Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

download Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

of 28

Transcript of Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    1/28

    TUGAS

    PENGOLAHANSINYAL DIGITAL

    KELOMPOK 12

    AGGOTA :

    AHADI ANGGUN RAHARJO H1C009029

    WISNU HERDANANTO H1C009032

    HERU BUDIANTO H1C009033

    KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

    UNIVERSITAS JENDERAL SOEDIRMAN

    FAKULTAS SAINS DAN TEKNIK

    PROGRAM STUDI TEKNIK ELEKTRO

    PURBALINGGA

    2012

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    2/28

    Frekuensi cutoff yang ternormalisasi :

    c=2 fcTs=21500

    8000

    c=0.375

    saat 2M + 1 = 3

    h(0)=c

    n, n1

    h(n)=(sin c n)(n )

    =(sin0.375n)

    (n)

    Koefisien filter yang dihitung melalui ekspresi sebelumnya terdaftar sebagai:

    h(0)=0.375

    =0.375

    h(1)=sin(0.3751)(10.375)

    =0.2942

    menggunakan symetri mengarah ke :

    h(1)=h (1)=0.2942

    sehingga menunda h(n) oleh M = 1 sampel menggunakan persamaan 7.2 yg diberikan :

    b(0)h(01)=h (1)=0.2942b(1)=b (11)=h (0)=0.375b(2)=b(21)=h(1)=0.2942

    fungsi jendela rectangular :

    w rec(n)=1,MnMw rec(0)=1w rec(1)=1

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    3/28

    respone impluse dengan jendela dihitung sebagai :hw (0)=h(0)wrec(0)=0.3751=0.375hw (1)=h(1)wrec (1)=0.29421=0.2942hw (1)=hw(1)=0.2942

    dengan demikian menunda hw(n) oleh M = 1 diperoleh sampel :

    b(0)=b(2)=0.2942,b(1)=0.375fungsi alih yang diperoleh sebagai berikut :

    H(Z)=0.2942+ 0.375z1+ 0.2942z2

    Y(Z)X(Z)

    =H(Z)=0.2942+ 0.375z1+ 0.2942 z2

    Y(Z)=0.2942X(Z)+ 0.375z1X(Z)+ 0.2942z2 X(Z)

    Menerapkan z-transform balik di kedua sisi, persamaan perbedaan dihasilkan sebagai

    y (n)=0.2942x (n)+ 0.375x (n)+ 0.2942x (n2)

    magnitud frekuensi respone :

    H(e j)=0.2942+ 0.375 e(j)+ 0.2942 e(j2)

    H e( j)=e(j)[0.2942e(j)+ 0.375+ 0.2942 e(j)]

    H e( j)=e(j)(0.375+ 0.5584 cos())

    maka magnitud respon dan frekuensi respon diperoleh :

    | H e( j)

    | = | e(j)(0.375+ 0.5584cos()) |

    and sudut

    H e( j)=, if0.375+ 0.5884cos, n> 0

    H e( j)=+ , if0.375+ 0.5884cos, n> 0

    b. jendel hamming :

    whm (0)=0.54+ 0.46cos (01

    )=1.0

    whm (1)=0.54+ 0.46cos(1

    1)=0.08

    wham (-1) = wham(1) = 0.54

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    4/28

    The windowed impulse response is calculated as

    hw (0)=h(0)wham(0)=0.951=0.95hw (1)=h(1)wham(1)=0.29420.08=0.0235hw (1)=hw(1)=0.0235

    transfer function is achieved as:

    H(z)=0.0235+ 0.95Z1+ 0.0235z2

    c. magnitud frekuensi dan respone frekuensi :

    H(e j)=0.0235+ 0.95 e(j)+ 0.0235 e(j2)

    H e( j)=e(j)[0.0235 e(j)+ 0.375+ 0.0235 e(j)]

    H e( j)=e(j)(0.375+ 0.047cos())

    maka magnitud respon dan frekuensi respon diperoleh :

    | H e( j)

    | = | e(j)(0.375+ 0.047cos()) |

    and sudut

    H e( j)=, if0.375+ 0.047cos, n> 0

    H e( j)=+ , if0.375+ 0.047cos, n< 0

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    5/28

    7.2 Desain a 3-tap FIR highpass filter with a cutoff frequency of 1600 Hz and a sampling rate of 8000

    Hz using :

    a. rectangular window function.b. Hamming window function.

    Determine the transfer function and difference equation of the designed FIR system, andcompute and plot the magnitude frequency response for =0, /4, /2, 3/4, and radians.

    requency cutoff ternormalisasi :

    c = 2 fc Ts =2x 1600

    8000=0,4 radian

    2M + 1 = 3 M = 1

    h(0) =c

    =0.4

    =0,6

    h(1) =sin c n

    n=sin 0,4

    =sin 72

    3,14=0,303

    Applying Hamming :

    ham(0) = 0,540,46cos nM

    =0,540,46cos0=1

    ham(1) = 0,540,46cos n

    M

    =0,540,46cos=0,08

    simetry ham(1) = ham(-1) = 0,08

    the windowed impuls respons is calculated as :

    h(0) = h(0) ham(0) = 0,6 x 1 = 0,6

    h(1) = h(1) ham(1) = - 0,303 x 0,08 = - 0,02424

    h(-1) = h(-1) ham(-1) = - 0,303 x 0,08 = - 0,02424

    delay

    b0 = h(n M) = h(0 -1) = h(-1)b1 = h(n M) = h(1 -1) = h(0)

    b2 = h(n M) = h(2 -1) = h(1)

    jadi h(1) = h(-1)

    H(z) = - 0,02424 + 0,6 z-1 0,02424 z-2

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    6/28

    YzXz

    =Hz

    Y(z) = -0,02424 X(z) + 0,6 z-1 X(z) 0,02424 z-2 X(z)

    y(n) = - 0,02424x(n) + 0,6 x(n -1) 0,02424x(n -2)

    H(z) = - 0,02424 + 0,6 z-1 0,02424 z-2

    H(ej) = - 0,02424 + 0,6 e-j 0,02424 e-j2

    = e-j (-0,02424 ej + 0,6 0,02424e-j )= e-j (0,6 0,4848 cos )

    |H(ej)| = |0,6 0,04848 cos |

    0

    - + if 0,6 0,04848 cos < 0

    f 0,6 0,04848 cos |H(ej)| |H(ej)| dB

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    7/28

    L=2 fL T = 21600

    8000= 0,4 rad

    L=2 fHT = 21800

    8000 = 0,45 rad

    2M1=5

    h n=. HL

    n=0

    sin Hn

    n-

    sin L nn

    n=0 - n2

    When , n=0 --> h(0) =HL

    =

    0,450,4

    = 0,05

    h(1) =sin 0,451

    1-

    sin 0,411

    = 0.1166

    h(2) =sin 0,452

    2-

    sin 0,422

    = -0,43789

    h(-1)= 0,1166

    h(-2) = -0,43789

    sec= rec n=1 , MnM

    ham= n=0,546046cos nM

    , MnM

    a rec 0=1

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    8/28

    rec 1=1 rec 2=1 rec 1=1 rec 2=1

    h0 =h 0 rec 0=0,051=0,01

    h1=h 1=0,11661=0,1166

    h2 =h2 =0,437891=0,43789

    b0=b

    4=0,43789, b

    1=b

    3=0,1166danb

    2=0,05

    Hz=0,437890,1166z10,05770,1166z30,43789z4

    b. ham0=0,540,46cos

    2=1

    ham1 =0,540,46cos

    12

    =0,54

    ham2=0,540,46cos22

    =0,08

    ham1 =ham1 =0,54

    ham2=ham2=0,08

    h

    0

    =h0

    .ham

    0

    =0,051=0,01

    h1=h1=0,11660,54=0,06296

    h2 =h2 =0,437890,08=0,03503

    HZ=0,035030,06296z10,05z20,06296z

    30,03503z4

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    9/28

    Frekuensi cutoff yang ternormalisasi :

    L=2 fLT=21600

    8000=0.4

    H=2 fH T=21800

    8000=0.45

    Since 2M + 1 = 5 in this case, using the equation in Table 7.1 yields

    when n = 0, we have

    h(0)= H+ L

    =0.45+ 0.4=0.95

    The other computed filter coefficients via the previous expression are

    listed as

    h(1)=sin(0.41)

    1

    sin(0.451)1

    =0.302880.31455=0.01167

    h(2)=sin(0.42)

    2

    sin(0.452)2

    =0.0935960.04921=0.0444

    Using the symmetry leads to

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    10/28

    h(-1) = h(1) = -0.01167h(-2) = h(2) = 0.0444

    dikarenakan penjendelaan rectangular memiliki fungsi

    w rec(n)=1,MnMw rec(0)=1w rec(1)=1w rec(2)=1w rec(3)=1

    respone impluse dengan jendela dihitung sebagai :hw (0)=h(0)wrec(0)=0.951=0.95hw (1)=h(1)wrec (1)=0.011671=0.01167hw (2)=h(2)wrec (2)=0.04441=0.0444h(1)=h(1)=0.01167h(2)=h(2)=0.0444

    thus, delaying h(n) by M = 2 sample gives :b0=b4=0.0444, b1=b3=0.01167b2=0.95

    the transfer function is achieved as

    H(z)=0.04440.01167z1+ 0.95z20.01167z3+ 0.0444z4

    The magnitude frequency response and phase response can be obtained

    using the technique introduced in Chapter 6. Substituting z=e j intoH(z), it follows that

    H(e j)=0.04440.01167(ej)+ 0.95 (e j2)0.01167(ej3)+ 0.0444(ej4)

    b. dengan menggunakan penjendelaan hamming

    whm (0)=0.54+ 0.46cos(0

    2)=1

    whm (1)=0.54+ 0.46cos(12

    )=0.54

    whm (1)=0.54+ 0.46cos( 22 )=0.08

    whm (-1) = whm (1) = 0.54whm (-2) = whm (2) = 0.08

    The windowed impulse response is calculated as

    hw (0)=h(0)wham(0)=0.951=0.95hw (1)=h(1)wham(1)=0.011670.54=0.006

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    11/28

    hw (2)=h(2)wham (2)=0.04440.08=0.0035hw(-1) = hw(1) = -0.006hw(-2) = hw(2) = 0.0035

    thus, delying hw(n) by M = 2 sample gives

    bo = b4 = 0.006 , b1=b3 0.0035 b2 = 0.95The transfer function is achieved as

    H(z)=0.006+ 0.0035z1+ 0.95z2+ 0.0035z30.006z4

    dengan demikian menunda hw(n) oleh M = 1 diperoleh sampel :

    b(0)=b(2)=0.2942,b(1)=0.375fungsi alih yang diperoleh sebagai berikut :

    H(Z)=0.2942+ 0.375z1+ 0.2942z2

    Y(Z)X(Z)

    =H(Z)=0.2942+ 0.375z1+ 0.2942 z2

    Y(Z)=0.2942X(Z)+ 0.375z1X(Z)+ 0.2942z2 X(Z)

    Menerapkan z-transform balik di kedua sisi, persamaan perbedaan dihasilkan sebagaiy (n)=0.2942x (n)+ 0.375x (n)+ 0.2942x (n2)magnitud frekuensi respone :

    H(e j)=0.2942+ 0.375 e(j)+ 0.2942 e(j2)

    H e( j )=e(j)[0.2942e(j)+ 0.375+ 0.2942 e(j)]

    H e( j)=e(j)(0.375+ 0.5584 cos())

    maka magnitud respon dan frekuensi respon diperoleh :

    | H e( j)

    | = | e(j)(0.375+ 0.5584cos()) |

    and sudut

    H e( j)=, if0.375+ 0.5884cos, n> 0

    H e( j)=+ , if0.375+ 0.5884cos, n> 0

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    12/28

    7.5 Given an FIR lowpass filter design with the following spesifications

    Passband = 0 800 Hz

    Stopband = 1200 4000 Hz

    Passband ripple = 0.1 dBStopband attenuation = 40 dB

    Sampling rate = 8000 Hz

    determine the following :a. window method

    b. length of the FIT filter

    c. cutoff frequency for the design equation.

    a. stopband atenuation = 40 dB jadi menggunakan metode Hanning

    passband ripple 0,0546

    b.

    f =1200800

    8000=

    400

    8000=0,05

    N =3,1

    f=

    3,1

    0,05=62

    c.

    fc=fpassfstop

    2

    =8001200

    2

    =1000Hz

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    13/28

    FIR High pass filter

    Pass band = 0-1500 HzStep = 2000-4000 Hz

    Pass Band ripple = 0,02 dB hamming : pass band ripple= 0,0194 & topband attenuation= 53 dB

    stopband attenuation = 60 dB

    sampling rate = 8000 Hz

    f = |2000-1500|/8000=0,0625

    N = 3,3/Af

    = 3,3/0,625

    = 52,8pilih angka yang ganjil, maka N=53

    cutt off frequency= (1500+2000)/2 = 1750 Hz

    c=17502

    8000=0,4375 rad

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    14/28

    7.7 Diberikan design FIR bandpass filter dengan spesifikasi sebagai berikut:

    frekuensi cutoff bawah = 1500 Hz

    Lebar transisi bawah = 600 Hz

    Frekuensi cutoff atas = 2300Hz

    Lebar transisi atas = 600 HzPassband ripple = 0,1 dB

    Attenuasi Stopband = 50 dB

    Kecepatan laju sampling = 8000 Hz

    Tentukan:

    a. Metode window

    b. Panjang dari FIR filter

    c. Frekuensi cutoff

    a) Berdasarkan pada spesifikasi diatas, jendela Hamming adalah metode jendela yang tepat untuk

    permasalahan ini, karena memiliki passband ripple 0,0194 dB dan attenuasi stopband sebesar 53 dB

    b) Menghitung lebar transisi normal:

    f1=600

    8000=0.075 dan f2=

    600

    8000=0.075

    dan panjang filternya yang ditentukan menggunakan jendela Hamming adalah:

    N1=3,3

    f=3,3

    0,075=44

    N2=3,3

    f=

    3,3

    0,075=44

    kita pilih agka ganjil untuk nilai N, maka N = 45.

    c) Frekuensi cutoff lower dan upper dapat dihitung:

    L=21500

    8000=0,375 radian

    H=223008000=0,575 radian

    N= 2M+1= 45

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    15/28

    7.8 Given an FIR bandstop filter design with the following spesifications :

    Lower passband n= 0 120 Hz

    Stopband = 1600 2000 Hz

    Upper passband = 2400 4000 HzPassband ripple = 0,05 dB

    Stopband attenuation = 60 dB

    Sanpling rate = 8000 Hzdetermine the following :

    a. window method

    b. length of the FIR filterc. cutoff frequency for the design equation

    answer:

    a.Stopband attenuation 60 dB blackman passband ripple = 0,0017

    b. f1=16001200

    8000=0,05 f2=

    240020008000

    =0,05

    N=5,5

    f=

    5,5

    0,05=110

    c. fclow=fpassfstop

    2=

    120016002

    =1400 Hz

    frequency cutoff ternormalisasi

    L =1400 x 2

    2=0,35 radians

    fch=fpass fstop

    2=

    400016002

    =5600

    2=2800Hz

    frequency cutoff ternomalisasi

    H =2800x 2

    8000=0,7 radians

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    16/28

    a. y(n)=0.25x(n)-0.5x(n-1)+0.25x(n-2)

    b. y n=0,25x n0,5x n10,2x n20,5x n30,2x n4

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    17/28

    8.1 Given an analog filter with the transfer function

    H(s) =1000

    s1000,

    convert it to the digital filter transfer function and difference equation using theBLT if the DSP system has a sampling period of T = 0.001 second.

    Answer :

    Menggunakan BLT

    H(z) = H(s) | s =2z1Tz1

    =1000

    s1000| s =

    2z1Tz1

    T = 0.001 s

    H(z) =

    1000

    2z1Tz1

    1000=

    1000

    2z10.001z1

    1000=

    1000

    2000z1z1

    1000

    =

    0.5

    z1T10.5

    =0.5z1

    z10.5z1=

    0.5z0.51.5z0.5

    jadi :

    H(z) =0.5z0.5/1.5z 1.5z0.5/1.5z

    =0.330.33z1

    10.33z1

    maka :y(n) = 0.33x(n) + 0.33 x(n-1) + 0.33 y(n-1)

    8.2 Hps=

    1

    s1 dengan frekuensi cut off = 30 Hz dan sampling rate of 200 Hz

    a.) first we obtain the digital frekuensi as

    wd=2 f=230=60 rad/sec T=1

    fs=

    1

    200=0,005sec

    wa=2

    Ttan

    wd T

    2=

    2

    0,005tan

    60 x 0,0052

    =400tan 27=203,81 rad/s

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    18/28

    lalu perform the prototype transformation

    Hs=Hps =wa

    swa=

    203,81

    s203,81

    apply the BLT

    Hs=Hps =wa

    swa=

    203,81

    s203,81dengan s=

    2z1Tz1

    Hz=203,81

    400z1z1

    203,81=

    203,81

    400

    z1z1

    203,81

    400

    =0,509

    z1z1

    0,509

    lalu kalikan dengan (z+1)

    0,509z1

    z10,509z1=

    0,509z0,509z10,509z0,509

    =0,509z0,5091,509z0,491

    terakhir bagi pembilang dan penyebut dengan 1,509z

    Hz=0,3370,377 z1

    10,325 z1

    b) program matlab

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    19/28

    % Plot the magnitude and phase responsesfs = 200;% Sampling rate (Hz)[B, A] = lp2lp([1],[1 1],203.81);[b, a] = bilinear(B, A, fs)%b = [0.337 0.337] numerator coefficients of the digital filter from MATLAB%a = [1 -0.325]denominator coefficients of the digital filter from MATLAB[hz, f] = freqz([0.337 0.337],[1-0.325],512,fs);%the frequency responsephi = 180*unwrap(angle(hz))/pi;

    subplot(2,1,1), plot(f, abs(hz)),grid;axis([0 fs/2 0 1]);xlabel('Frequency (Hz)'); ylabel('Magnitude Response')subplot(2,1,2), plot(f, phi); grid;axis([0 fs/2 100 0]);xlabel('Frequency (Hz)'); ylabel('Phase (degrees)')

    8.3. The normalized lowpass filter with a cutoff frequency of 1 rad/sec is given as

    Hps=1

    s1a. Use Hp(s) and the BLT to obtain a corresponding IIR digital highpass filter with a cutofffrequency of 30 Hz, assuming a sampling rate of 200 Hz.b. Use MATLAB to plot the magnitude and phase frequency responses of H(z).

    Answer :a. First, we obtain the digital frequency as d=2 f=230=60 rad/sec ;T=1/ fs=1/200sec

    We then follow the design procedure:1. First calculate the prewarped analog frequency as

    a= 2Ttan dT

    2= 2

    1/200tan 60/200

    2

    that is, a=400x tan 27o=400x 0,51=203,81 rad/sec

    2. Then perform the prototype transformation (lowpass to lowpass) as follows:

    HS=Hpss=

    1

    a

    =1

    as1

    =s

    as

    which yields an analog filter:

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    20/28

    Hs=s

    203,81s3. Apply the BLT, which yields

    Hz=[ s203,81s ]s=2z1Tz1

    We simplify the algebra by dividing both the numerator and the denominator by

    180:

    Hz=180 x

    z1z1

    203,81180xz1z1

    Hz=

    z1z1

    203,81

    180

    z1z1

    Hz=

    z1z1

    1,13z1z1

    Then we multiply both numerator and denominator by (z + 1) to obtain

    Hz= z1z1 x z1

    1,13z1z1 x z1Hz=

    z11,13z1z1

    Hz=z1

    1,13z1,13z1

    Hz=z1

    0,13z0,13Finally, we divide both numerator and denominator by 0.13z to getnthe transferfunction in the standard format:

    Hz=z1/0,13z

    0,13z0,13/0,13z

    Hz=7.697.69z1

    1z1

    b. The corresponding MATLAB design is listed in Program 8.2. Figure 8.12 shows themagnitude and phase frequency responses.

    %Example 8.6% Plot the magnitude and phase responsesfs = 200;% Sampling rate (Hz)[B, A] =lp2lp([1],[1 1],203.81);[b, a] =bilinear(B, A, fs)%b = [0.3660 0.3660] numerator coefficients of the digital filter from MATLAB%a =[1 _0:2679]denominator coefficients of the digital filter from MATLAB

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    21/28

    [hz, f] = freqz([7.69 7.69],[1-0.13],512,fs);%the frequency responsephi =180*unwrap(angle(hz))/pi;subplot(2,1,1), plot(f, abs(hz)),grid;axis([0 fs/2 0 50]);xlabel('Frequency (Hz)'); ylabel('Magnitude Response')subplot(2,1,2), plot(f, phi); grid;axis([0 fs/2 -100 0]);xlabel('Frequency (Hz)'); ylabel('Phase (degrees)')

    8.4 Consider the normalized lowpass filter with a cutoff frequency of 1 rad/ sec:

    Hp(s) =1

    s1

    a. Use Hp(s) and the BLT to design a corresponding IIR digital notch (bandstop) filter

    with a lower cutoff frequency of 20 Hz, an upper cutoff frequency of 40 Hz, and a

    sampling rate of 120 Hz.

    b. Use MATLAB to plot the magnitude and phase frequency

    responses of H(z).

    Answer :

    A. wh = 2 fh = 2 (40) = 80 rad/secwl = 2 fl = 2 (20) = 40 rad/sec

    T = 1/fs = 1/120 sec

    wah = 2/T tanwh T

    2= 240 x tan

    80/1202

    = 4.156 x 102 rad/sec

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    22/28

    wal = 240 tanwl T

    2= 240 x tan

    40/1202

    = 1.385 x 102 rad/sec

    W = wah wal = 415.6 138.5 = 277.03 rad/sec

    wo2 = wah x wal = 5.75606 x 104

    Hp(s) =1

    s1

    H(s) = Hp(s)|s

    2wo2

    sW=

    Ws

    s2wsw02

    =277.03s

    s2277,03s5.75606x104

    H(z) =277.03s

    s2277,03s5.75606x104

    | s = 240 (z-1)/(z+1)

    B. dengan menggunakan MATLAB

    % Design of the digital bandpass Butterworth filterformat longfs = 120;[B A] = lp2bp([1],[1 1],sqrt(5.75606*10^4),277.03)% Complete step 2[b a] = bilinear(B,A,fs) % Complete step 3% Plot the magnitude and phase responses%b = [0:0730 - 0:0730]; numerator coefficients from MATLAB%a = [1 0:7117 0:8541]; denominator coefficients from MATLABfreqz(b, a,512,fs);axis([0 fs/2-40 10])

    Tampilan pada common

    B =

    1.0e+002 *

    2.77030000000000 0.00000000000008

    A =

    1.0e+004 *

    0.00010000000000 0.02770300000000 5.75606000000000

    b =

    0.36602259977825 0.00000000000000 -0.36602259977825

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    23/28

    a =

    1.00000000000000 -0.00043380652009 0.26795480044350

    Grafik :

    8.5 Hps=1

    s1dengan frekuensi lowpass cut off = 15 Hz , upper cutoff = 25

    Hz dan sampling rate of 200 Hz

    a) untuk yg lowpass = 15 Hz

    wd=2 f=215=30 rad/sec T=1

    fs=

    1

    120=0,0083sec

    wa=2

    Ttan

    wd T

    2=

    2

    0,0083tan

    30x 0,00832

    =240,96tan 22,41=99,36 rad/s

    lalu perform the prototype transformation

    Hs=Hps =wa

    swa=

    99,36

    s99,36

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    24/28

    apply the BLT

    Hs=Hps =wa

    swa=

    99,36

    s99,36dengan s=

    2z1Tz1

    Hz= 99,36240,96z1z1

    99,36=

    99,36

    240,96z1z1

    99,96

    240,96

    = 0,412z1z1

    0,412

    lalu kalikan dengan (z+1)

    0,412z1z10,412z1

    =0,412z0,412

    z10,412z0,412=

    0,412z0,4121,412z0,588

    terakhir bagi pembilang dan penyebut dengan 1,412z

    Hz=0,2920,292z1

    10,42z1

    untuk yang upper cutoff = 25 Hz

    wd=2 f=225=50 rad/sec T=1

    fs=

    1

    120=0,0083sec

    wa=2

    Ttan

    wd T

    2=

    2

    0,0083tan

    50x 0,00832

    =240,96tan 37,35=183,89 rad/s

    lalu perform the prototype transformation

    Hs=Hps =wa

    swa=

    183,89

    s183,89

    apply the BLT

    Hs=Hps =wa

    swa=

    183,89

    s183,89dengan s=

    2z1Tz1

    Hz=183,89

    240,96z1z1

    183,89=

    183,89

    240,96

    z1z1

    183,89

    240,96

    =0,763

    z1z1

    0,763

    lalu kalikan dengan (z+1)

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    25/28

    0,763z1z10,763z1

    =0,763z0,763

    z10,763z0,763=

    0,763z0,7631,763z0,237

    terakhir bagi pembilang dan penyebut dengan 1,763z

    Hz=0,4330,433z1

    10,134z1

    b) program matlab untuk frekuensi cutt off = 15 Hz

    % Plot the magnitude and phase responsesfs = 120;% Sampling rate (Hz)[B, A] = lp2lp([1],[1 1],99.36);[b, a] = bilinear(B, A, fs)%b = [0.292 0.292] numerator coefficients of the digital filter from MATLAB%a = [1 -0.42]denominator coefficients of the digital filter from MATLAB[hz, f] = freqz([0.292 0.292],[1-0.42],512,fs);%the frequency responsephi = 180*unwrap(angle(hz))/pi;subplot(2,1,1), plot(f, abs(hz)),grid;axis([0 fs/2 0 1]);xlabel('Frequency (Hz)'); ylabel('Magnitude Response')

    subplot(2,1,2), plot(f, phi); grid;axis([0 fs/2 100 0]);xlabel('Frequency (Hz)'); ylabel('Phase (degrees)')

    untuk yang frekuensi cuttoff = 25 Hz

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    26/28

    % Plot the magnitude and phase responsesfs = 120;% Sampling rate (Hz)[B, A] = lp2lp([1],[1 1],183.89);[b, a] = bilinear(B, A, fs)%b = [0.433 0.433] numerator coefficients of the digital filter from MATLAB%a = [1 -0.134]denominator coefficients of the digital filter from MATLAB[hz, f] = freqz([0.433 0.433],[1-0.134],512,fs);%the frequency responsephi = 180*unwrap(angle(hz))/pi;subplot(2,1,1), plot(f, abs(hz)),grid;axis([0 fs/2 0 1]);xlabel('Frequency (Hz)'); ylabel('Magnitude Response')subplot(2,1,2), plot(f, phi); grid;axis([0 fs/2 100 0]);

    xlabel('Frequency (Hz)'); ylabel('Phase (degrees)')

    8.6. Design a first-order digital lowpass Butterworth filter with a cutoff frequency of 1.5kHz and a passband ripple of 3 dB at a sampling frequency of 8,000 Hz.a. Determine the transfer function and difference equation.b. Use MATLAB to plot the magnitude and phase frequency responses.

    Answera.

    d=21500=3000 rad/sec dan T= 1fs= 1

    8000sec

    1. a 2/Ttan d T2=1600tan

    3000/80002

    = 1,069104 rad/sec

    2. Hp(s)=1

    s1

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    27/28

    H(s)=Hp(s)|as

    =

    1

    as1

    =s

    s1.069x104 rad/sec

    3. dengan BLT :

    H(z) =s

    s1.069x104

    rad/sec

    |s=16000(z-1)/(z+1)

    H(z)=

    16000z1z1

    16000z1z1

    1.069x104

    z1z1

    =16000z1

    16000z11.069x104z1

    = 16000 z116000 z11.069x10 4z1

    =16000z16000

    16000z1600010690z10690

    =16000z1600026690z5310

    =0.559z0.599

    z0.1989

    pembilang dan penyebut dibagi dengan z:

    H(z)=0.5990.599z1

    10.1989z1

    b. program MATLAB:

    %Soal 8.6

    % Design of the digital lowpass Butterworth filterformat longfs = 8000; % Sampling rate[B A] = lp2lp([1],[0 1 1], 1.0690*10 ^ 4) % Complete step 2

    [b a] = bilinear(B,A,fs)% Complete step 3% Plot the magnitude and phase responses%b = [0.7157 1.4315 0.7157]; numerator coefficients from MATLAB%a = [1 1.3490 0.5140]; denominator coefficients from MATLABfreqz(b,a,512,fs);axis([0 fs/2 -40 10])

    Setelah di-run:

  • 7/28/2019 Pengolahan Sinyal Digital B 2011 2012 12 (Bab 7 & 8)

    28/28

    B =

    10690

    A =

    1 10690

    b =

    0.40052454102660 0.40052454102660

    a =

    1.00000000000000 -0.19895091794680