X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total...

53
*X757770101* *X7577701* AH FOR OFFICIAL USE Fill in these boxes and read what is printed below. Number of seat Town © Mark Full name of centre Forename(s) Surname Scottish candidate number Date of birth Year Day Month National Qualications 2016 Total marks 140 Attempt ALL questions. Reference may be made to the Physics Relationships Sheet X757/77/11 and the Data Sheet on Page 02. Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy. Care should be taken to give an appropriate number of significant figures in the final answers to calculations. Use blue or black ink. Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper. X757/77/01 TUESDAY, 24 MAY 9:00 AM 11:30 AM A/HTP Physics

Transcript of X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total...

Page 1: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770101

X7577701

AHFOR OFFICIAL USE

Fill in these boxes and read what is printed below

Number of seat

Town

copy

Mark

Full name of centre

Forename(s) Surname

Scottish candidate numberDate of birth

YearDay Month

NationalQualications2016

Total marks mdash 140

Attempt ALL questions

Reference may be made to the Physics Relationships Sheet X7577711 and the Data Sheet on Page 02

Write your answers clearly in the spaces provided in this booklet Additional space for answers and rough work is provided at the end of this booklet If you use this space you must clearly identify the question number you are attempting Any rough work must be written in this booklet You should score through your rough work when you have written your final copy

Care should be taken to give an appropriate number of significant figures in the final answers to calculations

Use blue or black ink

Before leaving the examination room you must give this booklet to the Invigilator if you do not you may lose all the marks for this paper

X7577701

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Physics

X757770102Page 02

DATA SHEETCOMMON PHYSICAL QUANTITIES

Quantity Symbol Value Quantity Symbol Value

Gravitational acceleration on EarthRadius of EarthMass of EarthMass of MoonRadius of MoonMean Radius of Moon OrbitSolar radiusMass of Sun1 AUStefan-Boltzmann constantUniversal constant of gravitation

gREMEMMRM

σ

G

9middot8 m sminus2

6middot4 times 106 m6middot0 times 1024 kg7middot3 times 1022 kg1middot7 times 106 m

3middot84 times 108 m6middot955 times 108 m2middot0 times 1030 kg1middot5 times 1011 m

5middot67 times 10minus8 W mminus2 Kminus4

6middot67 times 10minus11 m3 kgminus1 sminus2

Mass of electronCharge on electronMass of neutronMass of protonMass of alpha particleCharge on alpha particlePlanckrsquos constantPermittivity of free spacePermeability of free spaceSpeed of light in vacuumSpeed of sound in air

meemnmpmα

h

ε0

μ0

c

v

9middot11 times 10minus31 kgminus1middot60 times 10minus19 C1middot675 times 10minus27 kg1middot673 times 10minus27 kg6middot645 times 10minus27 kg

3middot20 times 10minus19 C6middot63 times 10minus34 J s

8middot85 times 10minus12 F mminus1

4π times 10minus7 H mminus1

3middot0 times 108 m sminus1

3middot4 times 102 m sminus1

REFRACTIVE INDICESThe refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K

Substance Refractive index Substance Refractive index

DiamondGlassIcePerspex

2middot421middot51 1middot311middot49

GlycerolWaterAirMagnesium Fluoride

1middot47 1middot331middot001middot38

SPECTRAL LINES

Element Wavelengthnm Colour Element Wavelengthnm Colour

Hydrogen

Sodium

656486434410397389

589

RedBlue-greenBlue-violetVioletUltravioletUltraviolet

Yellow

Cadmium 644509480

RedGreenBlue

LasersElement Wavelengthnm Colour

Carbon dioxide

Helium-neon

955010590

633

Infrared

Red

PROPERTIES OF SELECTED MATERIALS

Substance Densitykg mminus3

MeltingPoint

K

BoilingPoint

K

Specific HeatCapacityJ kgminus1 Kminus1

Specific LatentHeat ofFusionJ kgminus1

Specific LatentHeat of

VaporisationJ kgminus1

AluminiumCopperGlassIceGlycerolMethanolSea WaterWaterAirHydrogenNitrogenOxygen

2middot70 times 103

8middot96 times 103

2middot60 times 103

9middot20 times 102

1middot26 times 103

7middot91 times 102

1middot02 times 103

1middot00 times 103

1middot299middot0 times 10minus2

1middot251middot43

93313571400273291175264273

146355

26232853 563338377373

207790

9middot02 times 102

3middot86 times 102

6middot70 times 102

2middot10 times 103

2middot43 times 103

2middot52 times 103

3middot93 times 103

4middot19 times 103

1middot43 times 104

1middot04 times 103

9middot18 times 102

3middot95 times 105

2middot05 times 105

3middot34 times 105

1middot81 times 105

9middot9 times 104

3middot34 times 105

8middot30 times 105

1middot12 times 106

2middot26 times 106

4middot50 times 105

2middot00 times 105

2middot40 times 104

The gas densities refer to a temperature of 273 K and a pressure of 1middot01 times 105 Pa

X757770103Page 03

MARKS DO NOT WRITE IN

THIS MARGIN

Total marks mdash 140 marks

Attempt ALL questions

1

A car on a long straight track accelerates from rest The carrsquos run begins at time t = 0

Its velocity v at time t is given by the equation

20 135 1 26v t tsdot sdot= +

where v is measured in m sminus1 and t is measured in s

Using calculus methods

(a) determine the acceleration of the car at t = 15middot0 s

Space for working and answer

(b) determine the displacement of the car from its original position at this time

Space for working and answer

3

3

[Turn over

X757770104Page 04

MARKS DO NOT WRITE IN

THIS MARGIN

2 (a) An ideal conical pendulum consists of a mass moving with constant speed in a circular path as shown in Figure 2A

mass

Figure 2A

ω

(i) Explain why the mass is accelerating despite moving with constant speed

(ii) State the direction of this acceleration

1

1

X757770105Page 05

MARKS DO NOT WRITE IN

THIS MARGIN

2 (continued)

(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B

The motion of the ball can be modelled as a conical pendulum

The ball has a mass of 0middot059 kg

Figure 2B

r

(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0middot48 m

The ball completes 1middot5 revolutions in 2middot69 s

(A) Show that the angular velocity of the ball is 3middot5 rad sminus1

Space for working and answer

(B) Calculate the magnitude of the centripetal force acting on the ball

Space for working and answer

2

3

[Turn over

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 2: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770102Page 02

DATA SHEETCOMMON PHYSICAL QUANTITIES

Quantity Symbol Value Quantity Symbol Value

Gravitational acceleration on EarthRadius of EarthMass of EarthMass of MoonRadius of MoonMean Radius of Moon OrbitSolar radiusMass of Sun1 AUStefan-Boltzmann constantUniversal constant of gravitation

gREMEMMRM

σ

G

9middot8 m sminus2

6middot4 times 106 m6middot0 times 1024 kg7middot3 times 1022 kg1middot7 times 106 m

3middot84 times 108 m6middot955 times 108 m2middot0 times 1030 kg1middot5 times 1011 m

5middot67 times 10minus8 W mminus2 Kminus4

6middot67 times 10minus11 m3 kgminus1 sminus2

Mass of electronCharge on electronMass of neutronMass of protonMass of alpha particleCharge on alpha particlePlanckrsquos constantPermittivity of free spacePermeability of free spaceSpeed of light in vacuumSpeed of sound in air

meemnmpmα

h

ε0

μ0

c

v

9middot11 times 10minus31 kgminus1middot60 times 10minus19 C1middot675 times 10minus27 kg1middot673 times 10minus27 kg6middot645 times 10minus27 kg

3middot20 times 10minus19 C6middot63 times 10minus34 J s

8middot85 times 10minus12 F mminus1

4π times 10minus7 H mminus1

3middot0 times 108 m sminus1

3middot4 times 102 m sminus1

REFRACTIVE INDICESThe refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K

Substance Refractive index Substance Refractive index

DiamondGlassIcePerspex

2middot421middot51 1middot311middot49

GlycerolWaterAirMagnesium Fluoride

1middot47 1middot331middot001middot38

SPECTRAL LINES

Element Wavelengthnm Colour Element Wavelengthnm Colour

Hydrogen

Sodium

656486434410397389

589

RedBlue-greenBlue-violetVioletUltravioletUltraviolet

Yellow

Cadmium 644509480

RedGreenBlue

LasersElement Wavelengthnm Colour

Carbon dioxide

Helium-neon

955010590

633

Infrared

Red

PROPERTIES OF SELECTED MATERIALS

Substance Densitykg mminus3

MeltingPoint

K

BoilingPoint

K

Specific HeatCapacityJ kgminus1 Kminus1

Specific LatentHeat ofFusionJ kgminus1

Specific LatentHeat of

VaporisationJ kgminus1

AluminiumCopperGlassIceGlycerolMethanolSea WaterWaterAirHydrogenNitrogenOxygen

2middot70 times 103

8middot96 times 103

2middot60 times 103

9middot20 times 102

1middot26 times 103

7middot91 times 102

1middot02 times 103

1middot00 times 103

1middot299middot0 times 10minus2

1middot251middot43

93313571400273291175264273

146355

26232853 563338377373

207790

9middot02 times 102

3middot86 times 102

6middot70 times 102

2middot10 times 103

2middot43 times 103

2middot52 times 103

3middot93 times 103

4middot19 times 103

1middot43 times 104

1middot04 times 103

9middot18 times 102

3middot95 times 105

2middot05 times 105

3middot34 times 105

1middot81 times 105

9middot9 times 104

3middot34 times 105

8middot30 times 105

1middot12 times 106

2middot26 times 106

4middot50 times 105

2middot00 times 105

2middot40 times 104

The gas densities refer to a temperature of 273 K and a pressure of 1middot01 times 105 Pa

X757770103Page 03

MARKS DO NOT WRITE IN

THIS MARGIN

Total marks mdash 140 marks

Attempt ALL questions

1

A car on a long straight track accelerates from rest The carrsquos run begins at time t = 0

Its velocity v at time t is given by the equation

20 135 1 26v t tsdot sdot= +

where v is measured in m sminus1 and t is measured in s

Using calculus methods

(a) determine the acceleration of the car at t = 15middot0 s

Space for working and answer

(b) determine the displacement of the car from its original position at this time

Space for working and answer

3

3

[Turn over

X757770104Page 04

MARKS DO NOT WRITE IN

THIS MARGIN

2 (a) An ideal conical pendulum consists of a mass moving with constant speed in a circular path as shown in Figure 2A

mass

Figure 2A

ω

(i) Explain why the mass is accelerating despite moving with constant speed

(ii) State the direction of this acceleration

1

1

X757770105Page 05

MARKS DO NOT WRITE IN

THIS MARGIN

2 (continued)

(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B

The motion of the ball can be modelled as a conical pendulum

The ball has a mass of 0middot059 kg

Figure 2B

r

(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0middot48 m

The ball completes 1middot5 revolutions in 2middot69 s

(A) Show that the angular velocity of the ball is 3middot5 rad sminus1

Space for working and answer

(B) Calculate the magnitude of the centripetal force acting on the ball

Space for working and answer

2

3

[Turn over

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 3: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770103Page 03

MARKS DO NOT WRITE IN

THIS MARGIN

Total marks mdash 140 marks

Attempt ALL questions

1

A car on a long straight track accelerates from rest The carrsquos run begins at time t = 0

Its velocity v at time t is given by the equation

20 135 1 26v t tsdot sdot= +

where v is measured in m sminus1 and t is measured in s

Using calculus methods

(a) determine the acceleration of the car at t = 15middot0 s

Space for working and answer

(b) determine the displacement of the car from its original position at this time

Space for working and answer

3

3

[Turn over

X757770104Page 04

MARKS DO NOT WRITE IN

THIS MARGIN

2 (a) An ideal conical pendulum consists of a mass moving with constant speed in a circular path as shown in Figure 2A

mass

Figure 2A

ω

(i) Explain why the mass is accelerating despite moving with constant speed

(ii) State the direction of this acceleration

1

1

X757770105Page 05

MARKS DO NOT WRITE IN

THIS MARGIN

2 (continued)

(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B

The motion of the ball can be modelled as a conical pendulum

The ball has a mass of 0middot059 kg

Figure 2B

r

(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0middot48 m

The ball completes 1middot5 revolutions in 2middot69 s

(A) Show that the angular velocity of the ball is 3middot5 rad sminus1

Space for working and answer

(B) Calculate the magnitude of the centripetal force acting on the ball

Space for working and answer

2

3

[Turn over

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 4: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770104Page 04

MARKS DO NOT WRITE IN

THIS MARGIN

2 (a) An ideal conical pendulum consists of a mass moving with constant speed in a circular path as shown in Figure 2A

mass

Figure 2A

ω

(i) Explain why the mass is accelerating despite moving with constant speed

(ii) State the direction of this acceleration

1

1

X757770105Page 05

MARKS DO NOT WRITE IN

THIS MARGIN

2 (continued)

(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B

The motion of the ball can be modelled as a conical pendulum

The ball has a mass of 0middot059 kg

Figure 2B

r

(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0middot48 m

The ball completes 1middot5 revolutions in 2middot69 s

(A) Show that the angular velocity of the ball is 3middot5 rad sminus1

Space for working and answer

(B) Calculate the magnitude of the centripetal force acting on the ball

Space for working and answer

2

3

[Turn over

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 5: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770105Page 05

MARKS DO NOT WRITE IN

THIS MARGIN

2 (continued)

(b) Swingball is a garden game in which a ball is attached to a light string connected to a vertical pole as shown in Figure 2B

The motion of the ball can be modelled as a conical pendulum

The ball has a mass of 0middot059 kg

Figure 2B

r

(i) The ball is hit such that it moves with constant speed in a horizontal circle of radius 0middot48 m

The ball completes 1middot5 revolutions in 2middot69 s

(A) Show that the angular velocity of the ball is 3middot5 rad sminus1

Space for working and answer

(B) Calculate the magnitude of the centripetal force acting on the ball

Space for working and answer

2

3

[Turn over

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 6: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770106Page 06

MARKS DO NOT WRITE IN

THIS MARGIN

2 (b) (i) (continued)

(C) The horizontal component of the tension in the string provides this centripetal force and the vertical component balances the weight of the ball

Calculate the magnitude of the tension in the string

Space for working and answer

(ii) The string breaks whilst the ball is at the position shown in Figure 2C

r

Figure 2C

ω

On Figure 2C draw the direction of the ballrsquos velocity immediately after the string breaks

(An additional diagram if required can be found on Page 39)

3

1

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 7: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770107Page 07

MARKS DO NOT WRITE IN

THIS MARGIN

3 A spacecraft is orbiting a comet as shown in Figure 3

The comet can be considered as a sphere with a radius of 2middot1 times 103 m and a mass of 9middot5 times 1012 kg

Figure 3 (not to scale)

(a) A lander was released by the spacecraft to land on the surface of the comet After impact with the comet the lander bounced back from the surface with an initial upward vertical velocity of 0middot38 m sminus1

By calculating the escape velocity of the comet show that the lander returned to the surface for a second time

Space for working and answer

[Turn over

4

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 8: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770108Page 08

MARKS DO NOT WRITE IN

THIS MARGIN 3 (continued)

(b) (i) Show that the gravitational field strength at the surface of the comet is 1middot4 times 10minus4 N kgminus1

Space for working and answer

(ii) Using the data from the space mission a student tries to calculate the maximum height reached by the lander after its first bounce

The studentrsquos working is shown below

( )2 2

2 4

2

0 0 38 2 1 4 10

515 7

m

v u as

s

s

minussdot sdot

sdot

= +

= + times minus times times

=

The actual maximum height reached by the lander was not as calculated by the student

State whether the actual maximum height reached would be greater or smaller than calculated by the student

You must justify your answer

3

3

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 9: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770109Page 09

MARKS DO NOT WRITE IN

THIS MARGIN

4 Epsilon Eridani is a star 9middot94 times 1016 m from Earth It has a diameter of 1middot02 times 109 m The apparent brightness of Epsilon Eridani is measured on Earth to be 1middot05 times 10minus9 W mminus2

(a) Calculate the luminosity of Epsilon Eridani

Space for working and answer

(b) Calculate the surface temperature of Epsilon Eridani

Space for working and answer

(c) State an assumption made in your calculation in (b)

3

3

1

[Turn over

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 10: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770110Page 10

MARKS DO NOT WRITE IN

THIS MARGIN

5 Einsteinrsquos theory of general relativity can be used to describe the motion of objects in non-inertial frames of reference The equivalence principle is a key assumption of general relativity

(a) Explain what is meant by the terms

(i) non-inertial frames of reference

(ii) the equivalence principle

(b) Two astronauts are on board a spacecraft in deep space far away from any large masses When the spacecraft is accelerating one astronaut throws a ball towards the other

(i) On Figure 5A sketch the path that the ball would follow in the astronautsrsquo frame of reference

A B

spacecraftacceleratingin this direction

Figure 5A

(An additional diagram if required can be found on Page 39)

1

1

1

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 11: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770111Page 11

MARKS DO NOT WRITE IN

THIS MARGIN 5 (b) (continued)

(ii) The experiment is repeated when the spacecraft is travelling at constant speed

On Figure 5B sketch the path that the ball would follow in the astronautsrsquo frame of reference

spacecraftmoving ata constantspeedA B

Figure 5B

(An additional diagram if required can be found on Page 40)

(c) A clock is on the surface of the Earth and an identical clock is on board a spacecraft which is accelerating in deep space at 8 m sminus2

State which clock runs slower

Justify your answer in terms of the equivalence principle

[Turn over

1

2

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 12: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770112Page 12

MARKS DO NOT WRITE IN

THIS MARGIN

6 A student makes the following statement

ldquoQuantum theory mdash I donrsquot understand it I donrsquot really know what it is I believe that classical physics can explain everythingrdquo

Use your knowledge of physics to comment on the statement 3

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 13: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770113Page 13

MARKS DO NOT WRITE IN

THIS MARGIN

7 (a) The Earth can be modelled as a black body radiator

The average surface temperature of the Earth can be estimated using the relationship

peak

bTλ

=

where

T is the average surface temperature of the Earth in kelvin

b is Wienrsquos Displacement Constant equal to 2middot89 times 10minus3 K m

λpeak is the peak wavelength of the radiation emitted by a black body radiator

The average surface temperature of Earth is 15 degC

(i) Estimate the peak wavelength of the radiation emitted by Earth

Space for working and answer

(ii) To which part of the electromagnetic spectrum does this peak wavelength correspond

[Turn over

3

1

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 14: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770114Page 14

MARKS DO NOT WRITE IN

THIS MARGIN

7 (continued)

(b) In order to investigate the properties of black body radiators a student makes measurements from the spectra produced by a filament lamp Measurements are made when the lamp is operated at its rated voltage and when it is operated at a lower voltage

The filament lamp can be considered to be a black body radiator

A graph of the results obtained is shown in Figure 7

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

(i) State which curve corresponds to the radiation emitted when the filament lamp is operating at its rated voltage

You must justify your answer

(ii) The shape of the curves on the graph on Figure 7 is not as predicted by classical physics

On Figure 7 sketch a curve to show the result predicted by classical physics

(An additional graph if required can be found on Page 40)

2

1

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 15: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770115Page 15

MARKS DO NOT WRITE IN

THIS MARGIN

8 Werner Heisenberg is considered to be one of the pioneers of quantum mechanics

He is most famous for his uncertainty principle which can be expressed in the equation

Δ Δ4xhx pπ

ge

(a) (i) State what quantity is represented by the term xpΔ

(ii) Explain the implications of the Heisenberg uncertainty principle for experimental measurements

[Turn over

1

1

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 16: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770116Page 16

MARKS DO NOT WRITE IN

THIS MARGIN

8 (continued)

(b) In an experiment to investigate the nature of particles individual electrons were fired one at a time from an electron gun through a narrow double slit The position where each electron struck the detector was recorded and displayed on a computer screen

The experiment continued until a clear pattern emerged on the screen as shown in Figure 8

The momentum of each electron at the double slit is 6middot5 times 10minus24 kg m sminus1

electron gun

electron

double slit

detector

computer screen

not to scaleFigure 8

(i) The experimenter had three different double slits with slit separations 0middot1 mm 0middot1 μm and 0middot1 nm

State which double slit was used to produce the image on the screen

You must justify your answer by calculation of the de Broglie wavelength

Space for working and answer

4

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 17: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770117Page 17

MARKS DO NOT WRITE IN

THIS MARGIN 8 (b) (continued)

(ii) The uncertainty in the momentum of an electron at the double slit is 6middot5 times 10minus26 kg m sminus1

Calculate the minimum absolute uncertainty in the position of the electron

Space for working and answer

(iii) Explain fully how the experimental result shown in Figure 8 can be interpreted

[Turn over

3

3

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 18: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770118Page 18

MARKS DO NOT WRITE IN

THIS MARGIN

9 A particle with charge q and mass m is travelling with constant speed v The particle enters a uniform magnetic field at 90deg and is forced to move in a circle of radius r as shown in Figure 9

The magnetic induction of the field is B

magnetic pole

magnetic pole

path of chargedparticle

Figure 9

magneticfield lines

(a) Show that the radius of the circular path of the particle is given by

mvrBq

= 2

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 19: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770119Page 19

MARKS DO NOT WRITE IN

THIS MARGIN

9 (continued)

(b) In an experimental nuclear reactor charged particles are contained in a magnetic field One such particle is a deuteron consisting of one proton and one neutron

The kinetic energy of each deuteron is 1middot50 MeV

The mass of the deuteron is 3middot34 times 10minus27 kg

Relativistic effects can be ignored

(i) Calculate the speed of the deuteron

Space for working and answer

(ii) Calculate the magnetic induction required to keep the deuteron moving in a circular path of radius 2middot50 m

Space for working and answer

[Turn over

4

2

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 20: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770120Page 20

MARKS DO NOT WRITE IN

THIS MARGIN

9 (b) (continued)

(iii) Deuterons are fused together in the reactor to produce isotopes of helium

32He nuclei each comprising 2 protons and 1 neutron are present in the reactor

A 32He nucleus also moves in a circular path in the same magnetic field

The 32He nucleus moves at the same speed as the deuteron

State whether the radius of the circular path of the 32He nucleus is greater than equal to or less than 2middot50 m

You must justify your answer 2

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 21: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770121Page 21

MARKS DO NOT WRITE IN

THIS MARGIN

10 (a) (i) State what is meant by simple harmonic motion

(ii) The displacement of an oscillating object can be described by the expression

y = Acosωt

where the symbols have their usual meaning

Show that this expression is a solution to the equation

22

2 0d y ω ydt

+ =

[Turn over

1

2

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 22: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770122Page 22

MARKS DO NOT WRITE IN

THIS MARGIN

10 (continued)

(b) A mass of 1middot5 kg is suspended from a spring of negligible mass as shown in Figure 10 The mass is displaced downwards 0middot040 m from its equilibrium position

The mass is then released from this position and begins to oscillate The mass completes ten oscillations in a time of 12 s

Frictional forces can be considered to be negligible

15 kg

0040 m

Figure 10

(i) Show that the angular frequency ω of the mass is 5middot2 rad sminus1

Space for working and answer

(ii) Calculate the maximum velocity of the mass

Space for working and answer

3

3

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 23: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770123Page 23

MARKS DO NOT WRITE IN

THIS MARGIN

10 (b) (continued)

(iii) Determine the potential energy stored in the spring when the mass is at its maximum displacement

Space for working and answer

(c) The system is now modified so that a damping force acts on the oscillating mass

(i) Describe how this modification may be achieved

(ii) Using the axes below sketch a graph showing for the modified system how the displacement of the mass varies with time after release

Numerical values are not required on the axes

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

(An additional graph if required can be found on Page 41)

3

1

1

[Turn over

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 24: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770124Page 24

MARKS DO NOT WRITE IN

THIS MARGIN

11

foghorn

A ship emits a blast of sound from its foghorn The sound wave is described by the equation

( )sin ndash0 250 2 118 0 357y π t xsdot sdot=

where the symbols have their usual meaning

(a) Determine the speed of the sound wave

Space for working and answer

4

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 25: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770125Page 25

MARKS DO NOT WRITE IN

THIS MARGIN

11 (continued)

(b) The sound from the shiprsquos foghorn reflects from a cliff When it reaches the ship this reflected sound has half the energy of the original sound

Write an equation describing the reflected sound wave at this point

[Turn over

4

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 26: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770126Page 26

MARKS DO NOT WRITE IN

THIS MARGIN

12 Some early 3D video cameras recorded two separate images at the same time to create two almost identical movies

Cinemas showed 3D films by projecting these two images simultaneously onto the same screen using two projectors Each projector had a polarising filter through which the light passed as shown in Figure 12

polarising filters

to cinema screen

film projectors

Figure 12

(a) Describe how the transmission axes of the two polarising filters should be arranged so that the two images on the screen do not interfere with each other

(b) A student watches a 3D movie using a pair of glasses which contains two polarising filters one for each eye

Explain how this arrangement enables a different image to be seen by each eye

1

2

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 27: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770127Page 27

MARKS DO NOT WRITE IN

THIS MARGIN

12 (continued)

(c) Before the film starts the student looks at a ceiling lamp through one of the filters in the glasses While looking at the lamp the student then rotates the filter through 90deg

State what effect if any this rotation will have on the observed brightness of the lamp

Justify your answer

(d) During the film the student looks at the screen through only one of the filters in the glasses The student then rotates the filter through 90deg and does not observe any change in brightness

Explain this observation

[Turn over

2

1

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 28: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770128Page 28

MARKS DO NOT WRITE IN

THIS MARGIN

13 (a) Q1 is a point charge of +12 nC Point Y is 0middot30 m from Q1 as shown in Figure 13A

030 m

Y+12 nCQ1

Figure 13A

Show that the electrical potential at point Y is +360 V

Space for working and answer

(b) A second point charge Q2 is placed at a distance of 0middot40 m from point Y as shown in Figure 13B The electrical potential at point Y is now zero

Q2

030 m 040 m

Y+12 nCQ1

Figure 13B

(i) Determine the charge of Q2

Space for working and answer

2

3

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 29: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770129Page 29

MARKS DO NOT WRITE IN

THIS MARGIN 13 (b) (continued)

(ii) Determine the electric field strength at point Y

Space for working and answer

(iii) On Figure 13C sketch the electric field pattern for this system of charges

Q2Q1

Figure 13C

(An additional diagram if required can be found on Page 41)

[Turn over

4

2

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 30: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770130Page 30

MARKS DO NOT WRITE IN

THIS MARGIN 14 A student measures the magnetic induction at a distance r from a long

straight current carrying wire using the apparatus shown in Figure 14

wire

I

protective casing

magnetic sensormagnetic

induction meter

Figure 14

r

The following data are obtained

Distance from wire r = 0middot10 mMagnetic induction B = 5middot0 microT

(a) Use the data to calculate the current I in the wire

Space for working and answer

(b) The student estimates the following uncertainties in the measurements of B and r

Uncertainties in r Uncertainties in B

reading plusmn0middot002 m reading plusmn0middot1 microT

calibration plusmn0middot0005 m calibration plusmn1middot5 of reading

(i) Calculate the percentage uncertainty in the measurement of r

Space for working and answer

3

1

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 31: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770131Page 31

MARKS DO NOT WRITE IN

THIS MARGIN 14 (b) (continued)

(ii) Calculate the percentage uncertainty in the measurement of B

Space for working and answer

(iii) Calculate the absolute uncertainty in the value of the current in the wire

Space for working and answer

(c) The student measures distance r as shown in Figure 14 using a metre stick The smallest scale division on the metre stick is 1 mm

Suggest a reason why the studentrsquos estimate of the reading uncertainty in r is not plusmn0middot5 mm

[Turn over

3

2

1

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 32: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770132Page 32

15 A student constructs a simple air-insulated capacitor using two parallel metal plates each of area A separated by a distance d The plates are separated using small insulating spacers as shown in Figure 15A

metal plates

capacitance meter

d

air gap

insulating spacer

Figure 15A

The capacitance C of the capacitor is given by

0

AC εd

=

The student investigates how the capacitance depends on the separation of the plates The student uses a capacitance meter to measure the capacitance for different plate separations The plate separation is measured using a ruler

The results are used to plot the graph shown in Figure 15B

The area of each metal plate is 9middot0 times 10minus2 m2

90

80

70

60

50

40

30

20

10

00000 020 040 060

Figure 15B

y = 83x minus 020

C (times 10minus10 F)

(times 103 mminus1 )

080 100 1201d

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 33: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770133Page 33

MARKS DO NOT WRITE IN

THIS MARGIN 15 (continued)

(a) (i) Use information from the graph to determine a value for εo the permittivity of free space

Space for working and answer

(ii) Use your calculated value for the permittivity of free space to determine a value for the speed of light in air

Space for working and answer

(b) The best fit line on the graph does not pass through the origin as theory predicts

Suggest a reason for this

[Turn over

3

3

1

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 34: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770134Page 34

[BLANK PAGE]

Do NoT wRiTE oN THiS PAGE

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 35: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770135Page 35

MARKS DO NOT WRITE IN

THIS MARGIN

16 A student uses two methods to determine the moment of inertia of a solid sphere about an axis through its centre

(a) In the first method the student measures the mass of the sphere to be 3middot8 kg and the radius to be 0middot053 m

Calculate the moment of inertia of the sphere

Space for working and answer

(b) In the second method the student uses conservation of energy to determine the moment of inertia of the sphere

The following equation describes the conservation of energy as the sphere rolls down the slope

2 21 12 2

mgh mv Iω= +

where the symbols have their usual meanings

The equation can be rearranged to give the following expression

222 1Igh vmr

⎛ ⎞= +⎜ ⎟⎝ ⎠

This expression is in the form of the equation of a straight line through the origin

y gradient x= times

[Turn over

3

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 36: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770136Page 36

MARKS DO NOT WRITE IN

THIS MARGIN

16 (b) (continued)

The student measures the height of the slope h The student then allows the sphere to roll down the slope and measures the final speed of the sphere v at the bottom of the slope as shown in Figure 16

data logger

not to scale

Figure 16

lightgate

height ofslope h

The following is an extract from the studentrsquos notebook

h (m) v (m sminus1) 2gh (m2 sminus2) v2 (m2 sminus2)

0middot020 0middot42 0middot39 0middot18

0middot040 0middot63 0middot78 0middot40

0middot060 0middot68 1middot18 0middot46

0middot080 0middot95 1middot57 0middot90

0middot100 1middot05 1middot96 1middot10

m = 3middot8 kg r = 0middot053 m

(i) On the square-ruled paper on Page 37 draw a graph that would allow the student to determine the moment of inertia of the sphere

(ii) Use the gradient of your line to determine the moment of inertia of the sphere

Space for working and answer

3

3

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 37: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770137Page 37

(An additional square-ruled paper if required can be found on Page 42)

[Turn over for next question

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 38: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770138Page 38

MARKS DO NOT WRITE IN

THIS MARGIN

16 (continued)

(c) The student states that more confidence should be placed in the value obtained for the moment of inertia in the second method

Use your knowledge of experimental physics to comment on the studentrsquos statement

[END oF QUESTioN PAPER]

3

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 39: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770139Page 39

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 2 (b) (ii)

r

Figure 2C

ω

Additional diagram for Question 5 (b) (i)

A B

spacecraftacceleratingin this direction

Figure 5A

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 40: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770140Page 40

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 5 (b) (ii)

spacecraftmoving ata constantspeedA B

Figure 5B

Additional diagram for Question 7 (b) (ii)

0 500 1000 1500 2000λ (nm)

Inte

nsit

y

curve A

curve B

Figure 7

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 41: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770141Page 41

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

Additional diagram for Question 10 (c) (ii)

time0

disp

lace

men

t fr

omeq

uilib

rium

pos

itio

n

Additional diagram for Question 13 (b) (iii)

Q2Q1

Figure 13C

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 42: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770142Page 42

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 43: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770143Page 43

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 44: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770144Page 44

MARKS DO NOT WRITE IN

THIS MARGINADDiTioNAL SPACE FoR ANSwERS AND RoUGH woRK

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 45: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X757770145Page 45

ACKNOWLEDGEMENT

Question 1 ndash Calvin Chanshutterstockcom

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 46: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

X7577711copy

NationalQualications2016 AH

X7577711 PhysicsRelationships Sheet

TUESDAY 24 MAY

900 AM ndash 1130 AM

AHTP

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 47: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 02

Relationships required for Physics Advanced Higher

dtdsv

a dvdt

d2sdt 2

v u at

s ut 12

at 2

v2 u2 2as

ddt

ddt

d2dt 2

o t

ot 12t 2

2 o2 2

s r

v r

at r

ar v 2

r r 2

F mv2

r mr 2

T Fr

T I

L mvr mr2

L I

EK 12

I 2

2rMm

GF

rGMV

rGMv 2

24 brightnessapparent

rLb

Power per unit area T4

L 4r2T4

rSchwarzschild2GM

c2

E hf

hp

mvr nh2

4 hpx x

4 htE

F qvB

2f

a d2ydt 2 2y

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 48: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 03

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

y Acost or y Asint

v (A2 y2)

EK 12

m 2(A2 y2)

EP 12

m 2y2

y Asin2( ft x

)

2x

2 1 0 where

21or differencepath optical

m

mm

x l2d

d

4n

x Dd

n tan iP

F Q1Q2

4or2

E Q

4or2

V Q

4or

F QE

V Ed

F IlBsin

B oI2r

c 1oo

t RC

XC VI

XC 1

2fC

L dIdt

E 12

LI2

XL VI

XL 2fL 222

ZZ

YY

XX

WW

222 ZYXW

=E k 2A

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 49: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 04

Vpeak 2Vrms

s v t

E mc2

Ipeak 2Irms

v u at hfE

Q It

s ut 12

at 2

EK hf hf0

V IR

v2 u2 2as

E2 E1 hf

P IV I2R V 2

R

s 12

u v t

T 1f

RT R1 R2

W mg

v f

1RT

1R1

1R2

F ma

dsin m

E V Ir

EW Fd

n sin1

sin2

V1 R1

R1 R2

VS

EP mgh

sin1

sin2

1

2

v1

v2

V1

V2

R1

R2

EK 12

mv2

sinc 1n

C QV

P Et

I kd2

E 12

QV 12

CV 2 12

Q2

C

p mv

I PA

Ft mvmu

2rMmGF

t t

1 vc

2

l l 1 vc

2

fo fsv

v vs

z observed rest

rest

z vc

v H0d

d v t

EW QV

path difference m or m 12

where m 0 1 2

random uncertainty max value - min value

number of values

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 50: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 058

Additional Relationships

Circle Table of standard derivatives

Table of standard integrals

circumference = 2πr

area = πr2

Sphere

Trigonometry

Moment of inertia

area = 4πr2

volume = πr3

point mass

I = mr2

rod about centre

I = ml2

rod about end

I = ml2

disc about centre

I = mr2

sphere about centre

I = mr2

f (x) f (x)

sinax acosax

cosax ndash asinax

f (x) f (x)dx

sinax cosax + C

cosax sinax + C

1a

1a

43

θ

θ

θ

θ θ

=

=

=

+ =2 2

sin

cos

tan

sin cos 1

opposite

hypotenuse

adjacent

hypotenuse

opposite

adjacent

112

13

12

25

int

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 51: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 06

1 H 1

Hyd

roge

n

3 Li

21

Lit

hium

4 Be

22

Ber

ylliu

m

11 Na

28

1

Sodi

um

12 Mg

28

2

Mag

nesi

um

19 K2

88

1

Pot

assi

um

20 Ca

28

82

Cal

cium

37 Rb

28

188

1

Rub

idiu

m

38 Sr2

818

82

Stro

ntiu

m

55 Cs

28

181

88

1C

aesi

um

56 Ba

28

181

88

2B

ariu

m

87 Fr

28

183

218

81

Fra

nciu

m

88 Ra

28

183

218

82

Rad

ium

21 Sc2

89

2

Scan

dium

22 Ti

28

102

Tit

aniu

m

39 Y2

818

92

Ytt

rium

40 Zr

28

181

02

Zir

coni

um

57 La

28

181

89

2L

anth

anum

72 Hf

28

183

210

2H

afni

um

89 Ac

28

183

218

92

Act

iniu

m

104

Rf

28

183

232

10

2R

uthe

rfor

dium

23 V2

811

2

Van

adiu

m

41 Nb

28

181

21

Nio

bium

73 Ta2

818

32

112

Tant

alum

105

Db

28

183

232

11

2D

ubni

um

24 Cr

28

131

Chr

omiu

m

42 Mo

28

181

31

Mol

ybde

num

74 W2

818

32

122

Tung

sten

106

Sg2

818

32

321

22

Seab

orgi

um

25 Mn

28

132

Man

gane

se

43 Tc

28

181

32

Tech

neti

um

75 Re

28

183

213

2R

heni

um

107

Bh

28

183

232

13

2B

ohri

um

26 Fe

28

142

Iron 44 Ru

28

181

51

Rut

heni

um

76 Os

28

183

214

2O

smiu

m

108

Hs

28

183

232

14

2H

assi

um

27 Co

28

152

Cob

alt

45 Rh

28

181

61

Rho

dium

77 Ir2

818

32

152

Irid

ium

109

Mt

28

183

232

15

2M

eitn

eriu

m

28 Ni

28

162

Nic

kel

46 Pd

28

181

80

Pal

ladi

um

78 Pt

28

183

217

1P

lati

num

29 Cu

28

181

Cop

per

47 Ag

28

181

81

Silv

er

79 Au

28

183

218

1G

old

30 Zn

28

182

Zin

c

48 Cd

28

181

82

Cad

miu

m

80 Hg

28

183

218

2M

ercu

ry

5 B 23

Bor

on

13 Al

28

3

Alu

min

ium

31 Ga

28

183

Gal

lium

49 In2

818

18

3

Indi

um

81 Tl

28

183

218

3T

halli

um

6 C 24

Car

bon

14 Si 28

4

Silic

on

32 Ge

28

184

Ger

man

ium

50 Sn2

818

18

4

Tin 82 Pb

28

183

218

4L

ead

7 N 25

Nit

roge

n

15 P2

85

Pho

spho

rus

33 As

28

185

Ars

enic

51 Sb2

818

18

5

Ant

imon

y

83 Bi

28

183

218

5B

ism

uth

8 O 26

Oxy

gen

16 S2

86

Sulp

hur

34 Se2

818

6

Sele

nium

52 Te2

818

18

6

Tellu

rium

84 Po

28

183

218

6P

olon

ium

9 F 27

Flu

orin

e

17 Cl

28

7

Chl

orin

e

35 Br

28

187

Bro

min

e

53 I2

818

18

7

Iodi

ne

85 At

28

183

218

7A

stat

ine

10 Ne

28

Neo

n

18 Ar

28

8

Arg

on

36 Kr

28

188

Kry

pton

54 Xe

28

181

88

Xen

on

86 Rn

28

183

218

8R

adon

2 He 2

Hel

ium

57 La

28

181

89

2L

anth

anum

58 Ce

28

182

08

2C

eriu

m

59 Pr

28

182

18

2Pr

aseo

dym

ium

60 Nd

28

182

28

2N

eody

miu

m

61 Pm

28

182

38

2P

rom

ethi

um

62 Sm2

818

24

82

Sam

ariu

m

63 Eu

28

182

58

2E

urop

ium

64 Gd

28

182

59

2G

adol

iniu

m

65 Tb

28

182

78

2Te

rbiu

m

66 Dy

28

182

88

2D

yspr

osiu

m

67 Ho

28

182

98

2H

olm

ium

68 Er

28

183

08

2E

rbiu

m

69 Tm

28

183

18

2T

huliu

m

70 Yb

28

183

28

2Y

tter

bium

89 Ac

28

183

218

92

Act

iniu

m

90 Th

28

183

218

10

2T

hori

um

91 Pa

28

183

220

92

Pro

tact

iniu

m

92 U2

818

32

219

2U

rani

um

93 Np

28

183

222

92

Nep

tuni

um

94 Pu

28

183

224

82

Plu

toni

um

95 Am

28

183

225

82

Am

eric

ium

96 Cm

28

183

225

92

Cur

ium

97 Bk

28

183

227

82

Ber

keliu

m

98 Cf

28

183

228

82

Cal

ifor

nium

99 Es

28

183

229

82

Ein

stei

nium

100

Fm

28

183

230

82

Fer

miu

m

101

Md

28

183

231

82

Men

dele

vium

102

No

28

183

232

82

Nob

eliu

m

71 Lu

28

183

29

2L

utet

ium

103

Lr

28

183

232

92

Law

renc

ium

Ele

ctro

n A

rran

gem

ents

of E

lem

ents

Gro

up 1 (1)

Gro

up 2 (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Gro

up 3 (13)

Gro

up 4 (14)

Gro

up 5 (15)

Gro

up 6 (16)

Gro

up 7 (17)

Gro

up 0 (18)

Tran

sitio

n E

lem

ents

Lant

hani

des

Act

inid

es

Ato

mic

num

ber

Sym

bol

Ele

ctro

n ar

rang

emen

t N

ame

Key

9

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 52: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 07

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016
Page 53: X757/77/01 Physics - SQA - Scottish Qualifications … Month Year National 4XDOLÛFDWLRQV 2016 Total marks — 140 Attempt ALL questions. Reference may be made to the Physics Relationships

Page 08

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

  • X757-77-01_AH_Physics_QP_2016
  • X757-77-11_AH_Physics_Relationships-Sheet_2016