Patric Muggli, HEEAUP05, 06/08/05 1 Beam Plasma Acceleration Patric Muggli University of Southern...
-
Upload
kory-amos-hampton -
Category
Documents
-
view
230 -
download
0
Embed Size (px)
Transcript of Patric Muggli, HEEAUP05, 06/08/05 1 Beam Plasma Acceleration Patric Muggli University of Southern...

Patric Muggli, HEEAUP05, 06/08/051
Beam PlasmaAcceleration
Patric Muggli
University of Southern CaliforniaLos Angeles, California
USA

Patric Muggli, HEEAUP05, 06/08/052
• Introduction to PWFA
• Short bunch PWFA results
• Conclusions
• Long bunch PWFA results
• Short bunch production
OUTLINE
• Future
• Motivation
- Propagation of e- and e+ beams in long plasmas
- Acceleration of e- and e+
- Acceleration of e-
- Betatron radiation

Patric Muggli, HEEAUP05, 06/08/053
THANK YOU!
E-162-E164-E164X Collaborations:
UCLA
C. Barnes, F.-J. Decker, P. Emma, M. J. Hogan, R. Iverson, P. Krejcik, C. O’Connell,H. Schlarb, R.H. Siemann, D. Walz
Stanford Linear Accelerator Center
B.E. Blue, C. E. Clayton, C. Huang, C. Joshi, D. Johnson, W. Lu, K. A. Marsh, W. B. Mori, S. Wang, M. Zhou
University of California, Los Angeles
S. Deng, T. Katsouleas, S. Lee, P. Muggli , E. Oz
University of Southern California

Patric Muggli, HEEAUP05, 06/08/054
• Could a beam-driven plasma accelerator (PWFA) with ≈10 GeV/m accelerating gradient be used to double the energy of a linear collider?
MOTIVATION
• Plasmas can sustain very large accelerating gradients: 10-100 GeV/m (laser or particle beam driven plasma accelerators)
• Limited by rf surface breakdown ≤200 MV/m(?)
• SLAC: ≈200, 70 MW Klystrons ≈50 GeV e-/e+ in ≈3 km Average gradient ≈17 MV/m 3 km
• Next linear collider (ILC): ≈35 MV/m(?), 15 km for 500 GeV?

Patric Muggli, HEEAUP05, 06/08/055
PLASMA WAKEFIELD (e-)
• Plasma wave/wake excited by a relativistic particle bunch
• Plasma e- expelled by space charge forces => energy loss (ion channel formation rc≈(nb/ne)1/2r + focusing
• Plasma e- rush back on axis => energy gain
• Plasma Wakefield Accelerator (PWFA) = TransformerBooster for high energy accelerator
++++++++++++++ ++++++++++++++++
----- --- ----------------
---- -----------
-------- ------- -------------------- - -
-
---- - -- ---
------ -- -- ---- - - - - - --
---- - -- - - - --- --
- -- - - - - -
---- - ----
------
electron beam
+ + + + + + + + + + ++ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + +-
- --
--- --
Accelerating Decelerating (Ez)
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
Focusing (Er)Defocusing
• Linear scaling: Eacc ≅110(MeV/m)N 2×1010
σz /0.6mm( )2 ≈ 1/z
2
@ kpez≈√2 or ne≈1014 cm-3 (with kpez <<1)
U C L A

Patric Muggli, HEEAUP05, 06/08/056
PLASMA WAKEFIELD ACCELERATOR
Driver bunch: high-charge (3N), modest emittance, shaped? Witness bunch: low charge (N), good emittance
ion column focusing preserves emittance beam loading for ∆E/E<<1
Typical PWFA parameters: ne≈1016 cm-3, fpe≈900 GHz, fpe≈300 µm G ≈10-20 GeV/m N ≈1.51010 e-
D≈60 µm, W≈30 µm, ∆t≈150 µm
++++++++++++++ ++++++++++++++++
----- --- ----------------
---- -----------
-------- ------- -------------------- - -
-
---- - -- ---
------ -- -- ---- - - - - - --
---- - -- - - - --- --
- -- - - - - -
---- - ----
------
+ + + + + + + + + + ++ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + +-
- --
--- --
Accelerating Decelerating (Ez)
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
Focusing (Er)Defocusing
+ +
+ +
+ +
+ +
Driver Bunch:E0 => ≈0
Witness Bunch:E0 => ≥2E0
Plasma provides focusing and acceleration

Patric Muggli, HEEAUP05, 06/08/057
PLASMA WAKEFIELD EXISTENCE

Patric Muggli, HEEAUP05, 06/08/058
PLASMA WAKEFIELD EXPERIMENT@ SLAC
3 km e-/e+
LINACFinal Focus Test Beam
3 km for 50 GeV e- and e+ add 1 GeV over <1 m?

Patric Muggli, HEEAUP05, 06/08/059
EXPERIMENTAL SET UP
• Optical Transition Radiation(OTR)
5 10 15 20 25 30 35 40 45 50
5
10
15
20
25
30
35
40
y
x10 20 30 40 50 60
10
20
30
40
50
60
y
x
- 1:1 imaging, spatial resolution <9 µm
e-, e+
N=21010
z=0.7 mmE=28.5 GeV
IonizingLaser Pulse
(193 nm) Li Plasma
ne≈21014 cm-3
L≈1.4 m
CherenkovRadiator
Streak Camera(1ps resolution)
Bending MagnetsX-Ray
Diagnostic
Optical TransitionRadiators Dump
∫Cdt
Quadrupoles
Imaging Spectrometer25 m
IP0: IP2:xz
y
• Plasma: Laser-ionized lithium vapor

Patric Muggli, HEEAUP05, 06/08/0510
Long e-- beam:E 28.5 GeVN <21010 e-
z 0.63 mm (2.1 ps)x=y ≤70 µm nb ≥41014 cm-3
xN 510-5 m-radyN 0.510-5 m-rad
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
-300
-200
-100
0
-15 -10 -5 0 5 10 15
ElectronFieldsChenKun.kg
τ ( )ps
PLASMA WAKEFIELD FIELDS (E-162, e-)
Plasma:ne 0-21014 cm-3
L 1.4 m, laser ionized
2-D PIC Simulation OSIRISne=1.51014 cm-3
Experiment: nb>ne => non linear, blow-out regime
Front
Blow-Out. Focusing @ r
EnergyGain
EnergyLoss
• Uniform focusing field (r,z)
Typical parameters:

Patric Muggli, HEEAUP05, 06/08/0511
PLASMA FOCUSING OF e-
Beam Envelope Model for Plasma Focusing
Multiple foci (betatron oscillation) within the plasma
x,y(z) at fixed ne => x,y(ne) at fixed z
Plasma Focusing Force > Beam “Emittance Force” (beam=1/K> plasma)
0
50
100
150
200
0 1 2 3 4 5BeamFocusing(z).graph
No Plasman
e=0.03×1014 cm-3 Plasma Lens
ne=1.5×1014 cm-3 3rd Betatron Pinch
( ) z m
OTR
∂2σ∂z2 +K 2σ =
ε2
σ 3
K =ωpe
2γc∝ ne( )
1/2
In an ion channel:
Envelope equation:
€
W =Er
rc=
Bθ
r=
12
neeε 0c
with a focusing strength:
=6 kT/m@ ne=21014 cm-3
Plasma

Patric Muggli, HEEAUP05, 06/08/0512
FOCUSING OF e-
OTR Images ≈1m downstream from plasma
0
50
100
150
200
250
300
0 0.5 1 1.5 2
BetaronFitLongBeta.graph
Plasma OFFPlasma ONEnvelope
(Plasma Density×1014 cm-3)
L=1.4 m0=50 µm
N=12×10-5 m-rad
0=1.16 m
a0=-0.5
Focusing of the beam well described by a simple model (nb>ne): Plasma=
Ideal Thick LensNo emittance growth observed as ne is increased
Stable propagation over L=1.4 m up to as ne =1.81014cm-3
K≥1/0
0
100
200
300
400
500
600
0 0.5 1 1.5 2
07250cwMatchedBetatron.graph
Plasma OFFPlasma ONEnvelope Equation Fit
(Plasma Density×1014 cm-3)
=30 µm
N=44×10 -5 -m rad
=0.11 ma=0
K≤1/0
Channeling of the beam over 1.4 m or >120
= Matched Propagation over long distance!
ne, matched =1.6-2.51014 cm-3
0 ≈K
PRL 88(13), 154801 (2002) PRL 93, 014802 (2004)

Patric Muggli, HEEAUP05, 06/08/0513
WAKEFIELD FIELDS for e- & e+
e- e+
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
-15 -10 -5 0 5 10 15
ElectronFieldsChenKun.kg
τ (p)
0
100
200
300
-15 -10 -5 0 5 10 15
PositonFieldsChenKun.kg
τ (p)
• Blow-Out• Accelerating “Spike”
• Fields vary along r, stronger
• Less Acceleration, “linear-like”
ne=1.51014 cm-3
homogeneous, QUICKPIC
r=35 µmr=700 µm=1.81010
d=2 mm

Patric Muggli, HEEAUP05, 06/08/0514
e- & e+ FOCUSING FIELDS*
Ex (GV/m)
0
1500
-1500
0-3750 3750
x (µ
m)
z (µm)
e-
Ex (GV/m)
0
700
-700
0-3750 3750
x (µ
m)
z (µm)
e+
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
-200 -150 -100 -50 0 50 100 150 200
Exz=0Electrons1.5e14
x (µm)
x
2x
3x
e--0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
-200 -150 -100 -50 0 50 100 150 200
Exz=0Positrons1.5e14
x (µm)
e+
x0=y0=25 µmz=730 µmN=1.91010 e+/e-
ne=1.51014 cm-3 *QuickPIC
Linear, no abberations
Non-linear,abberations

Patric Muggli, HEEAUP05, 06/08/0515
FOCUSING OF e-/e+
0 50 100 150 200 250 300 350 400 450 500
50
100
150
200
250
300
0 50 100 150 200 250 300 350 400 450 500
50
100
150
200
250
300
0 50 100 150 200 250 300 350
50
100
150
200
250
30050 100 150 200 250 300 350
50
100
150
200
250
300
e-
e+
ne=0 ne≈1014 cm-3
2mm
2mm
• Ideal Plasma Lens in Blow-Out Regime
• Plasma Lens with Aberrations
• OTR images ≈1m from plasma exit (x≠y)
Qualitative differences

Patric Muggli, HEEAUP05, 06/08/0516
EXPERIMENT / SIMULATIONS
x0=y0=25µm, Nx=39010-6, Ny=8010-6 m-rad, N=1.91010 e+, L=1.4 m
Downstream OTR
0
500
1000
1500
2000
-0.5 0 0.5 1 1.5 2 2.5
PE390by80resultsOTR
FWHMx@otr (µm)FWHMy@otr (µm)
ne (×1014 cm-3)
Excellent experimental/simulation results agreement!
SimulationsExperiment
0
500
1000
1500
2000
-2 0 2 4 6 8
12230cl-n-md4TriangOTR.kg
x-laser OFFy-laser OFFx-laser ONy-laser ON
UV (mJ) OFFUV Energy (mJ)
No -tron oscillations

Patric Muggli, HEEAUP05, 06/08/0517
EMITTANCE / SIMULATIONS
x0=y0=25µm, Nx=39010-6, Ny=8010-6 m-rad, N=1.91010 e+, L=1.4 m
Possible solution: hollow plasma channel for e+
Slice emittance growth for e+
e- core emittance preserved, phase mixing
0 2 4 6 8 10 12 14 16-1.5
-1
-0.5
0
0.5
1
1.5x 10-12
Front Back
10-9
10-8
10-7
0 0.5 1 1.5
Electrons1.5e142
( ) z m
Total
#4Slice
e-
10-9
10-8
10-7
0 0.5 1 1.5
Positrons1.5e142
( ) z m
Total
#4Slicee+
ne=1.5x1014cm-3

Patric Muggli, HEEAUP05, 06/08/0518U C L A
• Introduction to PWFA
• Short bunch PWFA results
• Conclusions
• Long bunch PWFA results
• Short bunch production
OUTLINE
• Future
• Motivation
- Propagation of e- and e+ beams in long plasmas
- Acceleration of e- and e+
- Acceleration of e-
- Betatron radiation

Patric Muggli, HEEAUP05, 06/08/0519
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
-300
-200
-100
0
-15 -10 -5 0 5 10 15
ElectronFieldsChenKun.kg
τ ( )ps
PLASMA WAKEFIELD FIELDS (E-162, e-)
Plasma:ne 0-21014 cm-3
L 1.4 m, laser ionized
2-D PIC Simulation OSIRISne=1.51014 cm-3
Experiment: nb>ne => non linear, blow-out regime
e-- beam:E 28.5 GeVN 21010 e-
z 0.63 mm (2.1 ps)x=y 70 µm nb 41014 cm-3
xN 510-5 m-radyN 0.510-5 m-rad
Front
Blow-Out. Focusing
EnergyGain
EnergyLoss
• Uniform focusing field (r,z) • Large decelerating/accelerating fields
Typical parameters:

Patric Muggli, HEEAUP05, 06/08/0520
• CHERENKOV (aerogel)
- Spatial resolution ≈100 µm - Energy resolution ≈30 MeV- Time resolution: ≈1 ps
EXPERIMENTAL SET UP
10 20 30 40 50 60 70 80 90 100
20
40
60
80
100
120
140
y,E
x
E-162:
e-, e+
N=21010
z=0.7 mmE=28.5 GeV
IonizingLaser Pulse
(193 nm) Li Plasma
ne≈21014 cm-3
L≈1.4 m
CherenkovRadiator
Streak Camera(1ps resolution)
Bending MagnetsX-Ray
Diagnostic
Optical TransitionRadiators Dump
∫Cdt
Quadrupoles
Imaging Spectrometer25 m
IP0: IP2:xz
y
• Plasma: Laser-ionized lithium vapor

Patric Muggli, HEEAUP05, 06/08/0521
e- ACCELERATIONPRE-IONIZED, LONG BUNCH
Time resolution needed, but shows the physics
Energy gain smaller than, hidden by, incoming energy spread
-200
-150
-100
-50
0
50
100
150
200
-6 -4 -2 0 2 4 6 8
ne=1.5×1014 (cm-3)
ne=1.8±0.1×1014 (cm-3)
( ) Time ps
+z
+2z
+3z
-2z
-z
Peak energy gain: 279 MeV, L=1.4 m, ≈200 MeV/m
PRL 93, 014802 (2004)
z≈730 µmN=1.21010 e+
kpz≈√2

Patric Muggli, HEEAUP05, 06/08/0522
ENERGY LOSS/GAIN e+
Excellent agreement!
Plasma Off
Front Back
ne=1.81014cm-3
Loss Gain
Front Back
ne=1.81014cm-3
Experiment 2-D Simulationz≈730 µmN=1.21010 e+
• Loss ≈ 70 MeV
• Gain ≈ 75 MeV
• Loss ≈ 45 MeV/m 1.4 m=63 MeV
• Gain ≈ 60 MeV/m 1.4 m=84 MeV
PRL 90, 214801, (2003)
(over 1.4 m)
B.E Blue, UCLA

Patric Muggli, HEEAUP05, 06/08/0523
NUMERICAL SIMULATIONS: E-164/X, e-
E-164X: z=20-10 µm: >10 GV/m gradient! (r dependent! kpr≈1)
0.01
0.1
1
10
100
1000
10 100 1000
AccDeccFields(sigmaz)
Accel. (Useful) r=20 ( )µm
. ( ) Accel Usefulr=10 ( )µm
. Deccel r=20 ( )µm
. Deccel r=10 ( )µm
z ( )µm
0.2 GeV/m4.343106
fp=2 .8 THz, W=3MT/m @ ne=1017 cm-3
Gradient Increases with 1/z (N=cst)
N=1010 e-, kpz≈√2
ne≈1.4x1017 cm-3 for kpz≈√2 and z=20 µm

Patric Muggli, HEEAUP05, 06/08/0524U C L A
• Introduction to PWFA
• Short bunch PWFA results
• Conclusions
• Long bunch PWFA results
• Short bunch production
OUTLINE
• Future
• Motivation
- Propagation of e- and e+ beams in long plasmas
- Acceleration of e- and e+
- Acceleration of e-
- Betatron radiation

Patric Muggli, HEEAUP05, 06/08/0525
28 GeV28 GeV
Existing bends compress to Existing bends compress to <100 fsec<100 fsec
~1 Å~1 Å
Add 12-meter chicane compressor Add 12-meter chicane compressor in linac at 1/3-point (9 GeV)in linac at 1/3-point (9 GeV)
Add 12-meter chicane compressor Add 12-meter chicane compressor in linac at 1/3-point (9 GeV)in linac at 1/3-point (9 GeV)
Damping RingDamping Ring
9 ps9 ps 0.4 ps0.4 ps<100 fs<100 fs
50 ps50 ps
SLAC LinacSLAC Linac
1 GeV1 GeV 20-50 GeV20-50 GeV
FFTBFFTBRTLRTL
30 kA30 kA
80 fsec FWHM80 fsec FWHM
1.5%1.5%
Short Bunch Generation In The SLAC Linac
Courtesy of SPPS
• Bunch length/current profile is the convolution of an incoming energy spectrum and the magnetic compression
Chirping Compression

Patric Muggli, HEEAUP05, 06/08/0526
e- BUNCH MANIPULATION
Energy spectrum <-> phase space <-> current profile
PWFA: accelerate e- in the back of the bunch
Front
BackAccelerated
electrons
Front
Back
Acceleratedelectrons
LiTrack:K. Bane,P. EmmaSLAC

Patric Muggli, HEEAUP05, 06/08/0527
Accelerated e- originate from ≥0.9 GeV below the bunch max. energy!
PWFA: accelerate e- in the back of the bunch
ACCELERATED e-
≈0.9 GeV
Acceleratedelectrons
Front
Back

Patric Muggli, HEEAUP05, 06/08/0528
Short bunches can field-ionize their own plasma and create their own accelerating structure (E-164X, after-burner?)
0
2 1014
4 1014
6 1014
8 1014
1 1015
1.2 1015
109 1010 1011 1012
GasVaporIonization
Ionization Rate (s
-1)
E-Field (V/m)
Cs I
Cs II
Li I
Li IIHe I He IINO IXe IXe IIXe III
0 10 20 30-30 -20 -10
-4
-2
0
2
4
r/r
z/ z
LiVapor
Plasma
∫Wdt≈0
∫ Wdt=1
W s−1[ ]≅1.52×1015 4n*
ξi
n*Γ 2n*( )20.5
ξi3/2
E
⎛
⎝ ⎜
⎞
⎠ ⎟
2n*−1
e−6.83
ξi3/ 2
E
⎛
⎝ ⎜
⎞
⎠ ⎟
N=1.81010, r=10 µm, z=20 µm in LiEr.max≈47 GV/m
I= ionization potential = 5.45 eV for LiIE(t)= electric field in GV/mn*=effective quantum number =3.68Z/I
1/2
see for example D. Bruhweiler et al., Phys. of Plasmas to be published,and P.Muggli et al, AAC-2002 Proceedings
e--BEAM FIELD-IONIZATIONTunneling ionization rate (ADK model):
Threshold process
€
Er ,peak (r ≈ 1.6σ r ,z = 0) ≈ 5.2 ×10−10 Nσ rσ z

Patric Muggli, HEEAUP05, 06/08/0529
“PLASMA SOURCE”• Lithium vapor in a heat-pipe oven
Tunnel-ionization: ne=no, Li
P. Muggli et al., IEEE TPS (1999)
Li HeHe
Pre
ssu
re
L
Boundary Layersn0=0.5-3.51017 cm-3
T=700-1050°CL=10-20 cmPHe≈1-40 T0 0 z
e-
Heater Wick
Cooling Jackets
BeWindow
Plasma LightDiagnostic
: removes laser-related variations

Patric Muggli, HEEAUP05, 06/08/0530
• Coherent Transition Radiation (CTR)- CTR Energy≈Ipeak≈1/z
• Cherenkov (aerogel)
- Spatial resolution ≈100 µm - Energy resolution ≈30 MeV
EXPERIMENTAL SET UP
y,E
x
e-
N=1.81010
z=20-12µmE=28.5 GeV
Optical TransitionRadiators
IP0: Li Plasma ne≈0-3x1017 cm-3
L≈10-20 cm
Plasma light
X-RayDiagnostic,
e-/e+
Production
CherenkovRadiator Dump
∫Cdt
ImagingSpectrometer
IP2:
xz
y
EnergySpectrum“X-ray”
25m
CoherentTransition
Radiation andInterferometer
• X-ray Chicane
-Energy resolution ≈60 MeV
E
Energy Spectrum before …Energy Spectrum after…
… the plasmaPeak CurrentBunch length

Patric Muggli, HEEAUP05, 06/08/0531
N≈1.81010 e-/bunch
Accelerated charge >7% or >220 pCEnergy loss is peak current or bunch length dependent
ne≈2.551017 cm-3, L≈10 cm
0
+2
+4
-4
-2
0 +5-5X (mm)
Rel
ativ
e E
nerg
y (G
eV)
0 +5-5X (mm)
0 +5-5X (mm)
7.9
GeV
CTR=247 CTR=299 CTR=283 CTR=318ne=0
Gain
Loss
0 +5-5X (mm)
≈3 GeV!
Energy gain reaches ≈3+1 GeV

Patric Muggli, HEEAUP05, 06/08/0532
0
1 104
2 104
3 104
4 104
5 104
-2.5 -2 -1.5 -1 -0.5 0 0.5 1
4XProfiles2.55e17Plasma ONPlasma ONPlasma ONPlasma OFF
Relative Energy (GeV)
Details of the incoming energy spectra are visible
Matching of incoming energy spectra with LITrack will allow for the unfolding of the effects
ne≈2.551017 cm-3 INCOMING SPECTRA
Energy Spectra before the Plasma (@ x-ray chicane)L≈10 cm, N≈ 1.81010
Front
Back

Patric Muggli, HEEAUP05, 06/08/0533
0
1 104
2 104
3 104
4 104
5 104
-2.5 -2 -1.5 -1 -0.5 0 0.5 1
3IdenticalXsprctra
Plasma ONPlasma ONPlasma ON
Relative Energy (GeV)
Identical incoming energy spectra/events
“Identical” outgoing energy spectra/events 0
2 104
4 104
6 104
8 104
1 105
1.2 105
-6 -4 -2 0 2
3IdenticalCsprctraPlasma ONPlasma ONPlasma ON
Relative Energy (GeV)
E
x
≈10 GeV
SIMILAR IN,SIMILAR OUT
IN
OUT

Patric Muggli, HEEAUP05, 06/08/0534
Very consistent acceleration, varies with incoming bunch parameters
Gain
ne≈2.81017 cm-3, L≈10 cmN≈ 1.81010 e-/bunch, arranged by CTR
QuickTime™ and a decompressor
are needed to see this picture.
E
x
Ene
rgy
(GeV
)31.5
30.5
29.5
28.5
27.5
26.5
25.5
24.5
E
x
EnergyGain
EnergyGain

Patric Muggli, HEEAUP05, 06/08/0535
Betatron X-rays
• X-ray synchrotron radiation from electrons betarton oscillations.
+ + + + +
e- beam- -
- - X-rays-
-
-
-
( ) MeVrnfrc opoc 6.49,,
2
3 232
=== γγω
ω β
( ) mGeVrnfKkcmrdz
dEopee /3.4,,
3
1 2222222 === γγ β
• Plasma ion column acts as a “Plasma Wiggler” lead to X-ray synchrotron radiation.
ne=3e17 cm-3,=56000, r0=10 µm, B/r= 9 MT/m , = 2cm
Wiggler strength:
Critical frequency on-axis (K>>1):
Particle energy loss:

Patric Muggli, HEEAUP05, 06/08/0536
Positron Production Experimental Setup
Collimators
e- Extraction
e-
z
x
Plasma
40 m10 cm
Bending Magnet
hν Target
8mm
Devon Johnson, UCLA
Plasma length: Lp=10 cm, Nelectrons=9.6x109
Plasma-conversion target distance: 40 m!
Photon beam radius @ target ≈ 35 cm, collimated to r≈8 mm
e+ detection using magnetic spectrometer and 100 µm surface barrier detectors (SBDs), phospor screen and intensified camera
Detector
e+
SectorMagnet

Patric Muggli, HEEAUP05, 06/08/0537
Simulation Results
Simulated Positron DetectedSimulated Radiated Photon Spectrum
Lp=10 cm, Nelectrons=9.6x109, 8 mm dia
ne= 1017 cm-3 => 2.4x106 e+
ne=2x1017 cm-3 => 6.9x106 e+
ne=3x1017 cm-3 => 1.2x107 e+
0.4 X0 titanium target≈4% photons collected
# e+ between 0-40 MeV3x108 e+ with L≈10 cm plasma(100% collection)
Plasma wiggler as e+ source?

Patric Muggli, HEEAUP05, 06/08/0538
CONCLUSIONS
Plasmas can transport and accelerate multi-GeV particle bunches
Particle energy gain measured: ≈4 GeV over 10 cm!
Accelerating gradient ≈40 GeV/m over ≈10 cm!
Acceleration very consistent and repeatable.
Field-ionized PWFA => Long, dense plasmas
Numerical tools are availabe to support experimentals results and project PWFA into the future
No physics limitations observed so far
SingleBunchOnly!

Patric Muggli, HEEAUP05, 06/08/0539
e- and e+:Driver bunches: z=63 µm, r=5 µm, N=31010
e-/e+, 50 -> 0 GeV
Witness bunches: z=32 µm, r=5 µm, N=11010 e-/e+, 50 -> 100+ GeV
Delay: d=200 µmPlasma: ne=1.8 1016 cm-3, L=7, 21 m
Accelerating gradient: 8, 3 GV/m, ∆E/E <10%
PLASMA AFTERBURNER (EXAMPLE)
S. Lee et al., PRST-AB (2001)
3 km
IP
50 GeV50 GeV ee--
50 GeV50 GeV e e++
e-PWFA e+PWFA
LENSES
7m 21m
100+ GeV, e-/e+ Collider

Patric Muggli, HEEAUP05, 06/08/0540
QuickTime™ and aMPEG-4 Video decompressor
are needed to see this picture.
Simulations by C. Huang, UCLA
SIMULATION CHALLENGE
Driver Witness
Doubling the energy of a 500 GeV bunch possible! …… in only ≈30 m (≈17 GeV/m)! (simulation)
Driver
Witness
>0.5 TeV
ND=3x1010, Nw=1010,
Nx=Ny=2230x10-6 m-rad, x=y=15 µm , (beam matched to the plasma) zD=145 µm , zW=10 µm, ∆z=100 µmNe=5.66x1016 cm-3, Lp=30 m
L≈30 m

Patric Muggli, HEEAUP05, 06/08/0541
Driver Witness
>0.5 TeV
L=0 m L≈10 m
L≈20 m L≈30 m
Simulationsby
C. Huang UCLA
SIMULATION CHALLENGE
Doubling the energy of 500 GeV bunch possible! …… in only ≈30 m! (simulation)
ND=3x1010, Nw=1010,
Nx=Ny=2230x10-6 m-rad, x=y=15 µm , (beam matched to the plasma) zD=145 µm , zW=10 µm, ∆z=100 µmNe=5.66x1016 cm-3, Lp=30 m, pre-ionized, Gradient>17 GeV/m

Patric Muggli, HEEAUP05, 06/08/0542
SIMULATION CHALLENGE
… CPU time 1 week on 16 proc. to 2 weeks on 32 proc.!
∆E/E≈5%FWHM
Head erosion Wake loading evolution
Stability with real beam parameters (x,y, x,y)
Narrow energy spread, could be improved with optimization …

Patric Muggli, HEEAUP05, 06/08/0543
FUTURE
Longer plasma (≈30 cm)for 10 GeV energy gainTwo-bunch experimentsfor beam acceleration
Doubling the energy of the 28.5 GeV SLAC beam in ≈70 cm
Explore application of PWFA to a real HEC …
Adjust afterburner concept parameters to a NLC, and optimize them
Develop numerical tools
6
4
2
0Cur
rent
(kA
)
0 0.1 0.2 0.3-0.1Z (mm)
∆z≈145 µmQ≈11%
(not optimized!)
Identify key experiments to be performed towards an afterburner

Patric Muggli, HEEAUP05, 06/08/0544

Patric Muggli, HEEAUP05, 06/08/0545
OTHER PWFAS
Argone National Laboratory:-propagation, energy gain, two-bunch experiments, simulations
Brookhaven National Laboratory:-linear wakefields, and PWFA driven by a train of bunches
Yerevan Physics Institute, Armenia:-Acceleration of a single bunch in a multi-bunch driven wake
Budker Institute, Novosibirsk, Russia:-e- and e+ PWFAs, simulations

Patric Muggli, HEEAUP05, 06/08/0546
HALO FORMATIONx0≈y0≈25 µm, Nx≈39010-6, Ny≈8010-6
m-rad, N=1.91010 e+, L≈1.4 m
Very nice agreement
0
0.2
0.4
0.6
0.8
1
0 0.5 1 1.5 2 2.5
P390by80peakHalo5
x-Peak, OFFx-Halo, OFFy-Peak, OFFy-Halo, OFF
x-Peak, ONx-Halo, ONy-Peak, ONy-Halo, ON
mean(UN OFF) (mJ)
Experiment Simulation
0
0.2
0.4
0.6
0.8
1
0 0.5 1 1.5 2 2.5
P390by80PeakHaloFraction
x-Peak Fractionx-Halo Fractiony-Peak Fractiony-Halo Fraction
ne (×1014 cm-3)

Patric Muggli, HEEAUP05, 06/08/0547
24
26
28
30
32
0.0001 0.01 1
Plasma OFF
Plasma ON
Bunch Charge Fraction
b)
24
26
28
30
32
0 0.5 1 1.5 2 2.5 3
Plasma OFF
Plasma ON
Intensity [a.u.]
Energy Gain
Energy Loss
a)
Ene
rgy
[GeV
]
31.5
30.5
29.5
28.5
27.5
26.5
25.5
24.5No Plasma 2.8x1017 cm-3
a) b)
1%95%
DETAILED ANALYSIS
Energy gain = energy of 1% charge point
Energy loss = energy of 95% charge point
>2.
7 G
eV
PRL (2005)

Patric Muggli, HEEAUP05, 06/08/0548
DETAILED ANALYSIS
ne= 1.01017 cm-3
Energy loss, but no gain (p>z)
ne= 2.51017 cm-3
Energy loss and gain
ne= 3.51017 cm-3
More, earlier loss and gain
Empty symbols: plasma OUTFilled symbols: plasma IN
Outcome depends on bunch “length”, peak current, profileRecover current profiles
≈1.7 GeV
≈4 GeV
-6
-5
-4
-3
-2
-1
0
1
2
-100 0 100 200 300 400 500 600
07132cxr_1cga_so
OFF 1% , 1×10 17
95% , 1OFF ×10 17
1% , 1ON ×10 17
95% , 1ON ×10 17
1% , 2.5OFF ×10 17
95% , 2.5OFF ×10 17
1% , 2.5ON ×10 17
95% , 2.5ON ×10 17
1% , 3.5OFF ×10 17
95% , 3.5OFF ×10 17
1% , 3.5ON ×10 17
95% , 3.5ON ×10 17
( )Relative Energy GeV
≈ CTR Energy Ipeak
≈ 1/z
≈1-1.2 GV
Cippin
CTR Energy (a.u.) ≈Ipeak≈ 1/z

Patric Muggli, HEEAUP05, 06/08/0549
0
1 104
2 104
3 104
4 104
5 104
-2.5 -2 -1.5 -1 -0.5 0 0.5 1
3XspectrawithTail
Plasma ONPlasma OFFPlasma ON
Relative Energy (GeV)
ne≈2.511017 cm-3, L≈10 cm, N≈1.81010
Confirm: e+ gain energy from below the head energy
Find similar incoming bunches with 2 on incoming spectra.
ORIGIN OF ACCELERATED e-
Retrieve energy of accelerated e+ from incoming spectra and LITrack simulations
ON ONOFF
≈10 GeV
E
x

Patric Muggli, HEEAUP05, 06/08/0550
N≈1.81010 e-/bunch
Accelerated charge >7% or 220 pCEnergy gain depends on the details of the incoming beam (x,y,z)
ne≈2.551017 cm-3, L≈10 cm RESULTS
0
+2
+4
-4
-2
0 +5-5X (mm)
Rel
ativ
e E
nerg
y (G
eV)
0 +5-5X (mm)
0 +5-5X (mm)
7.9
GeV
Pyro=247 Pyro=299 Pyro=283 Pyro=318ne=0
Gain
Loss
0 +5-5X (mm)
≈3 GeV!
Energy gain reaches ≈4 GeV

Patric Muggli, HEEAUP05, 06/08/0551
0
2 104
4 104
6 104
8 104
1 105
1.2 105
-6 -4 -2 0 2
%CSpectra2.55e17
Plasma ONPlasma ONPlasma ONPlasma ONPlasma OFF
Relative Energy (GeV)
Charge Fraction at E>0: 6.8-7.9% of total charge or ≈220 pC!
ne≈3.51017 cm-3 ENERGY SPECTRAL≈10 cm, N≈ 1.81010
EnergyGain
EnergyLoss
Energy Spectra after the Plasma (@ Cherenkov)
Peak energy gain above the beam head: ≈1.5 GeVtotal gain: ≈2.5 GeV
Variations from incoming energy spectrum variations

Patric Muggli, HEEAUP05, 06/08/0552
40 50 60 70 80 90 100 1100
50
100
150
200
250
300
350
Particle distribution
Energy (Gev)
30%
70%E/E=6%
L=0 L≈1m
L≈2m L≈3m136800 c/p
Driver Witness
50 GeV energy gain in 3 meters !
Simulations by C. Huang, UCLA
SIMULATION CHALLENGE
• 2-bunch experiments, for beam acceleration!
• ≈10 GeV acceleration in long plasma
Next experiments:

Patric Muggli, HEEAUP05, 06/08/0553
Laser Wake Field Accelerator(LWFA)
A single short-pulse of photons
Trapped particles
evolves to
Self Modulated Laser Wake Field Accelerator(SMLWFA)
Raman forward scattering instability
Trapped particles
Plasma Beat Wave Accelerator(PBWA)
Two-frequencies, i.e., a train of pulses
Injected particles
Plasma Wake Field Accelerator(PWFA)
A high energy particle bunch
Injected particles
4 PLASMA ACCELERATORS*
*Pioneered by J.M. Dawson at UCLA

Patric Muggli, HEEAUP05, 06/08/0554
e- BUNCH MANIPULATION
Energy spectrum <-> phase space <-> current profile
PWFA: accelerate e- in the back of the bunch
Front
Back
Acceleratedelectrons
Front
Back
Acceleratedelectrons
LiTrack:K. Bane,P. EmmaSLAC

Patric Muggli, HEEAUP05, 06/08/0555
Accelerated e- originate from 0.9-1.4 GeV below the bunch max. energy!
PWFA: accelerate e- in the back of the bunch
ACCELERATED e-
≈1.4 GeV
≈0.9 GeVAccelerated
electrons
Quote energy above the bunch head/front energy, analysis will reveal real energy gain
Front
Back

Patric Muggli, HEEAUP05, 06/08/0556
Witness@ L≈3 m
QuickTime™ and aMPEG-4 Video decompressor
are needed to see this picture.
50 GeV energy gain in 3 meters !
40 50 60 70 80 90 100 1100
50
100
150
200
250
300
350
Particle distribution
Energy (Gev)
30%
70%E/E=6%
Simulations by C. Huang, UCLA JP1.126 Wednesday afternoon!
SIMULATION CHALLENGE
Driver Witness
• 2-bunch experiments, for beam acceleration!• ≈10 GeV acceleration in long plasma
Next experiments:

Patric Muggli, HEEAUP05, 06/08/0557
-40
-20
0
20
40
0
1
2
3
4
5
-100 -50 0 50 100PWFAfieldsSuhzi
z (µm)
PLASMA WAKEFIELD FIELDS (e-)
Plasma:ne=n0 0-3.51017 cm-3
L ≈10 cm
3-D PIC Simulation OSIRIS
N=1010 e-, ne=2.11017 cm-3, L=3 cm
• Much larger accelerating field
e-- beam:E 28.5 GeVN 1.81010 e-
z 20 µm (70 fs)x=y 15 µm nb 2.51017 cm-3
xN 510-5 m-radyN 0.510-5 m-rad
Front
Focusing(r=r)
EnergyGain
EnergyLoss
Typical parameters:
c
• Reach kpr≈1, (≈”linear” theory)

Patric Muggli, HEEAUP05, 06/08/0558
NEAR FUTURE
Long plasma => Large energy gain (2Eo in 70 cm?)Short positron bunches?
Notch in the LI10 chicane => 2-bunch experiment!?!Beam acceleration with finite energy spectrum
(XFEL beams? SLAC, DESY?)

Patric Muggli, HEEAUP05, 06/08/0559
12 12 mmmm1.5 %1.5 %
6 mm6 mm0.08 %0.08 %
6 mm6 mm1.2 %1.2 %
1.2 mm1.2 mm1.1 %1.1 %
1.2 mm1.2 mm1.6 %1.6 %
50 50 mmmm1.6 %1.6 %
50 50 mmmm1.5 %1.5 %
energy energy profileprofile
phasephasespacespace
temporal temporal profileprofile
1.19 GeV1.19 GeV
1.19 GeV1.19 GeV
1.19 GeV1.19 GeV
9 GeV9 GeV
9 GeV9 GeV
28 GeV28 GeV
28 GeV28 GeV
Particle tracking in 2D…Particle tracking in 2D…C
ourt
esy
of S
PP
S

Patric Muggli, HEEAUP05, 06/08/0560
Energy loss ≈ peak current ≈ CTR energy ≈ 1/z
ne≈2.551017 cm-3, ENERGY LOSS
Peak energy loss gradient ≥3.4 GeV/10 cm!
L≈10 cm, N≈ 1.81010 e-/bunch
-5
-4
-3
-2
-1
0
0 100 200 300 400 500 600 700
95%Eloss(Pyro)2.55e17
Plasma OFFPlasma ON
CTR Pyro Amplitude (a.u.)
Max. Loss:≈3.4 GeV
≈Ipeak≈1/z
Peak Energy Loss
≈Ipeak ≈1/z
-2
-1.5
-1
-0.5
0
0 100 200 300 400 500 600 700
MeanEloss(Pyro)2.55e17
Plasma OFFPlasma ON
CTR Pyro Amplitude (a.u.)
Max. Loss:≈1.5 GeV
Mean Energy Loss
Re
lativ
e M
ea
n E
ner
gy
(GeV
)
Re
lativ
e M
in. E
ner
gy
(GeV
)

Patric Muggli, HEEAUP05, 06/08/0561
ENERGY SPECTROMETER(NON-INVASIVE, UPSTREAM OF PLASMA)
Plasma
QuickTime™ and aTIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and aTIFF (LZW) decompressor
are needed to see this picture.
e-
• Measure incoming bunch spectrum
C.D. BarnesPhD. ThesisStanford 2004

Patric Muggli, HEEAUP05, 06/08/0562
e-: ne0=21014 cm-3, c/p=375 µm e+: ne0=21012 cm-3, c/p=3750 µm
r=35 µmr=700 µm
• Uniformfocusing force (r,z)
=1.81010
• Non-uniformfocusing force (r,z)
d=2 mm
QuickTime™ and aTIFF (Uncompressed) decompressor
are needed to see this picture.
BlowOut
30 beamFront
Back
QuickTime™ and aTIFF (Uncompressed) decompressor
are needed to see this picture.
30 beamFront
Back
3-D QuickPIC simulations, plasma e- density:e- & e+ BEAM NEUTRALIZATION
e- e+

Patric Muggli, HEEAUP05, 06/08/0563
• Optical Transition Radiation (OTR)
• Cherenkov (aerogel)
- Spatial resolution ≈100 µm - Energy resolution ≈30 MeV
EXPERIMENTAL SET UP
-1:1 imaging, spatial resolution ≈9 µm
y,E
x
Since E-162:
U C L A
e-
N=1.81010
z=20-12µmE=28.5 GeV
Optical TransitionRadiators
IP0: Li Plasma Gas Cell: H2, Xe, NO
ne≈0-1018 cm-3
L≈2.5-20 cm
Plasma light
X-RayDiagnostic,
e-/e+
Production
CherenkovRadiator Dump
∫Cdt
ImagingSpectrometer
IP2:
xz
y
EnergySpectrum“X-ray”
25m
CoherentTransition
Radiation andInterferometer
y
x
Upstream
y
x
Downstream
• X-ray Chicane
-Energy resolution ≈60 MeV
• Plasma Light
E

Patric Muggli, HEEAUP05, 06/08/0564
L≈10 cm, N≈ 1.81010
ne≈3.51017 cm-3 RESULTS
Pyro=358 Pyro=383
0
+2
+4
-4
-2
0 +5-5X (mm)
Rel
ativ
e E
nerg
y (G
eV)
Pyro=427
0 +5-5X (mm)
0 +5-5X (mm)
0 +5-5X (mm)
Pyro=484
0 +5-5X (mm)
Pyro=466ne=0
Min.Gain
Min.Loss
+1.5 GeV
Many similar events in a data setAcceleration with significant charge: ≈1.5+1 GeV
Lower gain than @ 3.51017 cm-3

Patric Muggli, HEEAUP05, 06/08/0565
ANALYSIS EXAMPLE
Retrieve bunch energy distribution/current profile for energy gain events
Event with Gain Incoming Spectrum
PLASMA ON PLASMA OFF
Incoming Spectrum
IncomingEnergyDistribution
IncomingEnergyDistribution
M.J. Hogan
E
x
E

Patric Muggli, HEEAUP05, 06/08/0566
TRAPPING OF PLASMA e-
No Trapping
Trapping
610 640580Wavelength (nm)
LiI @ 610 nm
Plasma Light Spectrum
Continuum
Evidence for plasma e- trapping:• Excess charge after the plasma
1.5 1010
2 1010
2.5 1010
3 1010
0 100 200 300 400 500 600
TrappedParticlesE164XXI
Plasma OFFPlasma ON
CTR Pyro Amplitude (a.u.)
TrappingThreshold?
• Excess light from OTR screen• Continuum light emission on plasma light spectrum
Trapping mechanism?Dark current limit for the PWFA?

Patric Muggli, HEEAUP05, 06/08/0567
AAC’04 AB INTEGRATION
P. Muggli and J.S.T. Ng, AAC’04 AIP Proceedings

Patric Muggli, HEEAUP05, 06/08/0568
NLC AfterBurn US SC AfterBurnCMS Energy (GeV) 1000 2000 1000 2000Linac Length (km) 14.1 0.13 30 0.21Repetition Rate (Hz) 120 120 5 5
Bunch Charge (1010) 1.5 1.1 / 0.4 2 1.5 / 0.5Bunches/RF Pulse 96 2820 Bunch Separation 2.8 ns 0.6 ps 337 ns 1 psEff. Gradient (MV/m) 52 4000 35 2400
Plasma Density (1/m3) 2.00E+22 9.00E+21
x (10at IP -8 - )m rad 360 360 960 960
y (10at IP -8 - )m rad 4 4 4 4
Pl Lens Reduction 10 11 x / y ( )at IP nm 219 / 2.1 37 / 3.9 489 / 4.0 67 / 4.3
z ( )at IP um 110 32 300 35Υave 0.27 5 0.11 3.5
Pinch Enhancement 1.4 1.1 1.7 1 Beamstrahlungd (%)B 8.4 40 5.9 32
+/ -Photons per e e 1.2 2 1.6 1.7 (1033)Luminosity 31 10 38 10
NLC and TESLA Parameters2 TeV 2 TeV Based on upgrade of
proposed next linear collider“Warm”=11.4 GHz“Cold”=1.3 GHz
http://www.slac.stanford.edu/xorg/accelops/
AAC’04 AB INTEGRATION
Courtesy of T. Raubenheimer, SLAC

Patric Muggli, HEEAUP05, 06/08/0569
DETAILED ANALYSIS: PRELIMINARY
CTR Pyro signal
Litr
ack
peak
Cur
rent
(kA
)
“Confirm” expected dependency
(M.J. Hogan)

Patric Muggli, HEEAUP05, 06/08/0570
NEAR FUTURE (II)
Notch in the LI10 chicane => 2 bunches
Acceleration with finite energy spectrum
Long plasma => Large energy gain (2Eo in 70 cm?)
Acceleration with finite energy spectrum

Patric Muggli, HEEAUP05, 06/08/0571
MODUS OPERANDI
• Choose ne and LINAC beam parameters (N, …)
• At a given density vary/optimize acceleration signal- Incoming energy spectrum (phase ramp)- FFTB R56
- beam waist location
• Match incoming spectra with LITrack-> Incoming bunch current profile-> Input into PWFA theory/simulations
• Acquire data with inherent variations- Energy spectra IN and OUT- Beam images b/a plasma- Standard beam parameters (N, position, …)
Kpz≈√2 -> ne≈1.41017 cm-3 for z=20 µm
• Compare events with same incoming energy spectra

Patric Muggli, HEEAUP05, 06/08/0572
SLICE ANALYSIS RESULTSSINGLE EVENT
ne=0.71014 cm-3
Front
E
τ
ne=1.81014 cm-3
Front
E
τ
• Use low ne events as “plasma off”
• Select events by ne, and by position on the streak camera slit
≈3z
≈500 MeV
∆E
≈-17
0 M
eV

Patric Muggli, HEEAUP05, 06/08/0573
e- ENERGY GAIN/LOSS
• Average energy gain (slice average): 156 ±40 MeV (≈3107 e-)• Average energy loss (slice average): 159±40 MeV (@ ne=1.81014 cm-
3)
ps slice analysis results
-200
-150
-100
-50
0
50
100
150
200
-6 -4 -2 0 2 4 6 8
ne=1.5×1014 (cm-3)
ne=1.8±0.1×1014 (cm-3)
( ) Time ps
+z
+2z
+3z
-2z
-z 0
100
200
300
400
500
600
700
800
-400 0 400 800 1200 Energy (MeV)
ne=1.8×1014 (cm-3)
ne=7×1013 (cm-3)
• Energy gain by particles ≈279 MeV in the last (-6 ps) 1 ps slice• Peak accelerating gradient ≈200 MeV/m (L=1.4 m)
(with incoming energy chirp subtracted) slices @ τ=-6 ps

Patric Muggli, HEEAUP05, 06/08/0574
EXPERIMENTAL SET UP
e-
N=1.81010
z=20-12µmE=28.5 GeV
Optical TransitionRadiators
IP0: Li Plasma Gas Cell: H2, Xe, NO
ne≈0-1018 cm-3
L≈2.5-20 cm
Plasma light
X-RayDiagnostic,
e-/e+
Production
CherenkovRadiator Dump
∫Cdt
ImagingSpectrometer
IP2:
xz
y
EnergySpectrum“X-ray”
25m
CoherentTransition
Radiation andInterferometer
• X-ray Chicane
-Energy resolution ≈60 MeV
E
• Coherent Transition Radiation (CTR)- CTR Energy≈Ipeak≈1/z

Patric Muggli, HEEAUP05, 06/08/0575
e- & e+ FOCUSING FIELDS
-400
-300
-200
-100
0
100
200
-250
-200
-150
-100
-50
0
-4 -2 0 2 4Er(z)ele1.e15
( )z mm
r=r
r=3r
-700
-600
-500
-400
-300
-200
-100
0
100
0
50
100
150
200
250
-4 -2 0 2 4Er(z)posi1.5e14
( )z mm
r=3r
r=r
QuickPIC x0≈y0≈25 µm, Nx≈39010-6, Ny≈8010-6 m-rad, N=1.91010 e+,
z≈730 µm, ne=1.5 10-6, L≈1.1 cm
• Uniform focusing force (r,z) • Non-uniform focusing force (r,z)
• Weaker focusing force • Stronger focusing force
Front Back Front Back
e+: focusing fields vary along r and z!

Patric Muggli, HEEAUP05, 06/08/0576
• 1-D Relativistic Plasma Wave:
r ∇ ⋅
r E =
ρε0
kpE =ωpe
cE =
neeε0
• Fields in rf cavities
• Limited by rf surface breakdown ≤200 MV/m(?)
• SLAC: ≈200, 70 MW Klystrons ≈50 GeV e-/e+ in ≈3 km Average gradient ≈17 MV/m
•
LARGECollective response!
• High gradient, high-energy plasma accelerator?
ACCELERATING FIELDS
@ ne=1014 cm-3 (fpe≈100 GHz)
E =mec
2
ε0
⎛
⎝ ⎜
⎞
⎠ ⎟
1/ 2
ne1/2 ≅100 ne cm−3( ) =1GV/m
3 km
• Next linear collider (ILC): ≈35 MV/m(?), 15 km for 500 GeV?
Ez
p c