Electrocardiography - Scientific Computing and...

16
Bioengineering 6000 CV Physiology ECG Electrocardiography ECG Bioengineering 6000 CV Physiology Electrophysiology Overview Pacemaker cells – Neurogenic vs. myogenic – SA Node – AV Node – Purkinje Fibers Conduction system Ventricular myocytes The Electrocardiogram (ECG) 0 1 2 100 0 50

Transcript of Electrocardiography - Scientific Computing and...

Page 1: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Electrocardiography

ECG Bioengineering 6000 CV Physiology

Electrophysiology Overview

• Pacemaker cells – Neurogenic vs. myogenic– SA Node– AV Node– Purkinje Fibers

• Conduction system• Ventricular myocytes• The Electrocardiogram (ECG)

0

1

2

100

0

50

Page 2: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

ECG Bioengineering 6000 CV Physiology

Components of the Electrocardiogram (ECG)

• Source– potential differences within the heart– spatially distributed and time varying

• Volume conductor– inhomogeneous and anisotropic– unique to each individual– boundary effects

• ECG measurement– body surface potentials– bipolar versus unipolar measurements– Mapping procedures

• Analysis– signal analysis– simulation and modeling approaches

Bioengineering 6000 CV PhysiologyECG

ECG History and Basics

• Represents electrical activity (not contraction)

• Marey, 1867, first electrical measurement from the heart.

• Waller, 1887, first human ECG published.

• Einthoven, 1895, names waves, 1912 invents triangle, 1924, wins Nobel Prize.

• Goldberger, 1924, adds precordial leads

Page 3: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

ECG Source Basics

Outside

Inside

Charging Currents

+ + +

-- -

Depolarizing Currents

Cell Membrane

Gap Junctions

+

-

+

-

+

-

+

-

Bioengineering 6000 CV PhysiologyECG

ECG Source Basics

++

+

-

-

-Tissue bundle

+

-+

-

+

-

+--

+

Activated Resting

Page 4: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

ECG Bioengineering 6000 CV Physiology

Dipole(s) Source

• Represent bioelectric sources–Membrane currents–Coupled cells–Activation wavefront–Whole heart + +

+

+

++++

+

+

++

- - --

------

--

-

+ + + ++ + + +- - - -- - - -

++++++

--

----- - - -+ + + +

ECG Bioengineering 6000 CV Physiology

Heart Dipole and the ECG

• Represent the heart as a single moving dipole

• ECG measures projection of the dipole vector

• Why a dipole?• Is this a good model?• How can we tell?

Page 5: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Cardiac Activation Sequence and ECG

Bioengineering 6000 CV PhysiologyECG

Cardiac Activation Sequence: Moving Dipole

• Oriented from active to inactive tissue

• Changes location and magnitude

• Gross simplification

Page 6: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

ECG Bioengineering 6000 CV Physiology

Electrocardiographic Lead Systems

• Einthoven Limb Leads (1895--1912): heart vector, Einthoven triangle, string galvanometer

• Goldberger, 1924: adds augmented and precordial leads, the standard ECG

• Wilson Central Terminal (1944): the "indifferent” reference

• Frank Lead System (1956): based on three-dimensional Dipole

• Body Surface Potential Mapping (Taccardi, 1963)

VI = �LA � �RA

VII = �LL � �RA

VIII = �LL � �LA

VI + VIII = VII

ECG Bioengineering 6000 CV Physiology

Einthoven ECG• Bipolar limb leads• Einthoven Triangle• Based on heart vector

Applying Kirchoff’s Laws to these definitions yields:

Page 7: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Einthoven/Limb Leads

Bioengineering 6000 CV PhysiologyECG

Augmented Leads

Page 8: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Vectorcardiographic Lead SystemsFrank Lead System

IR + IF + IL = 0

Bioengineering 6000 CV PhysiologyECG

Wilson Central Terminal

• Goldberger (1924) and Wilson (1944)

• “Invariant” reference• “Unipolar” leads• Standard in clinical applications• Driven right leg circuit

�CT � �RA

5000+

�CT � �LA

5000+

�CT � �LL

5000= 0

�CT =�RA + �LA + �LL

3

Page 9: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Precordial Leads

• Modern clinical standard (V1-V6)

• Note enhanced precordials on right side of chest and V7

Bioengineering 6000 CV PhysiologyECG

Projection Summary

Page 10: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Standard (12-lead) ECG

1mm = 100 µV

50 mm = 1 s 1 mm = 40 ms

Bioengineering 6000 CV PhysiologyECG

Taccardi et al,Circ., 1963

Body Surface Potential Mapping

Page 11: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Body Surface Potential Mapping

Bioengineering 6000 CV PhysiologyECG

Body Surface Potential Mapping

Page 12: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Feature/Pattern Analysis

LAD RCA LCx

Angioplasty Mapping

Bioengineering 6000 CV PhysiologyECG

Taccardi Video

http://www.sci.utah.edu/gallery2/v/cibc/video/taccardi_lg.html

Page 13: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Forward/Inverse Problems in Electrocardiography

Forward

Inverse

A

B

-

+

C

-+

+

-

Bioengineering 6000 CV PhysiologyECG

Forward Simulation with ECGSim

Page 14: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

ECG Example 1

Bioengineering 6000 CV PhysiologyECG

ECG Example 2

Page 15: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

ECG Example 3

Bioengineering 6000 CV PhysiologyECG

ECG Example 4

Second Degree AV Block

Page 16: Electrocardiography - Scientific Computing and …sci.utah.edu/~macleod/bioen/be6000/notes/L06-ECG.pdfECG Bioengineering 6000 CV Physiology Electrocardiography ECG Bioengineering 6000

Bioengineering 6000 CV PhysiologyECG

Some Real Examples

Bioengineering 6000 CV PhysiologyECG

Some Real Examples