“Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

93
“Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève

Transcript of “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Page 1: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

“Pediatric radiation oncology”

R. MiralbellHôpitaux Universitaires, Genève

Page 2: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Trends in 5-Year Survival for Pediatric Cancer Patients (<19 yr-old males) in the US (1975-2000)

Tumor site 1975-79 1995-2000

CNS 57% 72%

Soft tiss. sarcoma 62% 73%

Hodgkin 86% 96%

All sites 58% 77%(Annual report to the Nation, Cancer, July 2004)

Page 3: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.
Page 4: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Author Period #pts Gender Age T-stage M-stage

Hershatter et al 1940-83 127 - - >T2 NE

Tait et al 1975-79 286 female - <T3 NE

Evans et al 1975-81 233 - >4 years - M0

Jenkin et al 1977-87 72 female - <T3 M0-1

Wara et al 1970-95 109 female >3 years - M0

Miralbell et al 1972-91 86 female - - M0

Clinical features favorably influencing survival in pediatric medulloblastoma: univariate analysis

Page 5: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Author Period #pts Gender Age T-stage M-stage

Hershatter et al 1940-83 127 - - >T2 NE

Evans et al 1975-81 233 - >4 years - M0

Jenkin et al 1977-87 72 - - - -

Wara et al 1970-95 109 female - - M0

Miralbell et al 1972-91 86 female - - M0

Clinical features favorably influencing survival in pediatric medulloblastoma: multivariate analysis

Page 6: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Virtual simulation for cranio-spinal irradiation of medulloblastoma.

Clara Jargy, Philippe Nouet, Raymond Miralbell.Radiation Oncology, Geneva University Hospital

Page 7: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Patient set-up

Lateral markMark on the skin for the spine field

Page 8: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Set-up of the left lateral brain field

with the different structures.

Page 9: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Set-up of the spinal field

Mark on the skin

shifts

Page 10: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Junction (brain-spine) in a sagittal slice

Page 11: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Effect of the table rotation on the field ’s matching

with without

Page 12: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Moving junctions between the brain fields and the spinal field.

We use asymetric fields (one isocenter for the same region).

Page 13: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Moving junction between the two spinal fields.

Fields match on the anterior edge of the spinal cord

Page 14: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Boost on the posterior fossa

Page 15: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Final dosimetry in a sagittal slice passing through the spinal cord.

-Dose at the junction.

-Dose at the spinal cord (depth and SSD vary).

Page 16: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Radiotherapy in pediatric medulloblastoma: quality assessment of

POG Trial 9031

R. Miralbell

QARC & Swiss POGGeneva, CH

Page 17: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Purpose

To evaluate the potential influence of the quality of RT on event-free (EFS) & overall survival (OS) in a group of high-riskpediatric medulloblastoma patients treatedin POG Trial 9031

Page 18: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

• Randomize between:- Arm 1: CDDP+VP16 - CSI - vcr+cycloph.- Arm 2: CSI - CDDP+VP16 - vcr+cycloph.

• 224 high-risk stage patients randomized :- Post-op residual tumor: >1.5 cm3

- T3b, T4- M+ (1-3)

POG Trial 9031

Page 19: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Patient material & RT guidelines

• Patients: 197 evaluable

• CSI (dose): M0-1 M2-3 dose/fx

WBI & spine 35.2 Gy 40.0 Gy 1.6 GyPF (boost) 18.0 Gy 14.4 Gy 1.8 GyMetastases 0.0 Gy 4.8 Gy 1.6 Gy

Page 20: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

CSI treatment volume boundaries

• WBI: inf border 0.5 cm below base of skull

• Spine: inf border 2 cm below the subdural space

• PF: tentorium+1 cm; C1-C2 interspace; post clinoids; post convexity

• Tumor: 2 cm around the primary tumor

Page 21: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Method of RT quality assessment

• WBI: distance between the inf field limit & both the cribiform plate & floor of the middle cranial fossa

• Spine: distance between the end of the inf field limit & the end of the dural sac (MRI).

• PF: distance between the boost field limits & the tentorium, C1-C2, post clinoids, post convexity

• Tumor: distance between the boost field limits & the tumor borders as seen in the pre-op brain MRI/CT

Page 22: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Treatment deviation guidelines

• WBI: 0-4 mm, minor; <0 mm, major

• Spine: Inf field abutting the sac, minor Inf field transsecting the sac,

major

• PF: < field boundaries, major

• Tumor: 10-18 mm, minor; <10 mm, major

Page 23: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

RT deviations: total dose

• Maximum accepted variation: +/- 5%

• Major deviation: 10% or more below dose prescription

• Delays >51 & >58 days were conpensated with 1 or 2 additional fractions to the PF

Page 24: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Endpoints & statistics

• Assessment of 1st site of failure

• 5-year EFS & OS according to treatment correctness

• Kaplan-Meier & log-rank tests

Page 25: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Results: overall outcome

• EFS (5-y): 69.1% (4.1 SE)

• OS (5-y): 74.4% (3.8 SE)

• Relapsed: 35 patients

• Progressed: 14 patients

• Dead: 57 patients

Page 26: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Results: treatment deviations

• Fully evaluable: 160 patients

# deviations # patients0 691 502 313 094 01

Page 27: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Results: major deviations by site

Site #deviat/total patients

WBI: 54/208 (26%)

Spine: 12/174 (7%)

PF: 82/210 (39%)

Tumor: 33/189 (17%)

Page 28: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Results: EFS & OS by site and deviation status

Target Treatment Number of 5-year EFS p- 5-year OS p-volume deviation patients (SE) value (SE) value

Brain no 154 70.7(4.8) 77.7(4.3)yes 54 67.4(8.4) 0.823 69.5(8.2) 0.454

Spine no 162 70.0(4.8) 75.7(4.4)yes 12 74.1(16.9) 0.684 72.2(17.0) 0.997

Posterior fossa no 128 69.5(5.4) 75.6(4.9)yes 82 69.8(6.5) 0.965 74.8(6.1) 0.497

Primary tumor no 156 68.8(5.0) 74.1(4.6)yes 33 69.1(10.3) 0.854 78.1(9.1) 0.839

Page 29: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Results: outcome & cumulative effect of treatment deviations

5-yearDeviations EFS OS

0-1 72.1% 76.3%

2-4 59.2% (p=0.06) 70.6% (p=0.04)

Page 30: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Summary

• Major treatment deviations were observed in 57% of fully evaluable patients.

• Underdosage or treatment volume misses did not correlate with a worse EFS or OS.

• A «trend» for a better EFS and OS was observed among patients with lesser number of major deviations (i.e., 0-1).

• An involved field to boost the tumor bed may be as effective as, and less toxic than, boosting the whole PF.

Page 31: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

RT in children: a unique treatment paradigm

Page 32: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Why?

1. Significant increase in survival in pediatric oncology in the last 25 years

2. Conventional RT frequently associated with severe side effects:

Growth & musculoskeletal

Endocrine & fertility

Neuropsychologic

Secondary cancers

Page 33: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Late sequelae in 306 children treated for orbital rhabdomyosarcomas (1979-92)Type of sequelae Europe USA

Cataract 51% 82%

Reduced vision 54% 70%

Dry eye 28% 23%

Orbital hypoplasia 29% 59%

Maxillary hypoplasia 10% 11%

(Anderson et al, COG news; 2001

)

Page 34: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Bone growth and radiation damage

• Radiation kills dividing chondroblasts

• Arrested chondrogenesis in the epiphysis

• Stop endochondral bone formation: >20 Gy

Page 35: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Changes in skeletal growth: the height

• A consequence of treating the spinal axis:

reduced sitting heights

• Age dependant: <12 years

• Dose dependent: >20 Gy

Page 36: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Endocrine dysfunction and irradiation dose

Dose (Gy) Endocrinopathies

3-10 Gy Spermatogenic failure in male

10-15 Gy Neurosecretory disturbance, adult GH deficiency

15-25 Gy Children GH deficiency, early puberty, ovarian failure in female, Leydig-cell failure

25-30 Gy Primary hypothyroidism

30-55 Gy Evolving pituitary gland dysfunction

Page 37: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Preirradiation endocrinopathies in pediatric brain tumors

Pre-RT endocrinologic dysfunction in 45/68 (66%) patients assessed

Dysfunction %

GH 38

TSH 43

ACTH 22

FSH/LH 13

Merchant et al, IJROBP 54:45-50, 2002

Page 38: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Craniospinal RT for medulloblatoma/PNET

Page 39: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Pituitary gland: 36 Gy

Page 40: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Thyroid: 25-30 Gy

Ovaries: 2-12 Gy

Page 41: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Ways to reduce the risk of radiation induced endocrine dysfunction

1. Total dose and/or field size reduction

2. Total/partial shielding of the gland(s) at risk

3. More than 1 small-fraction a day (hyperfractionation)

4. Free radical scavengers (radioprotectors)

5. Better dose distribution (computer-based optimization of 3-D treatment planning + new highly performant treatment delivery techniques)

Page 42: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Total dose and/or field reduction

1. «Mantle» RT for Hodgkin’s disease: Dose lowered from 44 Gy to 20 Gy and field size reduced. Still excellent survival. Sparing primary hypothyroidism

2. Prophilactic cranial irradiation in pediatric lymphoblastic leukemia or medulloblastoma: Dose lowered to 18 Gy. Sparing GH dysfunction

Page 43: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

44 Gy

Hodgkin’s Lymphoma in 1950’s-1980’s: «mantle» field irradiation

Page 44: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Hodgkin’s Lymphoma in the 1990’s-2000’s: involved field irradiation

20 Gy

Page 45: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Total/partial shielding of the gland(s) at risk

1. Head and neck tumors: Usually high doses to the neck (50-70 Gy) Sparing primary hypothyroidism Sparing pituitary dysfunction

2. Pelvic tumors in boys-men: Shielding of the testicles Dose <3 Gy (sparing fertility)Dose <20 Gy (sparing Leydig-cell function)

Page 46: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Dose-volume relations for thyroid dysfunction in head and neck tumors

• The whole thyroid in the treatment field Risk of thyroid dysfunction: 29%

• Partial shielding of the thyroid Risk of thyroid dysfunction: 5%

Yoden et al, ASTRO proceedings 337, 2001

Page 47: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

RT dose-volume effects on GH secretion

Dose to the hypothalamus (HT) vs peak GH value post-RT measured as a function of time and volume

Predictive model for GH peak response after RT:

GH(t) = Exp[ln(bGH) – (0.00058V0-20Gy + 0.00106 V20-40Gy + 0,00156 V40-60Gy) x t]

- bGH : baseline peak GH level (before RT)

- V 0-20Gy: % volume of HT receiving 0-20 Gy

- V 20-40Gy: % volume of HT receiving 20-40 Gy

- V 40-60Gy: % volume of HT receiving 40-60Gy

- t : time after irradiation (in months)

Merchant et al,IJROBP; 52:1264-1270, 2002

Page 48: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Hyperfractionation: 1 Gy/fraction bid

Better tolerance of the thyroid to small fractions (improved repair capacity of radiation induced sublethal lesions).

Reduced risk for primary hypothyroidism

Two studies with craniospinal RT for medulloblastoma/PNET

Author Standard RT Hyperfract RT

Chin et al, 1997 76% 14%

Ricardi et al, 2001 80% 33%

Page 49: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Radioprotectors: amifostine (ethyol)

Organic thiophosphate, dephosphorilated in its active metabolite WR-1065. Acts as free-radical scavenger inside the cell.

Study proposal at Washington Unversity (St Louis, MO) to test the impact of amifostine on subsequent hypothyroidism in irradiated patients with head and neck cancers.

Zoberi et al, Sem Rad Oncol 12:14-17, 2002

Page 50: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

3-D conformal RT

• Shapes the prescription dose to the tumor avoiding normal tissues (critical organs).

• The system relies on 3-dimensional imaging to define and target the tumor.

Page 51: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

…is further optimization possible?

New treatment technologies such as intensity modulated X-ray beams and proton beams can provide an even superior dose distribution compared to conventional 3-D conformal RT

Page 52: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Intensity Modulated X-ray Beams

Page 53: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Intensity Modulated Radiation Therapy

Beam-letBeam-let

3D Dose DistributionFluence or Intensity Map

IMRT is a highly conformal RT technique whereby many beamlets of varying

radiation intensity within one treatment field can be delivered

Page 54: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Proton Beams

Page 55: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.
Page 56: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Photon:

No mass, uncharged

Proton:

Large mass, charged « + »

Page 57: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Proton Beams

Page 58: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Four truisms…

1. There is no advantage to any patient for any irradiation of any normal tissue.

2. Radiation complications never ocur in unirradiated tissues

3. That a smaller treatment volume is superior is not a medical research question

4. One may investigate the magnitude of the gain or the cost of achieving that gain

(Suit, IJROBP 53; 2002)

Page 59: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Brainstem (pilocytic) glioma in a 8 y-old girl: 50 Gy (100%).

Pituitary gland

Optic chiasm

Brainstem

Target volume

Page 60: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.
Page 61: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

3-D conformalradiotherapy

Brainstem glioma

Dose to the pituitary gland: 25 Gy (high-risk of GH deficiency)

Page 62: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Brainstem glioma

IMRT

Dose to the pituitary gland: 15 Gy (low-risk of GH deficiency)

Page 63: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Cancer of the nasopharynx in a 16 y-old boy: 70 Gy (100%)

Page 64: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

IMRT3-D conformal RT

Page 65: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

IMRT3-D conformal RT

Tumor

Page 66: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

3-D conformal RT IMRT

Pituitary gland

Page 67: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.
Page 68: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Standard XRT IMRT (X-rays) Protons

Medulloblastoma in a 3-year old boy. Spinal radiotherapy: 36 GyE (100%)

Thyroid Ovaries

Page 69: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Summary & conclusions

• Dose escalation (against the tumor) as much as dose reduction (to normal tissues) are needed in modern radiation oncology

• Pre-RT endocrinopathies are not uncommon

• Progress in 3-D treatment technology may help to reach the goals of higher local cure with less endocrinologic side effects

• RT induced malignancies may significantly be reduced using proton beams (especially in pediatric oncology)

Page 70: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Quality of life in CNS tumor survivors:XRT vs no-XRT

Measure % Survivors odds ratio

Never employedXRT 21 16.0no-XRT 8 4.5

Emotional problems XRT 16 3.0no-XRT 8 1.6

Fair or poor healthXRT 30 13.1no-XRT 10 1.0

(Mostow et al, JCO; 1991)

Page 71: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Risk of G-3/G-4 ototoxicity versus dose after RT to the posterior fossa in children

RT technique Dose to the cochlea Risk (%)

3-D CRT 54.2 Gy (mean) 64%

IMRT 36.7 Gy (mean) 13%

( Huang et al, IJROBP, 52;2002)

Page 72: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Brainstem glioma

3-D conformalradiotherapy

(CRT)

Page 73: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Brainstem glioma

3-D conformal with dynamic

mMLC & IMRT

Page 74: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Comparative planning

3-D mMLC (CRT) 3-D mMLC (dynamic IMRT)

Page 75: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Medulloblastoma, post. fossa boost

3-D conformal radiotherapy

(CRT)

Page 76: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Medulloblastoma, post. fossa boost

3-D conformal with dynamic mMLC &

IMRT

Page 77: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Axial view:cochlear level

3-D CRTIMRT

Page 78: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Comparative planning

3-D mMLC (CRT) 3-D mMLC (dynamic IMRT)

PTVPTV

Rt cochleaRt cochlea

Lt cochleaLt cochlea

O. chiasmO. chiasm

Page 79: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Nonperoperative strokes in children with CNS tumors

• Incidence: 13/807 patients (1.6%)

• Ocurrence: 2.3 years from diagnosis

• Increased risk:

- treatment with RT

- optic pathway gliomas

(Bowers et al, Cancer 94;2002)

Page 80: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Oligo-astrocytoma G-II of the mesencephalus in a 12-year old girl

Page 81: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

PTV

Brainstem

O. chiasm

Rt & Lt Cochleae

O. nerves

Page 82: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Protons

Pylocitic astrocytoma of the right optic pathway in a 8 year old girl (type-I NF):

Page 83: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Secondary cancers

• Observed/expected ratios (95% CI):

- Hodgkin disease: 9.7 (8.0-11.6)

- Soft-tissue sarcoma: 7.0 (4.9-9.7)

- Neuroblastoma: 6.6 (3.3-11.8)

- CNS tumors: 4.4 (1.8-5.4)

• Increased risk: female & young age.(JNCI, 93;2001)

Page 84: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.
Page 85: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Purpose

To assess the potential influence of improved dose distribution with proton beams compared to conventional or IM X-ray beams on the incidence of treatment-induced 2nd cancers in pediatric oncology.

Page 86: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Material

• A 7-y old boy with a rhabdomyosarcoma (RMS)

of the left paranasal sinus: 50.4 Gy (28 x 1.8 Gy,

qd) to the tumor bed.

(IJROBP, 47;2000)

• A 3-y old boy with a medulloblastoma

(MDB): 36 Gy (20 x 1.8 Gy, qd) to the spine.

(IJROBP, 38;1997)

Page 87: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Conformal XRT IMXT

Protons IMPT

Page 88: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Standard XRT IMRT (X-rays) Protons

Page 89: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Estimation of 2nd cancer incidence

Based on ICRP #60 guidelines

M = St Mt Ht/Lt

M; probability in % of 2nd cancer incidence (Sv-1) (total)

Mt; probability in % of fatal 2nd cancer (Sv-1) (organ-specific)

Ht; average dose (Sv) in the outlined organs

Lt; organ-specific cancer lethality

Page 90: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

ICRP #60: organ-specific probability of fatal 2nd cancer (%) per Sv-1 & lethality

Organ Mt Lt

Oesophagus 0.55 0.95

Stomach 2.18 0.90

Colon 1.65 0.55

Breast 0.39 0.50

Lung 1.60 0.95

Bone 0.03 0.70

Thyroid 0.07 0.10

Page 91: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

RMS: Estimated absolute yearly rate (%) of 2nd cancer

X-rays IMXT Protons IMPT

Yearly rate 0.06 0.05 0.04 0.02

RR compared

to X-rays 1 0.8 0.7 0.4

Page 92: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

MDB: Estimated absolute yearly rate (%) of 2nd cancer

Tumor site X-rays IMXT ProtonsOesoph. & stomach 0.15 0.11 0.00Colon 0.15 0.07 0.00Breast 0.00 0.00 0.00Lung 0.07 0.07 0.01Thyroid 0.18 0.06 0.00Bone & soft tissue 0.03 0.02 0.01Leukemia 0.07 0.05 0.03All 0.75 0.43 0.05

RR (compared to X-rays) 1 0.6 0.07

Page 93: “Pediatric radiation oncology” R. Miralbell Hôpitaux Universitaires, Genève.

Conclusions

• Proton beams may reduce the expected

incidence of radiation-induced 2nd cancers by a

factor of >2 (RMS) or >8 (MDB)

• With a lower risk of 2nd cancers the cost per life

saved may be significantly reduced