PAT Best Practices: Learnings Across Industries · 2019. 6. 28. · Charles E. Miller, Manoharan...

17
6/21/2019 1 PAT Best Practices: Learnings Across Industries Dr. Charles E (Chuck) Miller Chief Data Scientist Camo Analytics • Process Analytical Technology (PAT) History of “PAT”, Process Analytics Scope (Revisited) • Parallel Universes: Pharma, Life Sciences Food, Ag, Petrochem, Chemical Key Contributions from All • PAT Best Practices: across 7 categories • Case Studies Outline

Transcript of PAT Best Practices: Learnings Across Industries · 2019. 6. 28. · Charles E. Miller, Manoharan...

  • 6/21/2019

    1

    PAT Best Practices:Learnings Across Industries

    Dr. Charles E (Chuck) MillerChief Data ScientistCamo Analytics

    • Process Analytical Technology (PAT)• History of “PAT”, Process Analytics • Scope (Revisited)

    • Parallel Universes:• Pharma, Life Sciences• Food, Ag, Petrochem, Chemical• Key Contributions from All

    • PAT Best Practices: across 7 categories

    • Case Studies

    Outline

  • 6/21/2019

    2

    • September 2004• Broad Industry Audience:

    • Highlight opportunities• Encourage innovation

    • Recommendations, not enforceable• Voluntary Manufacturer-Regulatory

    collaboration• Address industry hesitancy: Regulatory Risk,

    technical concerns• Develop well-understood processes, RTRT,

    efficiency• “…Facilitate Continuous Processing to

    improve efficiency and manage variability…”

    FDA’s PAT Guidance

    Definition (FDA, 2004): “..a mechanism to design, analyze, and control pharmaceutical manufacturing processes through the measurement of Critical Process Parameters (CPP) which affect Critical Quality Attributes (CQA).”

    • “Process Analytical Chemistry” had been a field since the 1980’s

    • Chemical, Food/AG, Materials, Petrochemicals• CPAC: Center for Process Analytical Chemistry, U.

    Washington

    • Before that, plenty of cases of in-line analytical measurements

    • DuPont Model 400: IR photometer: commercialized 1962• Ratio of two wavelengths• Over 5000 manufactured!

    • DuPont Model 800: rotating filter wheel photometer• Vis, NIR, polarized vis, mid-IR

    • 1970s: Food/Ag: At-line NIR• Grating, integrating sphere

    But, was “PAT” Really New in 2004?

  • 6/21/2019

    3

    Lehrer and Luft- “URAS”

    • Safety and control driven• Butadiene/air mix• CO in pure H2 (NH3 synthesis)

    • “Negative Filtering”:• Use target gas as a “filter”• Interference rejection

    • Built-in reference cell• Engineers: URAS superior

    vs. electrochemical instruments

    • 30 gases! (CO, CO2, CH4, C2H2, C2H6, C3H6, NO, N2O...)

    Radiationabsorber

    Radiationabsorber

    Indicator

    Pneumatic detector

    AmplifierDiaphragmcapacitor

    Light Sources

    Chopper

    Filter Cells

    SampleCell

    ReferenceCell

    Joseph W. (Bill) Worthington, “60 YEARS OF CO ANALYSIS BY NDIR GAS ANALYZERS”

    Rapid, highly-relevant analytical measurements, associated with an industrial process

    • Instrument Location: on-line, at-line, off-line

    • Analytical Modality: Optical, electrochemical, chromatographic, others

    • Sampling Mode: • Minimal manual intervention• Minimally invasive to the process• Limited access

    • Level of Automation: generally high• Timescale: Process-dependent

    • sufficient for process control, product disposition

    Let’s Re-Group: Scope of “PAT”

  • 6/21/2019

    4

    • Non-pharma industries:• Analytical technology relatively mature• Many value-adding applications: food/Ag, petrochem, materials• Sampling, sampling, sampling…..• Online MVA/analytics still developing…• Distributed/networked systems: food/Ag• Aerospace, Defense robust sensors, optics• Support structures in place: SHS system houses, model services, etc..

    • Pharma:• Skeptical- still seen as “new” technology, can’t trust it• Deeply entrenched organizations and workflows- won’t “let it in”• QA/validation: hyper-scrutiny (vs. lab analytical, and processes themselves)!• Irony: “Regulation Excuse”, but US regulators had encouraged its use!• How to handle disagreements between lab/PAT/process model?• QbD (2008): encouraged use in R&D/commercialization (Mfg. use still lagging..)

    2004 “Parallel Universes”

    Today: Key Contributions from Both

    • Instrument Technology: Optics, electronics

    • Automated Referencing, Standardization schemes

    • Sampling Systems engineering• Multivariate Calibration

    • Model optimization• Data preprocessing

    • Networked systems• Calibration Transfer• Method/model management

    • Raw Material Effects

    • Compliance, Quality Assurance of instrument and data systems

    • Calibration model lifecycle management

    • Risk assessment, mitigation• Change management

    procedures• Theory of Sampling (TOS)

    “Renaissance”• Platform Paradigm: “PAT-IT”

    management systems

    Non‐pharma  Pharma:

  • 6/21/2019

    5

    Typical “PAT Landscape”• PAT Method:

    includes sampling, instrument settings, data processing, model

    • PAT Model: The MVA model used to convert instrument data to outputs

    PAT Method

    PAT Model

    PAT Procedure: HOW outputs are to be used

    “Guideline on the use of near infrared spectroscopy by the pharmaceutical industry and the data requirements for new submissions and variations”, EMA, 27 January 2014.

    • Scope of PAT Usage• Sampling• Instrument• Data Handling• Calibration• Quality Management• Personal/

    Organizational

    PAT Best Practices (IMHO):The Seven Categories

  • 6/21/2019

    6

    Scope- Use, or Don’t Use?

    • Cost of installation, testing, on-going verification

    • Cost of ownership• Level of automation, and reliability• Consumables, utilities required• Frequent model maintenance

    • Personnel costs/efforts• Manufacturing Sites running lean!

    • Data costs- security and storage:• R&D is not “Manufacturing-Lite”,

    often more data volume!

    • Reduced lab costs, COGS• Improved QA, process control• Process uptime, energy savings• Retrospective investigation

    support• Improved Culture- more

    engagement in process monitoring

    • PM- process and control loops• Utilities support

    PROs: Value Proposition CONs: Costs, Risks

    Balance the PROs and CONs!

    Unexpected, unpublicized!

    • Location: driven by intended use, value proposition

    • Interface/Probe Engineering:• Materials, optics, design• Uptime (minimize fouling)• Single or Multi-phase?

    • Theory of Sampling (TOS)• Highly automated, if possible• Sampling system monitoring:

    Temperatures, Pressures, flows, etc…

    Sampling

  • 6/21/2019

    7

    • Signal/Registration Stability data quality

    • Access to instrument “health” data• Supply power, PC resources, reference arrays

    • Supporting utilities, NEMA enclosures• Remote and automated referencing

    workflows• Preventive Maintenance Program• Access to instrument certificates,

    validations (audits)• Control software/system stability

    • Sufficient resources

    Instrument

    • Infrastructure sufficient?• …to “build on the top of”?...

    • Site Automation & IT engagement• Data aggregation, alignment

    • Enables advanced diagnostics• Data Integrity• Avoid Network latency (speed)

    issues• From system backups, other jobs

    • Connectivity robustness• Avoid “dropped” signals• Rigorous IQ/OQ testing protocols

    Data Handling

  • 6/21/2019

    8

    • Simpler is better (MLR, PLS..)• Model optimization

    • Data Preprocessing scheme• Sample, variable subset selection

    • Validation and Verification• Commensurate with intended use

    • Model monitoring and updates• Reliability, security and

    configurability of model execution system

    • System for Model maintenance and change management

    • Manage Regulatory risks• Post-approval changes (Regulatory

    Opening?..)

    Calibration Model

    Model Data

    Data Import

    Data “cleaning”

    Exploratory Modeling

    Model Assessment (cross validation RMSECV, test

    set RMSEP, NAS,..)

    Final Model GenerationData Pre-

    processing (2nd d., MSC, SNV,…)

    Final Model “Packaging”

    Final Model Package

    DOE

    Lab Work

    Prior Knowledge

    Process Sampling

    Modeling Tools (PCA, PLS, MLR, SIMCA, KNN,…)

    Lab Analyzer

    Field Analyzer

    Visualization Tools

    Commercial Model

    Development software

    Model development

    process

    Miller, Wise, Shaver, IFPAC 2007

    • Outlier Diagnostics: • High-frequency, lLow-specificity• Low Cost!

    • Comparison to reference (lab) method

    • Higher-cost, higher-specificity• Sampling protocol• Data alignment- metadata &

    timestamps• Comprehensive QA/

    Performance Specifications• Not just prediction error (RMSEP),

    but also outlier diagnostics (in-space and out-of-space)!

    • Utilize existing site QA management systems whenever possible

    PAT Quality Management

  • 6/21/2019

    9

    • The PAT “Hot Potato”• On-site expertise

    • Inclusive Principles:• PAT is highly interfacial

    • Set high standards on data for method development, testing

    • For Capital Projects: FEL! (don’t miss the boat….)

    • Sampling hardware • Instrument utilities• Data, network systems

    Personal/Organizational

    OperationsQA

    Tech Ops

    LabMaintenance

    PATEngineering CMC

    Math/StatsProduce Dev Team

    Site 

    R&D

    Corporate

    • Case 1: Soymeal NIR – since the 1970’s• Case 2: In-line NIR Reaction Monitoring: Since 1989• Case 3: Pharma Examples:

    • RTRT, since 2006• Precision Coating IPC, since 2011• Continuous Manufacturing, in progress….

    Case Studies

  • 6/21/2019

    10

    Case 1: Soymeal At-line NIR

    • 1974: first filter NIR• 1987: Network of 6 “tilting filter” NIRs• 1989: first dispersive NIR

    • 1989 Calibration data still used today !• 1992: First usage of PLS models, w/dispersive NIR• 2009: Platform conversion started• Robustness testing:

    • Eight Constituents for Five Products Tested using Three Platforms: Foss 6500, XDS, Diode Array

    • Reference method changes• Crop year effects• Select a Minimum Diversity of Samples (100-1000) to Represent

    the Population• Model “refresh” strategy: Eliminate newest crop years,

    or eliminate oldest crop years?

    From: David J. Ryan, “Learning How to Break, So You Will Not Break, Your Calibrations: A Study of Crop Year Effects”, IDRC 2014

    Dickey John GAC III

    499 498 498

    181

    044 44 45

    295

    142

    0

    194

    0

    275

    127

    219

    109

    469

    0

    100

    200

    300

    400

    500

    600

    Isolate Protein Crop Year Distribution

    Isolate PAI

    Case 1, Learnings and Deliverables• Key Learnings:

    • “multi-year robust calibrations do not fall apart overnight, given an ever evolving landscape of variables, models still require routine updates”

    • Models including 5-6 crop years work best• Cal samples older than ~8 yr add less value to models,

    due to response bias and non-random distribution• Food/ag DBs require ~300 samples to enable good

    transfer to new platform

    • Deliverables:• Crop year effects on CQAs: mean and distribution• Proactive Model Robustness Testing

    • ~3x actual model update frequency• Diagnostics: Not just SEP!

    • T2, Q-residual, and score scatter• Optimal “refresh scheme” for cal samples• Impact of crop year on NIR methods• Method transfers between platforms

    ‐1

    ‐0.5

    0

    0.5

    1

    1.5

    200020012002200320042005200620072008200920102011201220132014

    Eliminate Newest: Bias

    IsoPAI IsoDM WFPDB WFNSI LecAI SMCF DAPDB DAFAT

    From: David J. Ryan, “Learning How to Break, So You Will Not Break, Your Calibrations: A Study of Crop Year Effects”, IDRC 2014

  • 6/21/2019

    11

    Case 2: In-line FTNIR Reaction Monitoring

    • Purpose: Reactor control in a continuous process • Redundant with on-line GC, process model

    • 4 production units across 2 plant sites• 100s of product grades, each with different composition space• 31 PLS models total

    • 1989: Instruments and Sample System installed• 1992: PLS models deployed, Outlier diagnostics 1994• Sampling: Slip stream transmittance, 5000 PSI, flammable fluid,

    with entrained “wax”• Phase separation risk• T, P and flow sensors on sampling system

    • 20 sec. analysis frequency• Instrument: Analect “wedge” FT-NIR

    • NEMA enclosure, in “shaky” location• 1996: High Pressure Calibrator: injected DOE standards for

    calibration development• Custom real-time chemometrics• Still running today!

    FEED

    REACTOR

    PRODUCT

    ANALYZER

    C. Miller, et al,  “Multivariate Outlier Diagnostics: A Critical Component of  NIR/PAT Method QA”, IDRC2014

    Case 2: Multivariate Diagnostics-The Story

    • 1992: Highly divergent feed composition resulted in a runaway reaction!

    • No injuries, but >5 days downtime• Root cause difficult to determine

    • ..but many blamed the NIR

    • Model diagnostics:• Custom coded: “leverage ratio” and “residual ratio”• Support at least 3 functions:

    • Model maintenance• Process control (disable NIR PV usage)• System reliability

    • Non-specific, but can infer issues “upstream” (instrument, process)

    C. Miller, et al,  “Multivariate Outlier Diagnostics: A Critical Component of  NIR/PAT Method QA”, IDRC2014

    K

    k ktk

    knn

    NtT

    1

    2,2

    )1/()( tt

  • 6/21/2019

    12

    Case 2: Other Diagnostics

    • Instrument diagnostics:• Custom card: enclosure T, power supply

    voltages, currents, etc….• Proactive maintenance, reliability

    • Sampling System diagnostics:• P, T, flow sensors on the sampling system• Univariate “Fouling Factor”

    • Remote access (PCAW)• With access protocols

    C. Miller, et al,  “Multivariate Outlier Diagnostics: A Critical Component of  NIR/PAT Method QA”, IDRC2014

    Case 2: Summary• PAT Value to Operations:

    • Redundancy support for closed-loop composition controller

    • “Window” into process dynamics, product transitions• System Safety and Utility

    • Key PAT Learnings:• NIR H/W: Improved robustness to sampling, and

    environment• Cal sample sets: can “mix” DOE and on-line samples

    effectively• Real-time Diagnostics:

    • For Model, Sampling and Instrument monitoring• Supports process control, system robustness and reliability• Especially critical for continuous process

    • Criticality of IT: software and networking• COPA, PAT-IT

    • Developed Lifecycle Management systems:• Model monitoring, administration, change management

  • 6/21/2019

    13

    • NIR diffuse transmittance: In service since 2006• Uses Bruker’s OPUS S/W• Three dosages (A, B, C)• “Mixed” PLS Calibration Models:

    • DOE data: provides robustness• Process data: provides relevance

    • Outlier diagnostics in OPUS: • “M-distance” or MD (IS)• “F-value” (OS)

    • Diagnostic limits:• “2K/N” (ASTM) limit on MD, • 99% CL for F-value (hard-wired)

    • Both periodic, and event-based comparisons of NIR to reference analytical method

    Case 3: Real Time Release Testing (RTRT) Application

    25

    Design Variables:

    • %LC• particle size• hardness• weight

    Charles E. Miller, Manoharan Ramasamy, John P Higgins, Nathan Pixley, IFPAC 2018

    RTRT Method Events

    MAR, JUL 06: 3 NIR models put into service

    10.3.2010 (A): 132 MD alarms over 8 batches! All negatives!

    Investigation of outlier metric limits (too “tight”???)

    18.3.2011 (all): new MD limits set using 95% CL

    30.6.2011: A model updateB and C model 

    updates

    29.7.2009 (B): 6 MD alarms over 2 weeks, all negatives

    B :3 MD alarms, all confirmed positives!

    2 4 6 8 10

    x 104

    0

    500

    1000

    1500

    Sample

    F va

    lue

    F valueF above limitF below limit

    27.1.2009 (A): 2 F alarms, confirmed positives!

    •A model generated useful metrics right away; B and C models did so after a model update• Since 2006, only 7 confirmed positive tablets (out of >120k!)

    • All were flagged by the outlier detector!• None resulted in tablet quality issues!

    • However, 132 false alarms for model A in 2010

    B model update effect on F value

    12.2.2007 (A): 2 F alarms, confirmed positives!

    XRCT confirmed “lumps” in tablet!

  • 6/21/2019

    14

    RTRT : Outlier Diagnostics• ODs always a key component of model QA• Method transfer: Different operating

    platform• OD nomenclature

    • From 2006-2011, only 6 cases of confirmed “positive” tablets (out of >120k!)

    • All of which were flagged by the outlier detector!• All of which were within Quality specifications

    • OCT 2010: 132 false alarms • Led to an “OD System Review”• Stats-based adjustment of OD limits• F-distribution assumption, and 95% “default” OD limit, is

    actually close to optimal!• OD system management!

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

    1000

    2000

    3000

    4000

    5000

    6000

    M-Distance Value

    frequ

    ency

    132 MD‐based false alarms 

    M‐distances (N > 100000)

    At-line IPC- Spray Coating

    • API Spray coating process• 3 NIR methods (1 per

    dosage)• Thermo Antaris II NIR

    • At-Line

    • PLS regression (Y= HPLC assay)

    • Relevant Y range limited to valid range for control

    • SIPAT “PAT-IT” Solution• Camo (UNSC) Models

    Charles Miller, Nathan Pixley, Bruce Thompson, Manoharan Ramasamy, John Higgins, IFPAC 2016

  • 6/21/2019

    15

    NIR Model for IPC• NIR Model (PLS):

    • Using “Mixed” Calibration Population:• Full scale development• Stability studies

    • Using GA-selected variables

    • Model Robustness Assessment:

    • X: NIR spectra of tablets at same fixed levels of spray coating

    • Y: Spray coating process parameter• Fit?: Infers some sensitivity of NIR

    spectrum to process parameter1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

    1.8

    2

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    Y Measured 5 Air:Water Ratio [CF/g]Y

    CV

    Pred

    icte

    d 5

    Air:

    Wat

    er R

    atio

    [CF/

    g]

    Samples/Scores Plot of MK0431AXR_CUMASTER_051410

    FSSFSD3BBFSD41:1

    Air/water ratio

    30 32 34 36 38 40 42 44 4630

    32

    34

    36

    38

    40

    42

    44

    46

    48

    Y Measured 9 Bed Temperature [°C]

    Y C

    V P

    redi

    cted

    9 B

    ed T

    empe

    ratu

    re [°

    C]

    Samples/Scores Plot of MK0431AXR_CUMASTER_051410

    FSSFSD3BBFSD41:1fit95% Confidence Level

    R2 = 0.8524 Latent VariablesRMSEC = 1.2586RMSECV = 1.6607Bias = 0CV Bias = 0.14508

    Bed T

    • Risk-based %CLs on ODs (using theoretical method)

    • Outlier alarm triggers investigation

    • NIR Predictions from flagged samples disqualified for NIR control application

    • Outlier Diagnostics aid in: • NIR usage decisions, • NIR model “QA”, and• Addressing NIR sampling issues

    IPC: Outlier Diagnostics

    30

    Hotelling T2: 12 batches

  • 6/21/2019

    16

    Continuous Manufacturing Application- Pushing the Limit?...

    • Supports high-frequency spectral collection (~1Hz)

    • Fully-integrated with process automation system

    • Automated PAT “health-check” workflows

    • Metadata-rich: Supports full traceability of blend & tablet data

    • Network architecture optimized for reliability, speed

    • Incorporated into Enterprise-wide PAT-IT system

    Charles E. Miller, John P. Higgins, Louis Obando, Manoharan Ramasamy, IFPAC2018

    Continuous Manufacturing, Continued:

    • Very different usage cases for 2 PATs:• Tablet PAT:

    • “Passive” collector• Traceability of results• Several “fault” scenarios• Reporting for QA/release

    • Blend PAT:• High frequency: collection-model application-results• In-line workflows• Instrument, and sampler control• Reference array/metadata capture• Real-time trends to process HMIs

    • Opportunity for Advanced and Targeted Diagnostics!

    • Automated data archival32

    0.8 1 1.2 1.4 1.6 1.8 2 2.20

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5x 104

    interval (seconds)

    1 1.2 1.4 1.6 1.8 20

    10

    20

    30

    40

    50

    60

    Histogram of time intervals (N=48388)

    21:00 08/31/16 03:00 06:00 09:000.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    timestamp

    Mea

    n

  • 6/21/2019

    17

    • “PAT” (Process Analytical) is NOT new!• Both Pharma and non-Pharma have made key

    contributions to PAT• “Best Practices” span a wide range of diverse categories

    • Good practice well-positioned for new advances in PAT technology

    Summary