Paper Reference(s) Edexcel GCE - Maths Genie · PDF filePaper Reference 6664 01 Paper...
Embed Size (px)
Transcript of Paper Reference(s) Edexcel GCE - Maths Genie · PDF filePaper Reference 6664 01 Paper...
Examiners use only
Team Leaders use only
Question Leave Number Blank
1
2
3
4
5
6
7
8
9
10
Total
Surname Initial(s)
Signature
Turn over
Paper Reference
6 6 6 4 0 1 Paper Reference(s)
6664/01Edexcel GCECore Mathematics C2Advanced SubsidiaryMonday 11 January 2010 MorningTime: 1 hour 30 minutes
Materials required for examination Items included with question papersMathematical Formulae (Pink or NilGreen)
Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.
Instructions to CandidatesIn the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.Answer ALL the questions.You must write your answer to each question in the space following the question.When a calculator is used, the answer should be given to an appropriate degree of accuracy.
Information for CandidatesA booklet Mathematical Formulae and Statistical Tables is provided.Full marks may be obtained for answers to ALL questions.The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).There are 9 questions in this question paper. The total mark for this paper is 75.There are 24 pages in this question paper. Any blank pages are indicated.
Advice to CandidatesYou must ensure that your answers to parts of questions are clearly labelled.You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.
Examiners use only
Team Leaders use only
Question Leave Number Blank
1
2
3
4
5
6
7
8
9
Total
Surname Initial(s)
Signature
Centre No.
*N35101A0124*Turn over
Candidate No.
This publication may be reproduced only in accordance with Edexcel Limited copyright policy. 2010 Edexcel Limited.
Printers Log. No.
N35101AW850/R6664/57570 3/5/5/3/3
Leave blank
2
*N35101A0224*
1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of
(3 x)6
and simplify each term.(4)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________Q1
(Total 4 marks)
Leave blank
3
Turn over*N35101A0324*
2. (a) Show that the equation
5 sin x = 1 + 2 cos2 x
can be written in the form
2 sin2 x + 5 sin x 3 = 0(2)
(b) Solve, for 0 x < 360,
2 sin2 x + 5 sin x 3 = 0(4)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ Q2
(Total 6 marks)
Leave blank
4
*N35101A0424*
3. f(x) x ax bx= + + 2 63 2
where a and b are constants. When f(x) is divided by (2x 1) the remainder is 5. When f(x) is divided by (x + 2) there is no remainder.
(a) Find the value of a and the value of b.(6)
(b) Factorise f(x) completely.(3)
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________
_______________