. . .. . . . ..' . . . . . . .. .. . . . . . .. . . .

~;’;~.. . . . . . .. . . . . . . . . ...i . .. . .. . .. .. . . . . . . . .. . . .. ..i . . . .. .. . .. . . . . . . . . . .. . ..- --.-.. -- . . . . ..-. -.. -.. -.-?. -... --... --.. --. -... --..+ ----------------------

-"-~"""-"--"--"--"""`"-"--""---"""""-"--"-"-"""--"-""-"~-"--""--""""""------"""---""-""-""--""-`""""""""""{-""-"--"-"-"""-""--""n

5 .. . . .. . . . . . . .. . . .. .. . . .

ao

---"""""-"""-""--""""""-""-"""""""-`"'""""-""-"-""-""--"-""n

I 1 ,-. 2

30 ‘J 1111 ’’’’ l’ ’’’l”” I“’ ’l’’”. ...................................................................................................&................................................

0 1 2 3

Time, s

Figure4.3 Explosion-inducedvertical motion measured at 156.9 m depth in the satellite hole(station43,46.8 m distantfrom wott(ingpoint). The acoelemmeter at this stationwasmalfunctioning.

47

Acceleration channel missing

o

50

E100

150

200

..................4

, & * I , , I , s , I , , * I * I , ,

.......................7. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

....................+ ......................

......................!.. . .. . . . . .. . . . . . . . . . . ..

l-,~111 a , , , I , , i ,

0 1

Time, s

Figure 4.4 Explosion-inducedvertical motion measured at 151.5 m depth in the satellite hole{station44.51.5 m distantfromvvorkhg poht). The accelerometer at this station

was disconnected pre-shot

48

If 111 ’’’’ l’’’ ’l””i “’’l’’”:..................+..........................+..................................................+.............................................._

.........-.........+.............................................................................+........................!......................

...................!..... ...................+........................+.... ....................+.. ......................@ ..................—

.

o–

50-

Eloo–

c“

g

n

150 –

200 –

2

.

LllObd——

045

‘H..

-r •1

Fill, l,, ,1~, *, *l ’’’’ i’’’ ’i”l ‘1o 1 2 3

Time, s

Figure4.5 Explosion-induoedvertioal motkmmeasured at 135.6mdepthin thesatellite hole(station45,66.9 mdiStatifmm w@@9piti). Whenthere ismorethan onetraaina plot, the heavier is derived fromthe associatedve~lmeter.

49

o–

50-

E1oo-

C“

g

n

150-

200 –

Kim, r,,,,,,’,,,,,,,, ,,, ,,,,,

.................. ......................... ......................../.......................... ........................~.................

o *

............~.........................}...................................................j................................................

P

-2t ’-’ ’’l ’’’’ l’ ’’’l’” ‘l’’”l 1 1 , 11

1 # I 1 1

‘iI 1 v 1 , # w I 1 s , 1 I 1 , 1 z I 1 1 I 1

.............................................+..................................................+........................+... ..................

... .................. ........................................................................... .......... .....................................

z Hi0.2 ~ ~ ~ : ;.... ...... .....*........................7......................... ........................*.............................................+

.& — 1

g

~~ -0.2 =---- -------------......................................................................... ......................... ......................

. ....... . .......... .........................L........................!.........................4.........................!.....................-0.4 -l iidllllillllil a 1 n 1 1 1 1 I i a n I 1

~ ‘rll-v~ .....

60 ,

E

.g

a)~

....................................

5

“’’i’’’’’’’’” , , # I , , ,1 2

Time, s

.

.

J............................................................

.3

Figure 4.6 Expiosion-inducWvertW motion measuredat 119.2mdepth inthe sateiiitehcde(station46,82.6mdistantfmmwti~ point). Whenthere is rnoretbnonetra@inapbt,the heavier isderivedfmmthe associattive~meter.

50

., .,

.

.

!

I

.

1

o–

50-

E1oo-

C“

g

n

150 -

200 –

[i:

1 .......... ......} .........................i.........................~.........................~........................~...................".A ;1

q ....}...{.-....f.~

:,U,,,,,,,,,,,,I,,,,:,,,,I,,,;~-~-1 ~-----"-"-"-""".-"j-.-""""".-..-.-..""""

1 r # 1 I I 1 I 1 I 1 8 I 1 I I 1 1 1 I E 1 1 1 I 1 1 1 1

..................................... ........................ ......................

....................................~......................... ... ............................. .................. ............... :

&.-00 ........+..................................................................................................6

..............................<.........................~.................-r

,60LIII” I[o II II’”!” “!’’”! -1

40

[w;ii

.... .. ------... --------------------.....+--------------..---...;--....-------.----..--r...---.-”-””-------‘-.

Z() .. ......

NW A I

............ ..........H

Time, s

Figure 4.7 ExplosiOn-iticed v@tical motion measured at 109.5 m depth in the satellite hole(station47,92.3 m distantfrom workingpoint). When there is more than one trace ina pbt, the heavier is derived from the associatedveloameter.

51

o-

50 –

Eloo–

L“

g

n

150-

200 –

—.

o48

k“’’!’’’’!’’’’!’’’’!’’” !’g”il

IL- ; i i2 "--"--""--"""""--"--f..------------------------------------------------------------------------------------

1 -------+-......j.........................~......................... ...................................................~.....................

A 10 y- --------.-f ---- ‘.. ....

dlw~!F,aam-i , I , I , * I , # I , * 4

Lo’’’’’’’’’’’’’ ”’’’’’’’’’””iAi4

. ....................

.

~ .......... ......}..!fw==-+o ‘“””’---’”--”---.””‘---”---””””--”-----””-”-----””””-“””-”-””-”’”-”””--””‘“””---”-”-”--”-~ ‘“-” ‘“

Fgure 4.8 Explosion-inducedvedical motion measured at 99.4 m depth in the satellite hole(station48,102.7 m distantfromworking point). When there is more than one tracein a pbt, the heavier is derived from the associatedvebcimeter.

. .

o

50

E100

z“

g

Q

150

200

.

.

U10bci8~ ~k . ?J.——

049

2 1 1 1 I 1 v , 8 I I I 8 1 I 1 1 1 I I 1 1 8 1 I 1 1 I I

1 ..........................................................:---------------------.---*------------..................................-

“’i ’’’’ i’’’ ’~’’”l” “i’’”

L“”! 1 1 , 1 ! I , , 1!

, 1 , 1!

1 I I 1I

1 , , ,

4

M .

(J4 ...*:::: . 1

JtJE

Ii 1

.

[Iii *

~ o ‘-”””‘“”-““”““/-””””- ‘“-”””; ; : :1.- ..... ............. ... ---------. .....

g....... .. ....... .. .....................}...................................................7...............................................

~

-0.4 ,m : : ; :{A

l-l , I * 1 1 # I I 1 , , 1 1 I # m 1 9 1 1 , , 1 1 1 # m I I

60~11111 1 1 1 1 I 1 1 1 1 I I 1 1 1 I 1 I I 1 I I 1 1 I— i

E. 40 ..........+.........................r............-..........+.......................+....................

E

?! 20 ...........y ...................... ....................+...............-...............................a)j Ai :!Iso

.-n E

-20~’’’’ ~’’’’ l’’’’ i””i “’’i’” k~o 1 2 3

Time, s

Figure 4.9 Explosion-induoedvetiical motionmeasured at 89.3 m depth in the satellite hole(station 49,112.1 m distantfromworidngpoint). When there is more than one tracein a pbt, the heavier isderivedfromthe associatedveboimeter.

53

o“

50 “

E100”

c-

g

n

150”

200

I I I I I d

2F””””””-”

ho “-” ““

-2 ‘“-”--”

-4k ........

1“’’!’’’’!’’’’!’’’’!’’’’!” “4~;~ji

* ................................................+.........................~.....................-......................................... “

.& ....................~

EE

zEalo

~.- . ..................................0

0 1 2 3

Time, s

Figure 4.10 Explosion-inducedverlical motion measured at 69.2 m depth in the satellite hole(station50,132.0 m distantfrom woddng point). When there is more than one tracein a plot, the heavier is derived fmm the associatedvelodrneter.

o–

50-

E1oo-

E“

g

n

150–

200 –

.

.

UIObd.8.3 m—.

o51

,.. t,.. \.. .... . ..,.. ... . ..,.. t%t,.. ..,$ ..

,> %

,.. ..

,.. ..

,.. ..

.. ..

.. ..

.. ..

,.. .....

,% %

,.. ..

.. ..

,.. ... ..

.. ..

.. ..

,$ ..

,.. ..

,.. ..

,% ..

,.. ..

.. ..

.. ..... ..

,.. ..... ...

... , ...

....., .....

..

F2 “----’

o ‘--‘

-2 -----

-4 -----

0.4 r 1 , , 1I

, u , ,I

1 , r 1I

, 1 1 1

. . . . . ..~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~ . . . . . . . . . . . . . . . . . . . . ..I

z

;~ ; ---:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...>.. . . . . . . .

.g

..---.""i."-".-..-" ..-.-.---.---"" ~.""--" """".. ---"---" ""..j"-"--"-" ..""`---------

;

-0.4 : ..............b................................j...................................................\........................~.......................

40rr~~11 , 1 , 1I

[ , , #I

, m , mI

1 m , mI

, , , 1

I

2i t--”---”””----’”””-”’---~fi\~=-24’ ’’5+ ’’’”+’’I’” ‘i’’’’’’’’”

1 2 3

Time, s

Figure 4.11 Explosion-inducdveti.ml motionmeasuredat 49.3mdePthinthe satellite hole(station51,151.8 m distantfrom workingpoint). When there is more than one trace ina pbt, the heavkr is derivedfrom the associatedvelodmeter.

55

UI Obd

0-

50 –

E1oo-

C“

g

n

150–

200-

, 1 1 , s 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 r I I I I 1

;;:!................................................................................7.................................................

5.-? ..../.........................~.........................................................................~~

j.~.it 1 1 1 I * I 1 n I 1 1 1 a I 1 1 , 1 I 1 1 1 1

E’I ’118111111111111111111111 IIA

F&’ ‘ i0,4 ..... ............ .................... j - : ~ ~....+ ......................!.........................+........................+....................

-. .... .........+.......................... .........................!.......................... ...............................................2

0 ~--------~----~ : ~ - f--------.... ......+... .. ...+.&

~.@ -0.4 ‘

>

k. “:

-0.8~II II iIIi II IIIII,, d,, ,,i, ,,,~

EE

60 ‘ 1111,111,,,,,,,,,,,, ,,,,

n 1 t 1 1 1 1 1 1 1 t 1 I I I 1 1 t # i 80

1 1 1 1 1 1 I 11 2 9

Time, s

,

Figure4.12 Explosion-inducedverticaltihnmeasurd at29.2mdepth inthes~elltiehole(station52, 171.7mdistanffromwti~ point). Whenthere ismorethanonetramin a pbt, the heavier is derived fmm the associated veboimeter.

—.—

UIObd— ———.

I 18.3 m 4

0..

.

E50

c-gn

100

.

.

.

I I I I l“’’1 ’’’’1’’”

.—— ——— —

=0.-Cn

_—— ——— -

.—— —-—

.

— —.~

.—— —

.

7/_————_———v

I 1 1 1 I i 1 1 I I I 1 I 1 I I 1 I I0.5 1.0 1.5

Time, s

Io

Figure 4.13 Compositeof strain historiesmeasured in the satelliie hole. Values above ?herelat”webase lines showdilatation. For clarity,onlythe even numbered statms atand above stat”wn46 are represented. Strain is oomputedassuming a sphericaltravelingwave, and usingonlythe velocitygauge data(5).

57

I I I 1 I 1 r

● *

o---"--"""-"""-"""""------"--""-""-"""""-"-"-""""---"""--""----.o------------

.., ●...\

d“”.. .‘*

1

F..................................................................................

1.1111 I I

20 40,;o,,~

100 200 400

Range, m

,

\I I

......................................................................

*..

8*..

'..-.---"-.""-""~*"..--"""------------------------------------‘f \......

Figure 4.14 F@ peak accelerationas a functionof slant range.

58

Io.p ”+””” I I I t I

t,\,‘cQ,,,

b,‘o\,,,

$,

,,

, ,,,,.,.

! i n L ....................................................... ....... ... ...............

r

-..0 ‘,‘. ‘,

‘. ,

‘“4.‘*O.,

SloJg

I 1 r-

.. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . .. . . .. . . . --------------------

d“’..., .

O.lt’ ”’’’”””’ I I I 1 I 1 I

20 40 70 100 200 400

Range, m

Figure 4.15 Firstpeak velocityas a functionof slant range.

59

., ..,,

UI Obdh 18.3

.

J

E1oo-

r“

g

n

150-.

200 –

-,

I“’’!’’ ’’l ’’’’ ! ’’’’l’’’’!’’”

-3 I 1 I I 1,, ,,1,,,, 1,,,, 11,,,1 I I 1 I

Time, s

FQure 4.16 till~W4@~veti-l mtbnmeasurW at161.9m depth inthesatelltiebie(station42,42.2 mdistantfrom workingpoint). Onlythe velocitygauge dataarehere represented.

. .

,

j

.

0

50

E100

150

200

U10bci8~I .

-1

I

—j

.-n

Figure 4.17 Collapse-inducedvertical motionmeasured at 151.5 m depth in the satellite hole(station44,51.5 m distantfromworkingpoint). Only the vebcity gauge data are hererepresented.

61

.

0-

50-

E1oo-

=“

g

n

150-

200 –

8CG7g.

E

1 -,, 1 1

0 :

-1 ;--”--”-”””--””””-”

-2 +-------------

-3L710

I I I r

7............

I I @ * 1 1 I 1 I 1 1 1 1

712 714

Time, s

I 1 I r

....................

.....................

.....................

J I 1 I

1 # I #

. . . . .. . . . . . .. . . . . .. ..

. . . . . .. . . . . . . . . . . . . .

. . . . . .. . . . . . .. . . . . ..

1 [ 1 1

716

F~ure 4.18 Collapse-indUOWvertical motion measured at 119.2 m depth in the satellite hole(station48,82.6 m d~ant from workingpoint). Only the velocitygauge data arehere represented.

62

o-

50-

E1oo-

L“

g

n

150”

200

.

UI Obdk.

18.3 m 4

Time, s

Figure 4.19 Collapse-indU@ vertical motionmeasured at 99.4 m depth in the satellite hole(station48,102.7 m distantfromworkhw point). Only the velocw gauge data arehere represented.

63

.,

9

U10bc18~ ~b . 4

0-

50-

E1oo-

X“

g

n

150-

200-

J

2 1 I I 1 I“’’I’’’’i J’”

0 -“”-””””””””””-”””””””:! - :..........................................

-2 ---------------

-4 -“-”--”””-----

-6tlllllwdmd t 1 1 1710 712 7

Time, s-

I I 1 I

J 1 I I

I

I I [ I

....................

....................

....................

1 I 1 I

716

Figure 4.20 Collapse-induced vertical motionmeasured at 69.2 m depth in the satellite hole(station50,132.0 m distant fromwortdngpoint). Only the velooitygauge data arehere represented. The missingportionof the veloc”Ryrecord is estimated to lead toan additional permanent displacement of about 0.64 m.

64

o

50

E100

150

200

-,

,

.

710 712 714 716

Time, s

Figure 4.21 Collapse-inducedvertical motion measured at 29.2 m depth in the satelliie hole(station52,171.7 m distantfrom working point). Only the veboii gauge data arehere represented. The missingportionof the velocityreoordis estimated to lead toan additional permanent displacement of about 0.46 m.

65

o-

50-

00 –

d

2

150-

200-

L

m“U3

u.~~lrrl[rnl

. .........................

0.2 F“”-”(--”--””-”--””--”

. ...... . ................

11I 111, I L

I 1 1 1 11111111111 I 1 1 1 l“’’I’’’’ 1’’’’ 1’’”4

............................. ..........................

Ill ill, l, 11, ,,, l,, ,,i,, ,,1,,,,

Time, s

FQure 4.22 Wtputwaveformsfmmthes tress transducersatstations41 and42at siantrangesof37.6and 42.2 mfromthevvorking poiti. Noattemptwas madetoadjust there@dsfor strain.

66

,

,

UIObd●

1

b 18.3 m 4o–

50-

Eloo–

c-

g

n

150–

200 -

L

L“’’l’”f1-

+ .. . ......................

L

~

. ......................................................

043

.. . I...... ............................

.........................................................

............................. ..........................

i

...................................... ..................

i!......................................................

.......................................................-1 I I n 1111111111111111111 1111111111 & 1 I I I I 111111 I*il-

ill, l, lg, 1~111[1 irlll[ll ’’’’l’” ‘1’ ’’’! ’’’’1’’”

.........-----------..--------..........-----------------~-----------------------

............................... ............... ..........-

-0.4 >......... ..............................+..._...................-

-0.6 -“’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’” “’’’’’’’’’”-0 0.2 0.4 0.6 0.8 1.0

Time, s

Figure 4.23 OutputwavefofmSfmmthe stresstransducersatst~bns~and~ atslant rangesof48.8and51.5mfmmthewoti@l point. Noattemptwas mdetoa@sttherecordsfor strain.

67

,

,

/

!

{

t

I

o-

50-

E1oo-

c-

g

n

150-

200

Idi I & I llIIllIttIIJilf-........................... .............................

o ~.............................

II lllliil[lllllllll ]Ililllllt............................................................. ..........................—

~............................. ..............................+..........................-1

J! 1 I Ili!lll llllllllllll 1111111

loLl JJJ1811! 111~rl ’’’’ l’ ’’’l’” ‘1’ ’’’1 ’’’’ 1’’’ ’’’’”4—

K~c)47 :

..........................+........+............ : ........................................----------.......T....----------------------

0 ..................... .................. .......... ..... - ....... .. . ............ .......

....... .Y

.10 .................. ~

i

-m~’”’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’””“’’’’’’’”40.2 0.4 0.8 1.0

Time, ‘~

.

F~ure 4.24 outputwaveformsfmmthe stresstransducersatstatbns46ati47at stant rangesof82.6and92.3mfmmthewotiWJ point. No atlemptwas madetoadjustthereoordsfor strain.

,

68

1

,

*

o–

50-

E1oo-

150”

200

— _ .—

10 l“’’I’’’’1 ’’’’1’’”

5 – .......................... .........................

o

“lo$’’’ ’’’’ ’’’’ ’’””~0:2 0

.

) , , , 1 1 , 1-

049

b..................J 1 I 1 I I 1 1 L

1

Time, 0s

............................. ....... ..................!1

m5 0.8 1.0

Figure 4.25 Outputwave formsfromthe stresstransducersat stations48 and 49 at slant rangesof102.7andl12.1 mfromthe woti@lPoiti. Noattem@ wasmadeto adjust therecordsforstrain.

69

. .

1. N. W. Howard, “Ul Obd PreliminarySie CharacteristicsSummary”, DM 79-18, LawrenceLiiermore National Laboratory,Liverrnore,CA, Mar’oh29,1979.

2. George Kronsbein, “Containment Report for U1Obd,”Holmes & Narver, NTS:A2:79-76,September 7, 1979.

3. Lee E. Davies, ‘Special Measurements Final Engineering Report for PERA, UIObd”,EG&G, Energy Measurements, Las Vegas, NV, SM:79E-72-23, 29 October, 1979.

4. Lee E. Davies, “Special Measurements Physics/InstrumentationPackage for PERA,U1Obd,, Revision ‘B’ (Final)”, EG&G, Energy Measurements, Las Vegas, NV, SM:79E-72-24, 29 October, 1979.

5. T. Stubbs, R. Heinle, “NORBO Containment Data Repwt”, UCRL-ID- 123238, LawrenceLiverrnoreNational Laboratory,Lwermore,CA, November, 1995.

70

Distribution:

(

I

I

LLNLTID/Brenda Staley (3)Test Program LibraryContainment VaultBurkhard,N.Cooper, W.Denny, M.Goldwire, H.Hannon, W. J.Heinle, R. (5)Mara, G.Moran, M. T.Moss, W.Pawloski, G.Rambo, J.Valk, T.

LANLBrunish,W.Kunkle, T.Trent, B.

SandiaBergstresser,T.

L-658L-1 60L-221L-221L-1 60L-205L-221L-221L-221L-1 49L-777L-200L-221L-200L-1 54

F-659F-665F-664

MS-1168

BNUAVO

Brown,T. A-5Hatch, M. A-5Still, G. A-5Stubbs, T. A-5

BNL/NVOBellow, B. N 13-20Davies, L. N 13-20Moeller, A. N 13-20Robinson,R. N 13-20

Defense Special Weapons Agency

Ristvet, B.

Maxwell Technologies

Peterson, E.

Eastman Cherrington Environment

Keller, C.

1i

,

I

d

:

/

.

Technical Inform

ation Departm

ent • Lawrence Liverm

ore National Laboratory

University of C

alifornia • Livermore, C

alifornia 94551