PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from...

26
PC20312 Wave Optics Section 3: Interference

Transcript of PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from...

Page 1: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

PC20312 Wave Optics

Section 3:

Interference

Page 2: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Interference fringes

212 II

212 III1 + I2

Image adapted from Wikipedia

Page 3: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Temporal coherence

Phase relationship changes over a characteristic time

1

cCoherence time:Image adapted from Wikipedia

Page 4: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Spatial coherence

Wave with infinite temporal and spatial coherence

Wave with infinite temporal coherence but finite spatial

coherence

Wave with finite temporal and spatial coherence

A pinhole isolates part of the wavefront and thus

increases spatial coherence. Coherence

length is unaffected.

Images adapted from Wikipedia

Page 5: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Types of interference

Wavefront division

e.g. Young’s slits

Amplitude division

e.g. Michelson interferometer

Page 6: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Thomas Young

Thomas Young (1773-1829)

• “The Last Man Who Knew Everything “

• Learned 13 languages by age 14

• Comparative study of 400 languages

• Translated the Rosetta stone

• PhD in physics & medical doctor

• Young’s slits

• Young’s modulus

• Founded physiological optics:

• colour vision

• astigmatism

• accommodation of the eye

• Seminal work on haemodynamics

• Secretary to the Board of Longitude

• Superintendent of the HM Nautical Almanac Office. Image from Wikipedia

Page 7: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Young’s slits 1

Poor spatial coherence

Good spatial coherence

Single slit isolates part of wavefront

Double slits act as two coherent

sources

To distant screen

Page 8: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Young’s slits 1Young’s original diagram presented to Royal Society in 1803

Image from Wikipedia

http://www.acoustics.salford.ac.uk/feschools/waves/diffract3.htm

Page 9: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Young’s slits 3

a

y

r2

r1

r

s

s >> a

Page 10: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Lloyd’s mirror

i

y

r1

l1l2

Phase change on reflection

source

image of source

r2 = l1+l2

t

Rev. Humphrey Lloyd (1800-1881) Trinity College Dublin

Page 11: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Multiple slits

S0

S3

S4

S5

S6

S1

S2

a

r

2r

3r

s>>a

P

Page 12: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Interference pattern for multiple slits

Inte

nsity

, I

N=10N=3N=5

ka2

Page 13: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Michelson Interferometer

Albert Abraham Michelson (1852-1931)

d1

d2

beamsplitter

Mirror, M1

Mirror, M2

compensator plate

lens

screen

light source

d = 2(d1- d2)

Image from Wikipedia

Page 14: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

The compensator plate

Without compensator:

• Unequal paths thru glass

• path length diff. = f()

With compensator:

• Equal paths thru glass

path length diff. f()

Rays to M1 pass thru BS once

Rays to M2 pass thru BS three

times

NB nglass= f()

Page 15: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Equivalent diagram for Michelson interferometer

source plane M1 plane M2 plane

d

d cos()

S S1 S2

Images of S in M1 and M2

lens

f

focal plane

Page 16: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Fringe patterns

Sodium lamp

Images from http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/michel.html#c1

White light

Page 17: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Fourier Transform Spectroscopy

d1

d2

beamsplitter

compensator plate

lens

detector

Movable mirror

0 2 4 6 8 10 12 140

0.5

1

1.5

2

d

I(d) monochromatic

d

I(d) polychromatic

Page 18: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Thin films

nt nini

BD

C

A

s

source

lens

i

t

A

C

D

i

i

A

C

B st

t

Page 19: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Thin film applications

Dichroic mirrors – high reflectivity for narrow bandwidth only Anti-reflection coatings –

reduces glare from lenses

Images from Wikipedia

Page 20: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Thin films in nature

Oil on water – oil layer thickness varies giving a rainbow effect in white light

Soap bubbles – thickness and angle of film varies to give rainbow

The ‘Tapetum lucidum’ is found behind the retina of many animals (not humans) – it enhances night vision

The tapetum lucidium in a

calf’s eye

Images from Wikipedia and Google Image

Page 21: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Multibeam interference

Er

s

source

Et0

Et1

Et3

Et2

Et5

Et4

Er0

Er1

Er3

Er2

Er5

Er4

Er6

lenslens

Et

Page 22: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Stokes’ relations

Sir George Gabriel Stokes (1819-1903)

r2E+ttE

E rE

tE

E rE

tE

rE

tErtE+trE

A) B)

C) • B) is time-reverse of A)

• Comparing B) and C):

r2 + tt=1

r = -r

Images from Wikipedia

Page 23: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

The Airy function

Sir George Biddell Airy (1801-1892)

Finesse, F = Free Spectral Range, Resolution,

Image from Wikipedia

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

Frequency

Tra

nsm

issi

on

F=2F=10F=50

Page 24: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

RRF

12

Image from Wikipedia

Page 25: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

Fabry-Pérot Etalons 1

Potrait images from http://www-obs.cnrs-mrs.fr/tricent/astronomes/fabry.htm &Wikipedia

Charles Fabry (1867-1945)

Alfred Pérot (1863-1925)

s

r

source

lens

f2 highly reflecting parallel surfaces

Outer surfaces are non-parallel

Page 26: PC20312 Wave Optics Section 3: Interference. Interference fringes I 1 + I 2 Image adapted from Wikipedia.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

Frequency (GHz)

Inte

nsi

ty (

Arb

. u

nit

s)

FSR

Images from Google image Data from D. Binks PhD thesis

Fabry-Pérot Etalons 2